MATLAB---回归预测模型

合集下载

用MATLAB求解回归分析

用MATLAB求解回归分析


F值、与F对应的概率p

相关系数 r2 越接近 1,说明回归方程越显著;
.


省显
时著
为性
0
水 平
05

F > F1-α(k,n-k-1)时拒绝 H0,F 越大,说明回归方程越显著;
与 F 对应的概率 p 时拒绝 H0,回归模型成立.
3、画出残差及其置信区间: rcoplot(r,rint)
例1 解:1、输入数据:
stats = 0.9702 40.6656
0.0005
1、回归:
非线性回 归
是事先用m-文件定 义的非线性函数
(1)确定回归系数的命令: [beta,r,J]=nlinfit(x,y,’model’, beta0)
估计出的 回归系数
残差 Jacobian矩阵
输入数据x、y分别为 n m矩阵和n维列向 量,对一元非线性回 归,x为n维列向量。
r2=0.9282, F=180.9531, p=0.0000
p<0.05, 可知回归模型 y=-16.073+0.7194x 成立.
3、残差分析,作残差图: rcoplot(r,rint)
从残差图可以看出,除第二个数据外,其余数据的残
差离零点均较近,且残差的置信区间均包含零点,这说明 回归模型 y=-16.073+0.7194x能较好的符合原始数据,而第 二个数据可视为异常点.
2、预测和预测误差估计:
(1)Y=polyval(p,x)求polyfit所得的回归多项式在 x处 的预测值Y; (2)[Y,DELTA]=polyconf(p,x,S,alpha)求 polyfit所得的回归多项式在x处的预测值Y及预测值的 显著性为 1-alpha的置信区间Y DELTA;alpha缺省时为0.5

matlab回归建模过程

matlab回归建模过程

matlab回归建模过程摘要:一、回归建模概述- 回归分析的定义- 回归建模的目的和意义二、MATLAB 回归建模过程- 一元线性回归- 数学模型定义- 模型参数估计- 检验、预测及控制- 多元线性回归- 数学模型定义- 模型参数估计- 多元线性回归中检验与预测- 逐步回归分析三、MATLAB 回归建模应用案例- 案例一:一元线性回归分析- 案例二:多元线性回归分析- 案例三:逐步回归分析正文:一、回归建模概述回归分析是一种研究变量之间关系的统计方法,通过建立一个数学模型,描述自变量与因变量之间的线性关系。

回归建模在实际应用中有着广泛的应用,如经济学、生物学、社会学等学科的研究中,可以帮助我们更好地理解变量之间的关系,并对未来趋势进行预测和控制。

MATLAB 是一种广泛应用于科学计算和数据分析的编程语言,提供了丰富的回归建模工具箱,可以帮助我们快速、高效地进行回归建模分析。

二、MATLAB 回归建模过程1.一元线性回归一元线性回归是最简单的回归分析方法,适用于只有一个自变量和一个因变量的情况。

在MATLAB 中,我们可以使用回归分析工具箱中的`regress`函数进行一元线性回归建模。

(1)数学模型定义一元线性回归的数学模型可以表示为:y = a + bx其中,y 表示因变量,x 表示自变量,a 和b 分别表示回归系数。

(2)模型参数估计在MATLAB 中,我们可以使用`regress`函数对模型参数进行估计。

函数的原型为:b = regress(y, x)其中,y 表示因变量向量,x 表示自变量向量,b 表示回归系数向量。

(3)检验、预测及控制在得到回归系数向量b 后,我们可以进行回归检验、预测以及控制。

2.多元线性回归多元线性回归适用于有多个自变量和因变量的情况。

在MATLAB 中,我们可以使用回归分析工具箱中的`polyfit`函数进行多元线性回归建模。

(1)数学模型定义多元线性回归的数学模型可以表示为:y = a0 + a1x1 + a2x2 + ...+ anxn其中,y 表示因变量,x1、x2、...、xn 表示自变量,a0、a1、a2、...、an 分别表示回归系数。

使用MATLAB进行数据预测和预测

使用MATLAB进行数据预测和预测

使用MATLAB进行数据预测和预测引言:数据预测和预测在许多领域中都具有重要的应用价值。

它们可以帮助我们预测未来的发展趋势,做出合理的决策,并在经营和决策中提供有力的支持。

在这一过程中,MATLAB作为一种功能强大的编程语言和数据分析工具,为我们提供了一个强大的工具箱,可以进行数据预测和预测。

数据预处理:在开始数据预测和预测之前,我们首先需要对数据进行预处理。

预处理包括数据清洗、数据归一化、特征选择等步骤。

通过这些步骤,我们可以提高数据的质量,减少噪声的影响,并使数据更适合于预测模型的建立。

数据清洗是指删除或修复数据中的错误值、缺失值和异常值。

在MATLAB中,我们可以使用一些函数和工具箱来处理这些问题。

例如,我们可以使用`isnan`函数来检测缺失值,并使用`fillmissing`函数来填充缺失值。

对于异常值,我们可以使用一些统计方法,如3σ原则或箱线图来识别和处理。

数据归一化是将不同尺度的数据映射到统一的尺度上。

这是因为不同尺度的数据可能对预测模型的训练和预测产生不利影响。

在MATLAB中,有许多方法可以实现数据归一化,如MinMax归一化、Z-score归一化等。

我们可以使用`mapminmax`函数来实现MinMax归一化,并使用`zscore`函数来实现Z-score归一化。

特征选择是从原始数据中选择最相关的特征,以降低数据维度并提高预测模型的准确性。

在MATLAB中,我们可以使用一些算法和函数来实现特征选择。

例如,我们可以使用`fsrnca`函数(基于相关系数的特征选择)或`sequentialfs`函数(基于逐步搜索的特征选择)来选择最佳特征子集。

在完成数据预处理后,我们可以使用各种算法和方法进行数据预测。

在MATLAB中,有许多经典的预测算法和函数可供选择。

以下是几个常用的预测方法。

1. 线性回归:线性回归是一种基本的预测方法,它使用线性模型来建立输入变量和输出变量之间的关系。

matlab随机森林回归预测算法

matlab随机森林回归预测算法

随机森林是一种常用的机器学习算法,它在回归和分类问题中都有很好的表现。

而在Matlab中,也提供了随机森林回归预测算法,能够帮助用户解决实际问题中的预测和建模需求。

下面我们将就Matlab中的随机森林回归预测算法展开详细的介绍。

一、随机森林的原理随机森林是一种集成学习算法,它由多棵决策树组成。

在构建每棵决策树时,会随机选择样本和特征进行训练,最后将多棵决策树的结果综合起来,形成最终的预测结果。

这样的做法可以有效地减少过拟合的风险,同时具有很高的预测准确性。

随机森林的优点主要包括:具有很好的鲁棒性,对于数据中的噪声和缺失值有很强的适应能力;能够处理高维数据和大规模数据,不需要对数据进行特征选择和降维;具有很好的泛化能力,不易发生过拟合。

二、Matlab中的随机森林回归预测算法Matlab提供了一个强大的集成学习工具箱,其中包括了随机森林回归预测算法。

用户可以很方便地使用这个工具箱进行数据建模和预测。

1. 数据准备在使用Matlab进行随机森林回归预测之前,首先需要准备好数据。

数据应该包括自变量和因变量,可以使用Matlab的数据导入工具将数据导入到工作空间中。

2. 构建随机森林模型在数据准备好之后,可以使用Matlab的fitrensemble函数来构建随机森林模型。

该函数可以指定树的数量、最大深度、最小叶子大小等参数,也可以使用交叉验证来优化模型的参数。

3. 模型预测一旦模型构建完成,就可以使用predict函数对新的数据进行预测了。

通过输入自变量的数值,就可以得到相应的因变量的预测值。

4. 模型评估在得到预测结果之后,通常需要对模型进行评估,以了解模型的预测能力。

可以使用Matlab提供的各种评估指标函数,如均方误差(MSE)、决定系数(R-squared)、平均绝对误差(MAE)等来评估模型的表现。

5. 参数调优如果模型的表现不佳,可以尝试使用交叉验证、网格搜索等方法对模型的参数进行调优,以提高模型的预测准确性。

matlab建立多元线性回归模型并进行显著性检验及预测问题

matlab建立多元线性回归模型并进行显著性检验及预测问题

matlab建立多元线性回归模型并进行显着性检验及预测问题例子;x=[143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164]';X=[ones(16,1) x]; 增加一个常数项Y=[88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102]'; [b,bint,r,rint,stats]=regress(Y,X) 得结果:b = bint = stats = 即对应于b的置信区间分别为[,]、[,]; r2=, F=, p= p<, 可知回归模型y=+ 成立. 这个是一元的,如果是多元就增加X的行数!function [beta_hat,Y_hat,stats]=regress(X,Y,alpha)% 多元线性回归(Y=Xβ+ε)MATLAB代码%?% 参数说明% X:自变量矩阵,列为自变量,行为观测值% Y:应变量矩阵,同X% alpha:置信度,[0 1]之间的任意数据% beta_hat:回归系数% Y_beata:回归目标值,使用Y-Y_hat来观测回归效果% stats:结构体,具有如下字段% =[fV,fH],F检验相关参数,检验线性回归方程是否显着% fV:F分布值,越大越好,线性回归方程越显着% fH:0或1,0不显着;1显着(好)% =[tH,tV,tW],T检验相关参数和区间估计,检验回归系数β是否与Y有显着线性关系% tV:T分布值,beta_hat(i)绝对值越大,表示Xi对Y显着的线性作用% tH:0或1,0不显着;1显着% tW:区间估计拒绝域,如果beta(i)在对应拒绝区间内,那么否认Xi对Y显着的线性作用% =[T,U,Q,R],回归中使用的重要参数% T:总离差平方和,且满足T=Q+U% U:回归离差平方和% Q:残差平方和% R∈[0 1]:复相关系数,表征回归离差占总离差的百分比,越大越好% 举例说明% 比如要拟合y=a+b*log(x1)+c*exp(x2)+d*x1*x2,注意一定要将原来方程线化% x1=rand(10,1)*10;% x2=rand(10,1)*10;% Y=5+8*log(x1)+*exp(x2)+*x1.*x2+rand(10,1); % 以上随即生成一组测试数据% X=[ones(10,1) log(x1) exp(x2) x1.*x2]; % 将原来的方表达式化成Y=Xβ,注意最前面的1不要丢了% [beta_hat,Y_hat,stats]=mulregress(X,Y,%% 注意事项% 有可能会出现这样的情况,总的线性回归方程式显着的=1),% 但是所有的回归系数却对Y的线性作用却不显着=0),产生这种现象的原意是% 回归变量之间具有较强的线性相关,但这种线性相关不能采用刚才使用的模型描述,% 所以需要重新选择模型%C=inv(X'*X);Y_mean=mean(Y);% 最小二乘回归分析beta_hat=C*X'*Y; % 回归系数βY_hat=X*beta_hat; % 回归预测% 离差和参数计算Q=(Y-Y_hat)'*(Y-Y_hat); % 残差平方和U=(Y_hat-Y_mean)'*(Y_hat-Y_mean); % 回归离差平方和T=(Y-Y_mean)'*(Y-Y_mean); % 总离差平方和,且满足T=Q+UR=sqrt(U/T); % 复相关系数,表征回归离差占总离差的百分比,越大越好[n,p]=size(X); % p变量个数,n样本个数% 回归显着性检验fV=(U/(p-1))/(Q/(n-p)); % 服从F分布,F的值越大越好fH=fV>finv(alpha,p-1,n-p); % H=1,线性回归方程显着(好);H=0,回归不显着% 回归系数的显着性检验chi2=sqrt(diag(C)*Q/(n-p)); % 服从χ2(n-p)分布tV=beta_hat./chi2; % 服从T分布,绝对值越大线性关系显着tInv=tinv+alpha/2,n-p);tH=abs(tV)>tInv; % H(i)=1,表示Xi对Y显着的线性作用;H(i)=0,Xi对Y的线性作用不明显% 回归系数区间估计tW=[-chi2,chi2]*tInv; % 接受H0,也就是说如果在beta_hat(i)对应区间中,那么Xi与Y线性作用不明显stats=struct('fTest',[fH,fV],'tTest',[tH,tV,tW],'TUQR',[T,U,Q,R]);。

matlab回归建模过程

matlab回归建模过程

matlab回归建模过程摘要:一、引言二、MATLAB 回归建模的基本步骤1.数据的收集与整理2.建立回归模型3.模型参数估计4.模型检验5.模型预测与控制三、MATLAB 回归建模的实例分析1.一元线性回归2.多元线性回归3.逐步回归四、MATLAB 回归建模的优点与局限五、结论正文:一、引言MATLAB 是一种广泛应用于科学计算和工程设计的软件,其强大的数据处理和可视化功能为各种数学建模问题提供了便捷的解决方案。

在数学建模领域,回归分析是一种重要的方法,用于研究因变量和自变量之间的关系。

本文将详细介绍如何使用MATLAB 进行回归建模的过程。

二、MATLAB 回归建模的基本步骤1.数据的收集与整理在进行回归分析之前,首先需要收集相关的数据。

这些数据可以是实验测量值、历史统计数据等。

在收集到数据后,需要对其进行整理,将其转换为MATLAB 可以处理的格式。

2.建立回归模型在建立回归模型时,需要根据数据的特点和问题的实际背景选择合适的回归模型。

常见的回归模型有一元线性回归、多元线性回归、多项式回归、指数回归等。

3.模型参数估计在建立回归模型后,需要通过最小二乘法或其他方法对模型的参数进行估计。

MATLAB 提供了线性回归函数`regress`和多项式回归函数`polyfit`等工具用于模型参数的估计。

4.模型检验在模型参数估计完成后,需要对模型进行检验,以判断模型是否符合数据的实际情况。

常见的模型检验方法有残差分析、参数显著性检验等。

5.模型预测与控制在模型经过检验后,可以使用模型对未来的数据进行预测,或者利用模型对现有的数据进行控制。

MATLAB 提供了`predict`和`fit`等函数用于模型的预测和控制。

三、MATLAB 回归建模的实例分析1.一元线性回归以某市社会商品零售总额与职工工资总额的数据为例,可以使用一元线性回归模型进行建模。

首先输入数据,然后画出散点图,接着使用`regress`函数进行最小二乘回归,得到模型参数。

均值回归模型参数估计 matlab代码

均值回归模型参数估计 matlab代码

均值回归模型是一种常见的统计建模方法,它通过对自变量和因变量之间的平均关系进行建模来进行参数估计。

在实际的数据分析和建模过程中,我们经常需要使用MATLAB来进行均值回归模型的参数估计和分析。

本文将针对均值回归模型参数估计的MATLAB代码进行详细的介绍和解释。

1. 均值回归模型简介均值回归模型是一种简单但常用的统计建模方法,它假设自变量与因变量之间的关系是通过均值来进行描述的。

均值回归模型的基本形式可以表示为:Y = β0 + β1*X + ε其中,Y表示因变量,X表示自变量,β0和β1分别表示回归方程的截距和斜率参数,ε表示误差项。

均值回归模型的目标就是通过对数据进行拟合来估计出最优的β0和β1参数,从而描述自变量和因变量之间的关系。

2. MATLAB代码实现在MATLAB中,我们可以使用regress函数来进行均值回归模型参数的估计。

regress函数的基本语法如下:[b,bint,r,rint,stats] = regress(y,X)其中,y表示因变量的数据向量,X表示自变量的数据矩阵,b表示回归系数的估计值,bint表示回归系数的置信区间,r表示残差向量,rint表示残差的置信区间,stats是一个包含了回归统计信息的向量。

3. 代码示例下面是一个使用MATLAB进行均值回归模型参数估计的简单示例:```MATLAB生成随机数据X = randn(100,1);Y = 2*X + randn(100,1);均值回归模型参数估计[b,bint,r,rint,stats] = regress(Y,X);打印回归系数估计值fprintf('回归系数估计值:\n');disp(b);打印回归统计信息fprintf('回归统计信息:\n');disp(stats);```在这个示例中,我们首先生成了一个随机的自变量X和一个根据线性关系生成的因变量Y。

然后使用regress函数对这些数据进行了均值回归模型参数的估计,并打印出了回归系数的估计值和一些回归统计信息。

回归预测 matlab

回归预测 matlab

回归预测 matlab回归预测是指利用已知的数据建立一个数学模型,然后使用该模型对未知数据进行预测。

在Matlab中,可以使用各种统计和机器学习工具来进行回归预测分析。

下面我将从多个角度来介绍在Matlab中进行回归预测的方法。

首先,Matlab中可以使用经典的线性回归模型来进行预测。

线性回归是一种常见的统计方法,可以用来建立自变量和因变量之间的线性关系。

在Matlab中,可以使用`fitlm`函数来拟合线性回归模型,并使用该模型来进行预测。

该函数可以处理单变量和多变量的线性回归分析,同时还可以考虑到误差项的自相关性和异方差性。

其次,Matlab还提供了支持向量机(SVM)和人工神经网络(ANN)等机器学习方法来进行回归预测分析。

使用`fitrsvm`函数可以构建支持向量机回归模型,而使用`fitrnet`函数可以构建人工神经网络回归模型。

这些方法在处理非线性关系和高维数据时表现出色,可以更准确地进行预测。

此外,在Matlab中还可以使用交叉验证等技术来评估回归模型的性能。

通过交叉验证可以更准确地评估模型的泛化能力,避免过拟合和欠拟合问题。

Matlab提供了`crossval`函数和`kfoldLoss`函数等用于交叉验证的工具,可以帮助用户选择最佳的回归模型。

最后,Matlab还提供了丰富的可视化工具,可以帮助用户对回归预测结果进行直观的分析和展示。

用户可以使用`plot`函数和`scatter`函数等绘图函数来展示观测数据和预测结果,从而更直观地了解模型的拟合情况和预测效果。

综上所述,Matlab提供了多种方法和工具来进行回归预测分析,用户可以根据自己的数据和需求选择合适的方法进行建模和预测。

通过合理选择模型和参数,并结合交叉验证和可视化分析,可以更准确地进行回归预测,并得到可靠的结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

MATLAB---回归预测模型
Matlab统计工具箱用命令regress实现多元线性回归,用的方法是最小二乘法,用法是:
b=regress(Y,X)
[b,bint,r,rint,stats]=regress(Y,X,alpha)
Y,X为提供的X和Y数组,alpha为显著性水平(缺省时设定为0.05),b,bint 为回归系数估计值和它们的置信区间,r,rint为残差(向量)及其置信区间,stats是用于检验回归模型的统计量,有四个数值,第一个是R2,第二个是F,第三个是与F对应的概率 p ,p <α拒绝 H0,回归模型成立,第四个是残差的方差 s2 。

残差及其置信区间可以用 rcoplot(r,rint)画图。

例1合金的强度y与其中的碳含量x有比较密切的关系,今从生产中收集了一批数据如下表 1。

先画出散点图如下:
x=0.1:0.01:0.18;
y=[42,41.5,45.0,45.5,45.0,47.5,49.0,55.0,50.0];
plot(x,y,'+')
可知 y 与 x 大致上为线性关系。

设回归模型为 y =β
0 +β
1
x
用regress 和rcoplot 编程如下:
clc,clear
x1=[0.1:0.01:0.18]';
y=[42,41.5,45.0,45.5,45.0,47.5,49.0,55.0,50.0]'; x=[ones(9,1),x1];
[b,bint,r,rint,stats]=regress(y,x);
b,bint,stats,rcoplot(r,rint)
得到 b =27.4722 137.5000
bint =18.6851 36.2594
75.7755 199.2245
stats =0.7985 27.7469 0.0012 4.0883
即β
0=27.4722 β
1
=137.5000
β0的置信区间是[18.6851,36.2594],
β1的置信区间是[75.7755,199.2245];
R2= 0.7985 , F = 27.7469 , p = 0.0012 , s2 =4.0883 。

可知模型(41)成立。

观察命令 rcoplot(r,rint)所画的残差分布,除第 8 个数据外其余残差的置信区间均包含零点第8个点应视为异常点,
将其剔除后重新计算,
可得 b =30.7820 109.3985
bint =26.2805 35.2834
76.9014 141.8955
stats =0.9188 67.8534 0.0002 0.8797 应该用修改后的这个结果。

相关文档
最新文档