高中数学导学案抛物线及其标准方程

合集下载

高中数学抛物线及其标准方程精品导学案

高中数学抛物线及其标准方程精品导学案

抛物线及其标准方程一、课前导学 1.抛物线的定义平面内与一个定点F 和一条定直线l (l 不经过点F ) 的点的轨迹叫做抛物线.点F 叫做抛物线的 ,直线l 叫做抛物线的 2.抛物线的标准方程推导过程: 3.抛物线标准方程的几种形式预习自测1.方程[]22)1()3(2-++y x =|x -y +3|表示的曲线是( ) A .圆B .椭圆C .双曲线D .抛物线2.若动点P 与定点F (1,1)和直线l :3x +y -4=0的距离相等,则动点P 的轨迹是 ( ) A .椭圆B .双曲线C .抛物线D .直线3.若动圆与圆(x -2)2+y 2=1相外切,又与直线x +1=0相切,则动圆圆心的轨迹是 ( ) A .椭圆B .双曲线C .双曲线的一支D .抛物线二、课堂导学例1.已知抛物线的方程如下,求其焦点坐标和准线方程.(1)y 2=-6x ; (2)3x 2+5y =0;(3)y =4x 2; (4)y 2=a 2x (a ≠0). 练习1.抛物线方程为7x +4y 2=0,则焦点坐标为( ) A .⎝ ⎛⎭⎪⎫716,0 B .⎝ ⎛⎭⎪⎫-74,0 C .⎝ ⎛⎭⎪⎫-716,0D .⎝ ⎛⎭⎪⎫0,-74 练习2.抛物线y =-14x 2的准线方程是 ( )A .x =116B .x =1C .y =1D .y =2例2.分别求满足下列条件的抛物线的标准方程. (1)准线方程为2y +4=0;(2)过点(3,-4); (3)焦点在直线x +3y +15=0上.例3..一种卫星接收天线的轴截面如图(课本59页图1),卫星波速呈近似平行状态射入轴截面为抛物线的接收天线,经放射聚集到焦点处。

已知接收天线的口径(直径)为4.8m ,深度为0.5m 。

试建立适当的坐标系,求抛物线的标准方程和焦点坐标。

三、课堂小结 1.抛物线的定义;2.抛物线的四种标准方程;3.注意抛物线的标准方程中的字母P 的几何意义四、课堂练习1.抛物线y 2=ax (a ≠0)的准线方程是 ( )(A )4a x =-;(B)x =4a ;(C)||4a x =- ;(D)x =||4a2.抛物线21x m y =(m ≠0)的焦点坐标是( )(A ) (0,4m )或(0,4m -);(B) (0,4m)(C) (0,m 41)或(0,m 41-);(D) (0,m41)3.根据下列条件写出抛物线的标准方程:(1)焦点是F (0,3),(2)焦点到准线的距离是2.4.求下列抛物线的焦点坐标和准线方程:(1)y 2=20x ;(2)x 2+8y =0.5.点M 到点(0,8)的距离比它到直线y =-7的距离大1,求M 点的轨迹方程。

高中数学选修2-1 抛物线导学案加课后作业及参考答案

高中数学选修2-1   抛物线导学案加课后作业及参考答案

抛物线及其标准方程导学案【学习要求】1.掌握抛物线的定义及焦点、准线的概念.2.会求简单的抛物线的方程.【学法指导】通过观察抛物线的形成过程,得出抛物线定义,建系得出抛物线标准方程.通过抛物线及其标准方程的应用,体会抛物线在刻画现实世界和解决实际问题中的作用.【知识要点】1.抛物线的定义平面内与一个定点F和一条定直线l(l不经过点F) 的点的轨迹叫做抛物线.点F叫做抛物线的,直线l叫做抛物线的2.抛物线标准方程的几种形式图形标准方程焦点坐标准线方程探究点一抛物线定义如图,我们在黑板上画一条直线EF,然后取一个三角板,将一条拉链AB固定在三角板的一条直角边上,并将拉链下边一半的一端固定在C点,将三角板的另一条直角边贴在直线EF上,在拉锁D处放置一支粉笔,上下拖动三角板,粉笔会画出一条曲线.问题1画出的曲线是什么形状?问题2|DA|是点D到直线EF的距离吗?为什么?问题3点D在移动过程中,满足什么条件?问题 4在抛物线定义中,条件“l不经过点F”去掉是否可以?例1方程[]22)1()3(2-++yx=|x-y+3|表示的曲线是()A.圆B.椭圆C.双曲线D.抛物线跟踪训练1(1)若动点P与定点F(1,1)和直线l:3x+y-4=0的距离相等,则动点P的轨迹是() A.椭圆B.双曲线C.抛物线D.直线(2)若动圆与圆(x-2)2+y2=1相外切,又与直线x+1=0相切,则动圆圆心的轨迹是()A.椭圆B.双曲线C.双曲线的一支D.抛物线探究点二抛物线的标准方程问题 1结合求曲线方程的步骤,怎样求抛物线的标准方程?问题2抛物线方程中p有何意义?标准方程有几种类型?问题3根据抛物线方程如何求焦点坐标、准线方程?例2已知抛物线的方程如下,求其焦点坐标和准线方程.(1)y2=-6x;(2)3x2+5y=0;(3)y=4x2;(4)y2=a2x (a≠0).跟踪训练2(1)抛物线方程为7x+4y2=0,则焦点坐标为()A.⎝⎛⎭⎫716,0B.⎝⎛⎭⎫-74,0C.⎝⎛⎭⎫-716,0D.⎝⎛⎭⎫0,-74(2)抛物线y=-14x2的准线方程是()A.x=116B.x=1 C.y=1 D.y=2例3分别求满足下列条件的抛物线的标准方程.(1)准线方程为2y+4=0;(2)过点(3,-4);(3)焦点在直线x+3y+15=0上.跟踪训练3(1)经过点P(4,-2)的抛物线的标准方程为()A.y2=x或x2=y B.y2=x或x2=8yC.x2=-8y或y2=x D.x2=y或y2=-8x(2)已知抛物线的顶点在原点,焦点在y轴上,抛物线上一点M(m,-3)到焦点F的距离为5,求m的值、抛物线方程及其准线方程.探究点三 抛物线定义的应用例4 已知点A (3,2),点M 到F ⎝⎛⎭⎫12,0的距离比它到y 轴的距离大12. (1)求点M 的轨迹方程;(2)是否存在M ,使|MA |+|MF |取得最小值?若存在,求此时点M 的坐标;若不存在,请说明理由. 跟踪训练4 (1)抛物线y =4x 2上的一点M 到焦点的距离为1,则点M 的纵坐标是 ( ) A .1716B .1516C .78D .0(2)已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点(0,2)的距离与点P 到该抛物线准线的距离之和的最小值是( ) A .172B .3C . 5D .92【当堂检测】1.已知抛物线的准线方程为x =-7,则抛物线的标准方程为 ( ) A .x 2=-28y B .y 2=28x C .y 2=-28x D .x 2=28y2.抛物线y 2=2px (p >0)上一点M 到焦点的距离是a (a >p2),则点M 的横坐标是 ( )A .a +p2B .a -p2C .a +pD .a -p3.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是 ( ) A .2B .3C .115D .37164.焦点在y 轴上,且过点A (1,-4)的抛物线的标准方程是__________【课堂小结】1.抛物线的定义中不要忽略条件:点F 不在直线l 上.2.确定抛物线的标准方程,从形式上看,只需求一个参数p ,但由于标准方程有四种类型,因此,还应确定开口方向,当开口方向不确定时,应进行分类讨论.有时也可设标准方程的统一形式,避免讨论,如焦点在x 轴上的抛物线标准方程可设为y 2=2mx (m ≠0),焦点在y 轴上的抛物线标准方程可设为x 2=2my (m ≠0).【拓展提高】1.若点P 到点(4,0)F 的距离比它到直线50x +=的距离小1,则P 点的轨迹方程是( ) A .216y x =- B .232y x =- C .216y x = D .232y x =2.过抛物线x y 42=的焦点作直线交抛物线于),(),,(2211y x B y x A 两点,如果621=+x x ,那么AB =( )A .10B .8C .6D .43.过抛物线y 2=2px (p >0)的焦点F 的直线l 交抛物线于点A 、B ,交其准线于点C ,若|BC |=2|BF |,且|AF |=3,则此抛物线方程为( )A .y 2=9xB .y 2=6xC .y 2=3xD .y 2=3x4.抛物线x y 42=上的两点A 、B 到焦点的距离之和为10,则线段AB 中点到y 轴的距离为【课后作业】一、基础过关1.抛物线y 2=-8x 的焦点坐标是( )A .(2,0)B .(-2,0)C .(4,0)D .(-4,0)2.已知抛物线的顶点在原点,对称轴为x 轴,焦点在双曲线x 24-y 22=1上,则抛物线方程为 ( )A .y 2=8xB .y 2=4xC .y 2=2xD .y 2=±8x3.已知抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切,则p 的值为( )A .12B .1C .2D .44.与y 轴相切并和圆x 2+y 2-10x =0外切的动圆的圆心的轨迹为( )A .圆B .抛物线和一条射线C .椭圆D .抛物线 5.以双曲线x 216-y 29=1的右顶点为焦点的抛物线的标准方程为__________.6.抛物线x 2+12y =0的准线方程是__________.7.求经过A (-2,-4)的抛物线的标准方程及其对应的准线、焦点坐标. 二、能力提升8.定长为3的线段AB 的两个端点在抛物线y 2=2x 上移动,M 为AB 的中点,则M 点到y 轴的最短距离为 ( )A .12B .1C .32D .29.设M (x 0,y 0)为抛物线C :x 2=8y 上一点,F 为抛物线C 的焦点,以F 为圆心,|FM |为半径的圆和抛物线C 的准线相交,则y 0的取值范围是( )A .(0,2)B .[0,2]C .(2,+∞)D .[2,+∞)10.设抛物线y 2=8x 的焦点为F ,准线为l ,P 为抛物线上一点,P A ⊥l ,A 为垂足,如果直线AF 的斜率为-3,那么|PF |=________.11.设斜率为2的直线l 过抛物线y 2=ax (a ≠0)的焦点F ,且与y 轴交于点A ,若△OAF (O 为坐标原点)的面积为4,求抛物线的方程.12.喷灌的喷头装在直立管柱OA的顶点A处,喷出水流的最高点B高5 m,且与OA所在的直线相距4 m,水流落在以O为圆心,半径为9 m的圆上,则管柱OA的长是多少?三、探究与拓展13.已知抛物线C的顶点在原点,焦点F在x轴的正半轴上,设A,B是抛物线C上的两个动点(AB不垂直于x轴),且|AF|+|BF|=8,线段AB的垂直平分线恒经过点Q(6,0),求抛物线的方程.抛物线的简单几何性质(一)导学案【学习要求】1.了解抛物线的范围、对称性、顶点、焦点、准线等几何性质.2.会利用抛物线的性质解决一些简单的抛物线问题.【学法指导】结合椭圆和双曲线的几何性质,类比抛物线的性质,通过对抛物线的标准方程的讨论,进一步理解用代数方法研究几何性质的优越性,感受坐标法和数形结合的基本思想.【知识要点】1.抛物线的几何性质标准方程y2=2px(p>0)y2=-2px(p>0)x2=2py(p>0)x2=-2py(p>0)图形性质范围对称轴x轴x轴y轴y轴顶点(0,0)离心率e=2直线过抛物线y2=2px(p>0)的焦点F,与抛物线交于A(x1,y1)、B(x2,y2)两点,由抛物线的定义知,|AF|=x1+p2,|BF|=x2+p2,故|AB|=3.直线与抛物线的位置关系直线y=kx+b与抛物线y2=2px(p>0)的交点个数决定于关于x的方程的解的个数.当k≠0时,若Δ>0,则直线与抛物线有个不同的公共点;当Δ=0时,直线与抛物线有个公共点;当Δ<0时,直线与抛物线公共点.当k=0时,直线与抛物线的轴,此时直线与抛物线有个公共点.【问题探究】探究点一抛物线的几何性质问题1类比椭圆、双曲线的几何性质,结合图象,说出抛物线y2=2px(p>0)的范围、对称性、顶点、离心率.怎样用方程验证?问题 2通过抛物线的几何性质,怎样探求抛物线的标准方程?例1若抛物线y2=x上一点P到准线的距离等于它到顶点的距离,则点P的坐标为()A.⎝⎛⎭⎫14,±24B.⎝⎛⎭⎫18,±24C.⎝⎛⎭⎫14,24D.⎝⎛⎭⎫18,24跟踪训练1抛物线y2=2px (p>0)上一点M的纵坐标为-42,这点到准线的距离为6,则抛物线方程为________探究点二抛物线的焦点弦问题例2已知直线l经过抛物线y2=6x的焦点F,且与抛物线相交于A、B两点.(1)若直线l的倾斜角为60°,求|AB|的值;(2)若|AB|=9,求线段AB的中点M到准线的距离.跟踪训练2已知过抛物线y2=4x的焦点F的弦长为36,求弦所在的直线方程.探究点三直线与抛物线的位置关系问题结合直线与椭圆、直线与双曲线的位置关系,请你思考一下怎样讨论直线与抛物线的位置关系?例3已知抛物线的方程为y2=4x,直线l过定点P(-2,1),斜率为k,k为何值时,直线l与抛物线y2=4x:只有一个公共点;有两个公共点;没有公共点?跟踪训练3过点(-3,2)的直线与抛物线y2=4x只有一个公共点,求此直线方程.【当堂检测】1.设AB为过抛物线y2=2px (p>0)的焦点的弦,则|AB|的最小值为()A .p 2B .pC .2pD .无法确定2.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( ) A .⎣⎡⎦⎤-12,12B .[-2,2]C .[-1,1]D .[-4,4]3.抛物线y =4x 2上一点到直线y =4x -5的距离最短,则该点坐标为 ( )A .(1,2)B .(0,0)C .⎝⎛⎭⎫12,1D .(1,4)4.已知过抛物线y 2=4x 的焦点F 的直线交该抛物线于A 、B 两点,|AF |=2,则|BF |=_______【课堂小结】1.讨论抛物线的几何性质,一定要利用抛物线的标准方程;利用几何性质,也可以根据待定系数法求抛物线的方程.2.直线与抛物线有一个交点,是直线与抛物线相切的必要不充分条件.3.直线与抛物线的相交弦问题共有两类,一类是过焦点的弦,一类是不过焦点的弦.解决弦的问题,大多涉及到抛物线的弦长、弦的中点、弦的斜率.常用的办法是将直线与抛物线联立,转化为关于x 或y 的一元二次方程,然后利用根与系数的关系,这样避免求交点.尤其是弦的中点问题,还应注意“点差法”的运用.【拓展提高】1.若双曲线2221613x y p -=的左焦点在抛物线22y px =的准线上,则p 的值为( )A .2B .3C .4D .422.设O 为坐标原点,F 为抛物线x y 42=的焦点,A 为抛物线上的一点,若4OA AF •=-,则点A 的坐标为( )A .)22,2(±B .)2,1(±C .)2,1(D .)22,2(3.已知直线l :y =-x +1和抛物线C :x y 42=,设直线与抛物线的交点为B A 、,求AB 的长。

抛物线及其标准方程---导学案

抛物线及其标准方程---导学案

抛物线及其标准方程(导学案)学习目标:1、能利用抛物线的定义建立适当的坐标系确定抛物线的方程;2、会根据抛物线的标准方程求焦点坐标和准线方程;3、能根据条件运用待定系数法求抛物线的标准方程;学习过程:想一想:在我们以前的数学学习和生活中,哪些是与抛物线有关的?请举例:复习回顾:求曲线方程的五个步骤:问题情境:如图:点F是定点,直线L为不经过点F的定直线,H是直线上的任意一点,过点H作直线的垂线HM ,线段FH的垂直平分线m交HM于点M,拖动点H,得到点M的轨迹为红色曲线,(取不同的H点画画看得到的曲线是不是红色曲线?)你能发现点M满足的几何条件吗?一、抛物线的定义:我们把的点的轨迹叫做抛物线。

其中点F叫做抛物线的,直线L叫做抛物线的思考:如果点F在直线L上,那么到点F和直线L距离相等的点的轨迹是什么?(结合上图变换条件画一画)二、抛物线标准方程的确定1、思考:设抛物线的焦点F到准线L的距离为常数P(P>0),如何建立坐标系,使求出抛物线的方程更简单呢?方案一:以定直线L为y轴,过点F且垂直于直线L的直线为x轴,建立坐标系xoy,如图:则焦点F的坐标为,准线L的方程为设抛物线上任意一点M的坐标为()yx,,点M到准线L的距离为d,则MF d==由抛物线的定义得点M的坐标所满足的关系式为:化简得:方案二:以定点F为原点,过点F且垂直于直线L的直线为x轴,过点F且与直线L平行的直线为y轴,建立坐标系xoy,如图:则焦点F的坐标为,准线L的方程为设抛物线上任意一点M的坐标为()yx,,点M到准线L的距离为d,则MF d==由抛物线的定义得点M的坐标所满足的关系式为:化简得:方案三:以经过点F且垂直于直线L的直线为x轴,垂足为K,并使原点与线段KF的中点重合,建立坐标系xoy,如图:则焦点F的坐标为,准线L的方程为x,,点M到准线L的距离为d,则设抛物线上任意一点M的坐标为()yMF d==由抛物线的定义得点M的坐标所满足的关系式为:化简得: 思考:为什么这样建立坐标系,能使抛物线的方程更简单?2、抛物线的标准方程由曲线与方程的关系知,抛物线的标准方程为:它所表示的抛物线的焦点坐标在 ,焦点坐标为 ,准线方程为思考:P 的几何意义为:其它三种开口方向的抛物线你能类比着方案三求出它们的标准方程呢?小试身手:指出抛物线x y 82=的焦点坐标和准线方程三、 抛物线的其他标准方程:1、右图中的两条抛物线的图象关于 对称,由右边抛物线的标准方程为:()022>=p px y 得,的方程为 ,焦点F 的坐标为 ,准线L 的方程为2、右图中的两条抛物线的图象关于 对称,由右边抛物线的标准方程为:()022>=p px y 得,的方程为 ,焦点F 的坐标为 ,准线L 的方程为3、右图中的两条抛物线的图象关于 对称,由上边抛物线的标准方程为:()022>=p py x 得,的方程为 ,焦点F 的坐标为 ,准线L 的方程为4、填表:一条抛物线,由于它在坐标系的位置不同,方程也不同,有四种不同的情况,如下表所示:图形 开口方向 标准方程 焦点坐标 准线方程5、思考:结合上述表格,你能发现四种标准方程有哪些相同点和不同点?相同点:不同点:合作探究:如何根据抛物线四种标准方程的形式,区分抛物线的对称轴和开口方向?四、典例分析:例1:(1)已知抛物线的标准方程是26y x ,求它的焦点坐标和准线方程;(2)已知抛物线的焦点是F (0,2),求它的标准方程。

抛物线及其标准方程 第一课时导学案

抛物线及其标准方程 第一课时导学案

2.4.1 抛物线及其标准方程(第一课时)一、【目标】——目标一旦确定,就要朝着它努力前进!1.经历从具体情境中抽象出抛物线模型的过程,掌握抛物线的定义、几何图形和标准方程2.会指出抛物线的焦点及准线方程求简单的抛物线方程.3.会利用抛物线的性质解决问题二、【探索实验】——生活中充满了数学,伟大的数学家华罗庚曾说过:宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生活之谜,日月之繁,无处不用数学。

在足球比赛时,猛一脚,射门,足球沿着一条美丽的弧线,球进了,那将是激动人心的事。

翻开历史,看到引以为骄傲的赵州桥时,你一定会惊叹在当时条件下,怎会有这样的杰作。

夏天,仰望天空,看见一道美丽的彩虹,你一定会遐想翩翩;夜晚,当你看到伴随美妙音乐呈现出五彩斑澜的喷泉时,你一定有一种天上人间般的感觉。

当你看到运动员投篮正中篮心时你一定会讶与他的准确率。

这一切的一切,如果抽取出来,就是抛物线。

只要我们细心观察生活,会发现生活中有很多与抛物线有联系的事物,农田或草地灌溉器,甚至导弹轨迹也与抛物线有一定的联系。

按下列步骤作出图(1)在纸一侧固定直尺(2)将直角三角板的一条直角边紧贴直尺(3)取长等于另一直角边长的绳子(4)固定绳子一端在直尺外一点F(5)固定绳子另一端在三角板点A上(6)用笔将绳子拉紧,并使绳子紧贴三角板的直角边(7)上下移动三角板,用笔画出轨迹CACFF你所画出的轨迹是:笔尖到尺子的距离与到点F的距离的关系:三、【合作解疑】——努力,发挥你们的小宇宙吧!1、定义:平面内与一定点F和一条定直线l(l不经过点F)的距离________的点轨迹叫做,定点F叫做的焦点,直线l叫做的准线2、抛物线方程的推导:①建系——这一步很重要,直接影响所求方程的形式就你上面画出的曲线,建立适当的坐标系:以___________________为x轴,________________为y轴,建立直角坐标系①设点——求曲线方程,除了设点外,还应该把定义中出现定值设出来!①列方程——想一想在椭圆的定义中,有什么等量关系?这就是你要列的方程!等量关系__ ,点M 所满足的方程为:____________ 。

高中数学抛物线及其标准方程导学案

高中数学抛物线及其标准方程导学案

§2.3.1抛物线及其标准方程【学习目标】1. 会说出抛物线的定义;2.能写出抛物线的标准方程的四种形式及其焦点和准线.3. 根据条件能求出抛物线的标准方程【学习重点】抛物线的标准方程的四种形式.【学习难点】求抛物线的标准方程.【学习过程】一、课前准备我们知道二次函数2(0)=++≠的图象是一条抛物线,而且研究过它的顶点坐标、对称轴y ax bx c a等问题.那么,抛物线到底是怎样定义的呢?二、新课导学※学习探究探究 1①利用直尺、三角板、细绳、铅笔,画出动点轨迹1.在纸一侧固定直尺2.将直角三角板的一条直角边紧贴直尺3.取长等于另一直角边长的绳子4.固定绳子一端在直尺外一点5.固定绳子另一端在三角板顶点A上6.用笔将绳子拉紧,并使绳子紧贴三角板的直角边7.上下移动三角板,用笔画出轨迹②从画抛物线的过程中,我们可以得出抛物线的定义:。

定点F叫做抛物线的,定直线l叫做抛物线的。

想一想:F l∈时轨迹还是抛物线吗?若定点F在定直线l上,那么动点的轨迹是什么图形?探究 2①怎样建立坐标系才使方程的推导简化?②设定点F到定直线l的距离为(0)p p>.请同学们建立适当的坐标系,推导抛物线的标准方程探究 3:抛物线的四种标准方程形式及焦点坐标与准线方程图形标准方程焦点坐标准线方程2.p的几何意义:【例题讲解】例1:.根据下列条件写出抛物线的标准方程:⑴焦点是(0,4);⑵准线方程是x=1;⑶焦点到准线的距离是2.4例2:求过点A(-3,2)的抛物线的标准方程变式 :焦点F在直线l:3x-2y-6=0上的抛物线的标准方程例3.已知抛物线的焦点在x 轴上,抛物线上的点M(-3,m)到焦点的距离等于5,求抛物线的 标准方程和m 的值学习感悟:【当堂检测】1.对抛物线24y x =,下列描述正确的是( ).A .开口向上,焦点为(0,1)B .开口向上,焦点为1(0,16C .开口向右,焦点为(1,0)D .开口向右,焦点为1(0,162.抛物线280x y +=的准线方程式是( ). A .2x = B .2x =- C .2y = D .2y =-3.抛物线210y x =的焦点到准线的距离是( ). A. 52B. 5C. 152D. 10 4.抛物线212y x =上与焦点的距离等于9的点的坐标是 . 5.抛物线24x y =上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为 .【课堂小结】通过本节课,你学到了什么【课后作业】1.已知抛物线22(0)y px p =->的焦点恰好是椭圆221169x y -=的左焦点,则p = 2.抛物线22(0)y px p =>上一点M 到焦点F 的距离2MF p =,求点M 的坐标. 3.求以双曲线221169x y -= 的右顶点为顶点,左顶点为焦点的抛物线的方程 4.已知圆A :(x +2)2+y 2=1与定直线l :x =1,且动圆P 和圆A 外切并与直线l 相切,求动圆的圆心P 的轨迹方程.5.已知抛物线y 2=2x 的焦点是F ,点P 是抛物线上的动点,又有点A (3,2),求|PA |+|PF |的最小值,并求出取最小值时的P 点坐标.。

抛物线及其标准方程导学案(第一课时)

抛物线及其标准方程导学案(第一课时)

抛物线及其标准方程导学案(第一课时)重点:抛物线的定义和标准方程。

难点:抛物线标准方程的推导及抛物线标准方程的四种类型。

【1】 新知探究: 1、抛物线的定义:平面内与一定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线(定点F 不在定直线l 上).定点F 叫做抛物线的 ,定直线l 叫做抛物线的 。

2、抛物线的标准方程:① 设定点F 到定直线l 的距离为p (p 为已知数且大于0).下面,我们来求抛物线的方程.怎样选择直角坐标系,才能使所得的方程取较简单的形式呢?取过定点F 且垂直于l 的直线为x 轴,设x 轴与l 交于K ,以线段KF 的垂直平分线为y轴,建立直角坐标系(图2-32)。

设p KF =,则焦点F 的坐标为⎪⎭⎫⎝⎛0,2p ,准线l 的方程为2p x -=,设抛物线上的点M(x ,y)到l 的距离为d ,MF = ,d = 由d MF =,得 化简后得: ② 抛物线的标准方程y 2 = 2px (p >0)一般地,我们把顶点在原点、焦点F 在坐标轴上的抛物线的方程叫做抛物线的标准方程,则方程y 2 = 2px (p >0)叫做抛物线的标准方程。

其中p 为正常数,它的几何意义是 。

③ 由于焦点和准线在坐标系下的不同分布情况,抛物线的标准方程有四种情形:注意:当对称轴为x轴时,方程等号右端为±2px,相应地左端为y2;当对称轴为y轴时,方程等号的右端为±2py,相应地左端为x2.同时注意:当焦点在正半轴上时,取正号;当焦点在负半轴上时,取负号。

【2】例题分析例1:(1) 已知抛物线的标准方程是y2=6x,求它的焦点坐标和准线方程;(2)已知抛物线的方程是y=6x2,求它的焦点坐标和准线方程。

练习1、根据下列所给条件,写出抛物线的焦点坐标和准线方程:(1)y2 = 20x (2)x2-y =0 (3)y=-2x2 (4)2y2 +5x =0例2:(1)已知抛物线的焦点坐标是F(0,-2),求它的标准方程;(2)已知抛物线经过点(4,-2),求它的标准方程。

3.3.1 抛物线及其标准方程 导学案正文

3.3.1 抛物线及其标准方程  导学案正文

3.3抛物线3.3.1抛物线及其标准方程【学习目标】1.会识别抛物线的定义和相关概念,知道二次函数的图象符合抛物线的定义,能初步应用抛物线定义解决一些简单问题.2.能根据抛物线的几何特征选择适当的平面直角坐标系,根据抛物线定义的代数表达类比导出抛物线的标准方程.3.能识别焦点在不同坐标轴上的抛物线的四种标准方程,能说出标准方程中一次项系数的意义.4.能初步应用抛物线定义和标准方程解决一些关联问题.◆知识点一抛物线的定义平面内与一个定点F和一条定直线l(l不经过点F)的距离的点的轨迹叫作抛物线.点F叫作抛物线的,直线l叫作抛物线的.【诊断分析】判断正误.(请在括号中打“√”或“×”)(1)抛物线的焦点到准线的距离是p(p>0).( )(2)抛物线上一点到焦点的距离与到准线的距离的比值为1.( )(3)抛物线的焦点可以在准线上.( )(4)平面内与定点F和一条定直线l距离相等的点的轨迹是抛物线.( )◆知识点二抛物线的标准方程标准方程y2=2px(p>0)y2=-2px(p>0)x2=2py(p>0)x2=-2py(p>0)图形焦点坐标准线方程p的几何意义焦点到准线的距离【诊断分析】判断正误.(请在括号中打“√”或“×”)(1)抛物线的方程都是二次函数.( )(2)抛物线的原点到准线的距离是p(p>0).( )(3)抛物线的开口方向由方程中的一次项确定.( )(4)方程y=ax2(a≠0)是抛物线的标准方程.( )◆探究点一抛物线的定义及应用例1 (1)一动圆过点A(1,0)且与直线:x=-1相切,则该动圆圆心的轨迹为( )A.抛物线B.椭圆C.直线D.圆(2)抛物线x2=4y上的点P到焦点的距离是10,则点P的坐标为.变式 (1)已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,|AF|=5x0,则x0=( )4A.1B.2C.4D.8(2)已知P为抛物线y2=4x上一个动点,直线l1:x=-1,l2:x+y+3=0,则P到直线l1,l2的距离之和的最小值为( )A.2√2B.4+1C.√2D.3√22[素养小结]利用抛物线的定义可以解决以下两类问题:(1)点的轨迹问题:利用抛物线的定义求解点的轨迹方程,关键是找到满足动点到定点的距离等于到定直线的距离且定点不在定直线上的条件.(2)抛物线的焦半径问题:利用抛物线的定义,对抛物线上的点到焦点的距离与到准线的距离相互转化,解决与抛物线有关的最大(小)值问题,解题时要注意平面几何知识的应用,如两点之间线段最短、三角形中三边间的不等关系、点与直线上点的连线垂线段最短等.拓展 (1)已知点P是抛物线y2=-4x上的一个动点,则点P到点M(0,2)的距离与到该抛物线准线的距离之和的最小值为 ( )A.3B.√172C.√5D.92(2)已知抛物线y2=2x的焦点是F,点P是抛物线上的动点,点A(3,2),则|PA|+|PF|的最小值为,取得最小值时点P的坐标为.◆探究点二求抛物线的标准方程例2分别求满足下列条件的抛物线的标准方程.(1)焦点到准线的距离是4;(2)焦点在y轴上,且经过点(-1,-3);(3)抛物线的焦点是双曲线16x2-9y2=144的左顶点.变式 (1)焦点在直线2x+5y-10=0上的抛物线的标准方程为( )A.y2=10x或x2=4yB.y2=-10x或x2=-4yC.y2=20x或x2=8yD.y2=-20x或x2=-8y(2)已知抛物线C:y2=2px(p>0)的焦点为F,C上一点M(x0,x0)(x0≠0)满足|MF|=5,则抛物线C的方程为.[素养小结](1)求抛物线的标准方程要注意确定焦点在哪条坐标轴上,进而求方程的有关参数.(2)求抛物线的标准方程的方法:①直接法,建立恰当的坐标系,利用抛物线的定义列出动点满足的条件,列出对应方程,化简方程;②直接根据定义求p,然后写出标准方程;③利用待定系数法设标准方程,找有关的方程(组)求系数.◆探究点三抛物线的实际应用问题例3如图,某河道上有一抛物线形拱桥,在正常水位时,拱圈最高点距水面9 m,拱圈内水面宽30 m,一条船在水面以上部分高7 m,船顶部宽6 m.(1)试建立适当的平面直角坐标系,求拱桥所在的抛物线的标准方程.(2)近日水位暴涨了2.46 m,为此,必须加重船载,降低船身,才能安全通过桥洞,则船身至少应降低多少(精确到0.1 m)?变式青花瓷盖碗是中国传统茶文化的器物载体,具有“温润”“淡远”“清新”的特征.如图,已知碗体和碗盖内部的轴截面均近似为抛物线的一部分,碗盖深为3 cm,碗盖口直径为8 cm,碗体口直径为10 cm,碗体深6.25 cm,则盖上碗盖后,碗盖内部的最高点到碗底的垂直距离为(碗和碗盖的厚度忽略不计)( )A.5 cmB.6 cmC.7 cmD.8.25 cm[素养小结]求解抛物线实际应用题的五个步骤(1)建系:建立适当的坐标系.(2)假设:设出合适的抛物线的标准方程.(3)计算:通过计算求出抛物线的标准方程.(4)求解:求出所要求出的量.(5)还原:还原到实际问题中,从而解决实际问题.。

抛物线及其标准方程导学案

抛物线及其标准方程导学案

2017级人教版数学选修2-1 编号:1 编制时间: 2018/10/11 编制人:2.4.1 抛物线及其标准方程学习目标 1.掌握抛物线的定义及焦点、准线的概念.2.掌握抛物线的标准方程及其推导. 3.明确抛物线标准方程中p 的几何意义,并能解决简单的求抛物线标准方程问题.知识点一 抛物线的定义思考1 平面内,到两定点距离相等的点的轨迹是什么?思考2 平面内,到两个确定平行直线l 1,l 2距离相等的点的轨迹是什么?思考3 到定点的距离与到定直线的距离相等的点的轨迹是什么?梳理 (1)平面内与一个定点F 和一条定直线l (l 不经过点F )距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.(2)定义的实质可归纳为“一动三定”:一个动点,设为M ;一个定点F (抛物线的焦点);一条定直线(抛物线的准线);一个定值(即点M 到点F 的距离与它到定直线l 的距离之比等于1∶1).知识点二 抛物线的标准方程 思考 抛物线的标准方程有何特点?梳理 由于抛物线焦点位置不同,方程也就不同,故抛物线的标准方程有以下几种形式: y 2=2px (p >0),y 2=-2px (p >0),x 2=2py (p >0),x 2=-2py (p >0).现将这四种抛物线对应的图形、标准方程、焦点坐标及准线方程列表如下:类型一 抛物线的定义及理解例1 (1)动点M 的坐标满足方程5x 2+y 2=|3x +4y -12|,则动点M 的轨迹是( )(2)已知点P (x ,y )在以原点为圆心的单位圆x 2+y 2=1上运动,则点Q (x +y ,xy )的轨迹所在的曲线是________.(在圆、抛物线、椭圆、双曲线中选择一个作答)跟踪训练1 平面上动点P 到定点F (1,0)的距离比点P 到y 轴的距离大1,求动点P 的轨迹方程.类型二 抛物线标准方程及求解命题角度1 抛物线的焦点坐标或准线方程的求解例2 抛物线y 2=4x 的焦点到双曲线x 2-y 23=1的渐近线的距离是( )A.12B.32C.1D.3跟踪训练2(1)若抛物线y2=2px的焦点坐标为(1,0),则p=_____;准线方程为_____.命题角度2求解抛物线的标准方程例3根据下列条件分别求抛物线的标准方程.(1)抛物线的焦点是双曲线16x2-9y2=144的左顶点;(2)抛物线的焦点F在x轴上,直线y=-3与抛物线交于点A,|AF|=5.跟踪训练3已知抛物线的顶点在原点,对称轴为x轴,抛物线上的点M(-3,m)到焦点的距离等于5,求抛物线的方程和m的值,并写出抛物线的焦点坐标和准线方程.类型三抛物线在实际生活中的应用例4河上有一抛物线形拱桥,当水面距拱桥顶5 m时,水面宽为8 m,一小船宽4 m、高2 m,载货后船露出水面上的部分高0.75 m,问:水面上涨到与抛物线拱桥拱顶相距多少米时,小船开始不能通航?跟踪训练4喷灌的喷头装在直立管柱OA的顶点A处,喷出水流的最高点B高5 m,且与OA所在的直线相距4 m,水流落在以O为圆心,半径为9 m的圆上,则管柱OA的长是多少?1.抛物线y =14x 2的准线方程是( )A.y =-1B.y =-2C.x =-1D.x =-22.已知抛物线的顶点在原点,焦点在y 轴上,抛物线上的点P (m ,-2)到焦点的距离为4,则m 的值为( )3.若抛物线y 2=2px (p >0)上的动点Q 到焦点的距离的最小值为1,则p =________.4.若抛物线y 2=2px (p >0)的准线经过双曲线x 2-y 2=1的一个焦点,则p =________.5.已知M 为抛物线y 2=4x 上一动点,F 为抛物线的焦点,定点N (2,3),则|MN |+|MF |的最小值为________.1.焦点在x 轴上的抛物线,其标准方程可以统设为y 2=mx (m ≠0),此时焦点为F (m 4,0),准线方程为x =-m 4;焦点在y 轴上的抛物线,其标准方程可以统设为x 2=my (m ≠0),此时焦点为F (0,m 4),准线方程为y =-m4.2.设M 是抛物线上一点,焦点为F ,则线段MF 叫做抛物线的焦半径.若M (x 0,y 0)在抛物线y 2=2px (p >0)上,则根据抛物线的定义,抛物线上的点到焦点的距离和到准线的距离可以相互转化,所以焦半径|MF |=x 0+p2.3.对于抛物线上的点,利用定义可以把其到焦点的距离转化为到准线的距离,也可以把其到准线的距离转化为到焦点的距离,因此可以解决有关距离的最值问题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2. 3.1 抛物线及其标准方程一、学习目标1.掌握抛物线的定义、几何图形,会推导抛物线的标准方程2.能够利用给定条件求抛物线的标准方程3.通过“观察”、“思考”、“探究”与“合作交流”等一系列数学活动,培养学生观察、类比、分析、概括的能力以及逻辑思维的能力,使学生学会数学思考与推理,学会反思与感悟,形成良好的数学观。

并进一步感受坐标法及数形结合的思想二、学习重点抛物线的定义及标准方程三、学习难点抛物线定义的形成过程及抛物线标准方程的推导(关键是坐标系方案的选择)四、学习过程(一)复习旧知 在初中,我们学习过了二次函数2y ax bx c =++,知道二次函数的图象是一条抛物线 例如:(1)24y x =,(2)24y x =-的图象(自己画出函数图像)(二)学习新课1.抛物线的定义探究1观察抛物线的作图过程,探究抛物线的定义:抛物线的定义:思考:若F 在l 上呢?(学生思考、讨论、画图)2.抛物线的标准方程要求抛物线的方程,必须先建立直角坐标系.探究2 设焦点F 到准线l 的距离为(0)p p >,你认为应该如何选择坐标系求抛物线的方程?按照你建立直角坐标系的方案,求抛物线的方程.讨论:小组讨论建系方案及其对应的方程,你认为哪种建系方案使方程更简单? 推导过程:我们把方程22(0)y px p =>叫做抛物线的标准方程,它表示的抛物线的焦点坐标是,02p ⎛⎫ ⎪⎝⎭,准线方程是2p x =-。

在建立椭圆、双曲线的标准方程的过程中,选择不同的坐标系得到了不同形式的标准方程,对于抛物线,当我们选择如图三种建立坐标系的方法,我们也可以得到不同形式的抛物线的标准方程: (学生分前两排,中间两排,后面两排三组分别计算三种情况,一起填充表格)图形 标准方程 焦点坐标 准线方程(三)例题例1(1)已知抛物线的标准方程是26y x =,求它的焦点坐标和准线方程,(2)已知抛物线的焦点是()0,2F -,求它的标准方程.解:变式训练1:(1) 已知抛物线的准线方程是x =—41,求它的标准方程. (2) 已知抛物线的标准方程是2y 2+5x =0,求它的焦点坐标和准线方程.解:例2 点M 与点F (4,0)的距离比它到直线l :x +5=0的距离小1,求点M 的轨迹方程. 解:变式训练2:在抛物线y 2=2x 上求一点P ,使P 到焦点F 与到点A (3,2)的距离之和最小.解:(四)小结1、抛物线的定义;2、抛物线的四种标准方程;3、注意抛物线的标准方程中的字母P 的几何意义.(五)课后练习1.抛物线y 2=ax (a ≠0)的准线方程是 ( )(A )4a x =-;(B)x =4a ;(C)||4a x =- ;(D)x =||4a 2.抛物线21x my =(m ≠0)的焦点坐标是( ) (A ) (0,4m )或(0,4m -);(B) (0,4m ) (C) (0,m 41)或(0,m 41-);(D) (0,m 41) 3.根据下列条件写出抛物线的标准方程:(1)焦点是F (0,3),(2)焦点到准线的距离是2.4.求下列抛物线的焦点坐标和准线方程:(1)y 2=20x ;(2)x 2+8y =0.5.点M 到点(0,8)的距离比它到直线y =-7的距离大1,求M 点的轨迹方程.2.3.1 抛物线及其标准方程 一、教学目标1.掌握抛物线的定义、几何图形,会推导抛物线的标准方程2.能够利用给定条件求抛物线的标准方程3.通过“观察”、“思考”、“探究”与“合作交流”等一系列数学活动,培养学生观察、类比、分析、概括的能力以及逻辑思维的能力,使学生学会数学思考与推理,学会反思与感悟,形成良好的数学观。

并进一步感受坐标法及数形结合的思想二、教学重点抛物线的定义及标准方程三、教学难点抛物线定义的形成过程及抛物线标准方程的推导(关键是坐标系方案的选择)四、教学过程(一)复习旧知在初中,我们学习过了二次函数2y ax bx c =++,知道二次函数的图象是一条抛物线 例如:(1)24y x =,(2)24y x =-的图象(展示两个函数图象):(二)讲授新课1.课题引入在实际生活中,我们也有许多的抛物线模型,例如1965年竣工的密西西比河河畔的萨尔南拱门,它就是用不锈钢铸成的抛物线形的建筑物。

到底什么样的曲线才可以称做是抛物线?它具有怎样的几何特征?它的方程是什么呢?这就是我们今天要研究的内容.(板书:课题§2.4.1 抛物线及其标准方程)2.抛物线的定义信息技术应用(课堂中展示画图过程)先看一个实验:如图:点F 是定点,l 是不经过点F 的定直线,H 是l 上任意一点,过点H 作MH l ⊥,线段FH 的垂直平分线m 交MH 于点M 。

拖动点H ,观察点M 的轨迹,你能发现点M 满足的几何条件吗?(学生观察画图过程,并讨论)可以发现,点M 随着H 运动的过程中,始终有|MH|=|MF|,即点M 与定点F 和定直线l 的距离相等。

(也可以用几何画板度量|MH|,|MF|的值)(定义引入):我们把平面内与一个定点F 和一条定直线l (l 不经过点F )距离相等的点的轨迹叫做抛物线,点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.(板书)思考?若F 在l 上呢?(学生思考、讨论、画图)此时退化为过F 点且与直线 l 垂直的一条直线.3.抛物线的标准方程从抛物线的定义中我们知道,抛物线上的点(),M x y 满足到焦点F 的距离与到准线l 的距离相等。

那么动点(),M x y 的轨迹方程是什么,即抛物线的方程是什么呢?要求抛物线的方程,必须先建立直角坐标系.问题 设焦点F 到准线l 的距离为(0)p p >,你认为应该如何选择坐标系求抛物线的方程?按照你建立直角坐标系的方案,求抛物线的方程.(引导学生分组讨论,回答,并不断补充常见的几种建系方法,叫学生应用投影仪展示计算结果) 1 2 3222(0)y px p p =-> 222(0)y px p p =+> 22(0)y px p =>注意:1.标准方程必须出来,此表格在黑板上板书。

2.若出现比较复杂建系方案,可以以引入的字母参数较多为由,先排除计算3.强调P 的意义。

4.教师说明曲线方程与方程的曲线:从上述过程可以看到,抛物线上任意一点的坐标都满足方程,以方程的解(),x y 为坐标的点到抛物线的焦点的距离与到准线的距离相等,即方程的解为坐标的点都在抛物线上。

所以这些方程都是抛物线的方程.(选择标准方程)师:观察4(3)个建系方案及其对应的方程,你认为哪种建系方案使方程更简单? (学生选择,说明1.对称轴 2.焦点 3.方程无常数项,顶点在原点)推导过程:取过焦点F 且垂直于准线l 的直线为x 轴,x 轴与l 交于K ,以线段K F 的垂直平分线为y 轴建立直角坐标系,如右图所示,则有F (2p ,0),l 的方程为x =—2p .设动点M (x ,y ),由抛物线定义得:2)2(22p x y px +=+- 化简得y 2=2px (p >0) 师:我们把方程22(0)y px p =>叫做抛物线的标准方程,它表示的抛物线的焦点坐标是,02p ⎛⎫ ⎪⎝⎭,准线方程是2p x =-。

师:在建立椭圆、双曲线的标准方程的过程中,选择不同的坐标系得到了不同形式的标准方程,对于抛物线,当我们选择如图三种建立坐标系的方法,我们也可以得到不同形式的抛物线的标准方程: (学生分前两排,中间两排,后面两排三组分别计算三种情况,一起填充表格)图形 标准方程焦点坐标 准线方程y 2=2px (p >0) (2p ,0) x =—2p y 2=—2px (p >0) (—2p ,0) x =2px 2=2py (p >0) (0,2p ) y =—2px 2=—2py (p >0) (0,—2p ) y =2p (三)例题讲解例1(1)已知抛物线的标准方程是26y x =,求它的焦点坐标和准线方程,(2)已知抛物线的焦点是()0,2F -,求它的标准方程.解:(1)∵抛物线方程为y 2=6x∴p =3,则焦点坐标是(23,0),准线方程是x =—23. (2)∵焦点在y 轴的负半轴上,且2p =2,∴p =4 则所求抛物线的标准方程是:x 2=—8y.变式训练1:(1) 已知抛物线的准线方程是x =—41,求它的标准方程. (2) 已知抛物线的标准方程是2y 2+5x =0,求它的焦点坐标和准线方程.解(1)∵焦点是F (0,3),∴抛物线开口向上,且2p =3,则p =6∴所求抛物线方程是x 2=12y(2)∵抛物线方程是2y 2+5x =0,即y 2=—25x ,∴p =45 则焦点坐标是F (—85,0),准线方程是x =85 例2 点M 与点F (4,0)的距离比它到直线l :x +5=0的距离小1,求点M 的轨迹方程. 解:如右图所示,设点M 的坐标为(x ,y )由已知条件可知,点M 与点F 的距离等于它到直线x +4=0的距离.根据抛物线的定义,点M 的轨迹是以F (4,0)为焦点的抛物线. ∵2p =4,∴p =8 因为焦点在x 轴的正半轴上,所以点M 的轨迹方程为y 2=16x .变式训练2:在抛物线y 2=2x 上求一点P ,使P 到焦点F 与到点A (3,2)的距离之和最小. 解:如下图所示,设抛物线的点P 到准线的距离为|P Q|由抛物线定义可知:|PF |=|P Q|∴|PF |+|P A |=|P Q|+|P A | 显然当P 、Q 、A 三点共线时,|P Q|+|P A |最小.∵A (3,2),可设P (x 0,2)代入y 2=2x 得x 0=2故点P 的坐标为(2,2).(四)小结1、抛物线的定义;2、抛物线的四种标准方程;3、注意抛物线的标准方程中的字母P 的几何意义.(五)课后练习。

相关文档
最新文档