高中物理第十一章机械振动总结
高二物理机械振动知识点总结

高二物理机械振动知识点总结高二物理“机械振动和机械波”这一章是非重点章,下面是店铺给大家带来的高二物理机械振动知识点总结,希望对你有帮助。
高二物理机械振动知识点一、机械振动:物体在平衡位置附近所做的往复运动,叫机械振动。
1、平衡位置:机械振动的中心位置;2、机械振动的位移:以平衡位置为起点振动物体所在位置为终点的有向线段;3、回复力:使振动物体回到平衡位置的力;(1)回复力的方向始终指向平衡位置;(2)回复力不是一重特殊性质的力,而是物体所受外力的合力;4、机械振动的特点:(1)往复性; (2)周期性;二、简谐运动:物体所受回复力的大小与位移成正比,且方向始终指向平衡位置的运动;(1)回复力的大小与位移成正比;(2)回复力的方向与位移的方向相反;(3)计算公式:F=-Kx;如:音叉、摆钟、单摆、弹簧振子;三、全振动:振动物体如:从0出发,经A,再到O,再到A/,最后又回到0的周期性的过程叫全振动。
例1:从A至o,从o至A/,是一次全振动吗?例2:振动物体从A/,出发,试说出它的一次全振动过程;四、振幅:振动物体离开平衡位置的最大距离。
1、振幅用A表示;2、最大回复力F大=KA;3、物体完成一次全振动的路程为4A;4、振幅是表示物体振动强弱的物理量;振幅越大,振动越强,能量越大;五、周期:振动物体完成一次全振动所用的时间;1、T=t/n (t表示所用的总时间,n表示完成全振动的次数)2、振动物体从平衡位置到最远点,从最远点到平衡为置所用的时间相等,等于T/4;六、频率:振动物体在单位时间内完成全振动的次数;1、f=n/t;2、f=1/T;3、固有频率:由物体自身性质决定的频率;七、简谐运动的图像:表示作简谐运动的物体位移和时间关系的图像。
1、若从平衡位置开始计时,其图像为正弦曲线;2、若从最远点开始计时,其图像为余弦曲线;3、简谐运动图像的作用:(1)确定简谐运动的周期、频率、振幅;(2)确定任一时刻振动物体的位移;(3)比较不同时刻振动物体的速度、动能、势能的大小:离平衡位置跃进动能越大、速度越大,势能越小;(4)判断某一时刻振动物体的运动方向:质点必然向相邻的后一时刻所在位置运动4、作受迫振动的物体的振动频率等于驱动力的频率与其固有频率无关;物体发生共振的条件:物体的固有频率等于驱动力的频率;八、单摆:用一轻质细绳一端固定一小球,另一端固定在悬点的装置。
高中物理【机械振动】知识点、规律总结

一、简谐运动 1.概念:质点的位移与时间的关系遵从_正__弦__函__数___的规律,即它的振动图象(x -t 图象)是一条_正__弦__曲___线__. 2.简谐运动的表达式 (1)动力学表达式:F=___-__k_x__,其中“-”表示回复力与__位__移__的方向相反. (2)运动学表达式:x=Asin(ωt+φ),其中 A 代表振幅,ω=__2_π_f___表示简谐运动的 快慢,(ωt+φ)代表简谐运动的_相__位___,φ 叫做初相.
3.做简谐运动的物体经过平衡位置时,回复力一定为零,但所受合外力不一定为 零,如单摆.
4.物体做受迫振动的频率一定等于驱动力的频率,但不一定等于系统的固有频率, 固有频率由系统本身决定.
考点一 简谐运动的特征
师生互动
受力特征 回复力 F=-kx,F(或 a)的大小与 x 的大小成正比,方向相反
靠近平衡位置时,a、F、x 都减小,v 增大;远离平衡位置时,a、F、x 运动特征
4.周期公式:T=2π
l g.
5.单摆的等时性:单摆的振动周期取决于摆长 l 和重力加速度 g,与振幅和振子(小
球)质量都没有关系.
四、受迫振动及共振
1.受迫振动 (1)概念:物体在_周__期__性___驱动力作用下的振动. (2)振动特征:受迫振动的频率等于_驱__动__力___的频率,与系统的_固__有__频__率___无关. 2.共振 (1)概念:当驱动力的频率等于_固__有__频__率___时,受迫振动的振幅最大的现象. (2)共振的条件:驱动力的频率等于_固__有__频__率___. (3)共振的特征:共振时_振__幅___最大.
受迫振动
共振
由驱动力提供
振动物体获得的能量 最大
重难点梳理 第十一章 机械振动

人教版高中物理(选修3-4)重、难点梳理第十一章机械振动全章概述与原教材相比,本章内容没有太大变化,但新增加了相位的概念以及相关定义的改变,教学中要注意。
这一章主要讲述机械振动中运动规律最简单、最基本的一种周期性运动——简谐运动。
振动的知识在实际中有很多应用(例如心电图、核磁共振仪、地震仪、钟摆等),振动的有关知识也是后面学习波动的基础,所以教学中应引起重视。
这一章开始讲述简谐运动的基本特点,然后通过图象介绍简谐运动的运动规律和特点,接下来介绍简谐运动的实例——单摆,最后介绍受迫振动的知识。
简谐运动是一种周期性的运动,正确理解简谐运动中各物理量(如周期、频率、振幅等)的确切含义是非常重要的。
同下面要学习的波动一样,用图象来描述物体的振动情况是非常重要的手段之一。
教材在图象的讲授上较以前有所加强,希望学生能通过图象的学习,较好地理解简谐运动中各物理量的确切含义及其相互间的关系。
简谐运动比前面学过的各种运动复杂,定量研究需要较多的数学知识,因而中学阶段不宜作更多的定量计算,希望教学中掌握好要求。
11.1 简谐运动1.通过弹簧振子的运动情况分析,理解简谐运动的定义、条件。
2.通过砂摆实验或分析频闪照片,理解简谐运动图象的物理意义。
理解简谐运动的位移-时间图象,根据简谐运动的图象弄清各时刻质点的位移、路程及运动方向。
1.教材中值得重视的题目:P.T2、“科学漫步”中的“简谐运动与单位圆”52.教材中的重要思想方法:建立理想模型11.2 简谐运动的描述1.理解描述简谐运动的物理量及其特点。
(对弹簧振子振动的周期公式不作要求)2.能运用图象、公式描述简谐运动。
3.通过两个相同摆长的单摆振动情况的比较,了解初相和相位差概念。
1.教材中值得重视的题目:P11.T1、P11.T42.教材中的重要思想方法:数理思想11.3 简谐运动的回复力和能量1.理解回复力的概念, 理解简谐运动回复力的特点。
2.了解简谐运动中能量的转化。
高三物理机械振动知识点

高三物理机械振动知识点在物理学中,机械振动是指物体在平衡位置附近做周期性的来回运动。
机械振动是物理学中重要的概念之一,了解机械振动的知识对于高三物理学习至关重要。
下面将介绍一些高三物理机械振动的知识点。
一、简谐振动简谐振动是指在一个恢复力作用下,物体做的振动。
振动的周期只与恢复力的作用有关,而与振幅无关。
简谐振动的特点是周期性、与外界无关以及振幅与周期无关。
简谐振动的物体可以是弹簧、摆锤等。
二、受迫振动受迫振动是指在外力作用下,物体做的振动。
外力的作用使得振动的周期与自由振动不再相同。
当外力与物体运动方向相同时,称为共振;当外力与物体运动方向相反时,称为反共振。
三、阻尼振动阻尼振动是指在存在阻力的情况下,物体做的振动。
阻尼力的作用会逐渐减小振幅,使得振动逐渐衰减。
阻尼振动的特点是振幅逐渐减小、周期不变以及振幅与阻尼力的大小有关。
四、共振共振是指外力与物体的振动频率相同时,物体的振幅达到最大值的现象。
共振的发生会导致物体的损坏,因此在实际应用中需要尽量避免共振的发生。
五、波动方程波动方程描述了机械振动的数学表达式。
一维机械振动的波动方程为\[ \frac{{\partial^2y}}{{\partial t^2}} = -\omega^2 y \]其中,\(y\)为位移函数,\(t\)为时间,\(\omega\)为振动的角频率。
六、谐振频率谐振频率是指物体做简谐振动时的频率。
谐振频率与弹簧的劲度系数和物体的质量有关。
谐振频率可以通过以下公式计算:\[ f = \frac{1}{{2\pi}} \sqrt{\frac{k}{m}} \]其中,\(f\)为谐振频率,\(k\)为弹簧的劲度系数,\(m\)为物体的质量。
七、机械能守恒在没有摩擦力和阻力的情况下,机械振动过程中机械能守恒。
也就是在振动过程中,动能和势能之间的转化不会导致能量损失。
八、振动波振动波是指机械振动在空间中的传播。
振动波可以是横波或纵波,横波是指振动方向垂直于波的传播方向,纵波是指振动方向与波的传播方向一致。
高中物理 机械振动

高中物理机械振动机械振动是物理学中一个重要的概念,它在日常生活中有着广泛的应用。
从钟摆的摆动到汽车的悬挂系统,机械振动无处不在。
在高中物理课程中,学生将会学习关于机械振动的原理、特性以及相关的数学模型。
本文将介绍机械振动的基本概念,帮助读者更好地理解这一重要的物理现象。
一、机械振动的定义机械振动是物体围绕某一平衡位置以一定规律作往复或周期性运动的现象。
当物体受到外力作用时,会发生形变,从而产生振动。
例如,当一个弹簧挂上一个质点并受到拉伸后突然放开,弹簧会产生振动,这就是一种典型的机械振动现象。
二、机械振动的特性1.周期性:机械振动具有周期性,即物体围绕平衡位置做往复运动的时间间隔是固定的。
2.频率:振动的频率是指单位时间内振动的次数,通常用赫兹(Hz)来表示。
频率与振动周期成反比,频率越高,周期越短。
3.振幅:振动的振幅是指物体从平衡位置最大偏离的距离,振幅越大,振动的幅度就越大。
4.阻尼:阻尼是影响振动的一个重要因素,它会使振动逐渐减弱并最终停止。
可以通过增加摩擦力或其他方法来增加阻尼。
5.共振:共振是指当外力的频率与物体的固有频率相匹配时,物体会发生共振现象,振幅增大,甚至导致破坏。
三、机械振动的数学模型在高中物理课程中,学生将接触到机械振动的数学模型,其中最基本的就是简谐振动。
简谐振动是一种最简单的机械振动形式,其运动规律可以用正弦函数来描述。
对于简谐振动,有以下几个重要的物理量:1.位移(x):物体离开平衡位置的距离。
2.速度(v):物体运动的速度,与位移的导数有关。
3.加速度(a):物体运动的加速度,与速度的导数有关。
根据牛顿第二定律和胡克定律,可以建立简谐振动的运动方程:\[ m \cdot \frac{d^2x}{dt^2} = -kx \]其中,\( m \) 为物体的质量,\( k \) 为弹簧的劲度系数,\( x \) 为位移,\( t \) 为时间。
通过解微分方程,可以得到简谐振动的解析解,包括位移、速度和加速度随时间的变化规律。
机械振动知识点总结.

机械振动1、判断简谐振动的方法简谐运动:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动。
特征是:F=-kx,a=-kx/m.要判定一个物体的运动是简谐运动,首先要判定这个物体的运动是机械振动,即看这个物体是不是做的往复运动;看这个物体在运动过程中有没有平衡位置;看当物体离开平衡位置时,会不会受到指向平衡位置的回复力作用,物体在运动中受到的阻力是不是足够小。
然后再找出平衡位置并以平衡位置为原点建立坐标系,再让物体沿着x 轴的正方向偏离平衡位置,求出物体所受回复力的大小,若回复力为F=-kx,则该物体的运动是简谐运动。
2、简谐运动中各物理量的变化特点简谐运动涉及到的物理量较多,但都与简谐运动物体相对平衡位置的位移x 存在直接或间接关系:如果弄清了上述关系,就很容易判断各物理量的变化情况3、简谐运动的对称性简谐运动的对称性是指振子经过关于平衡位置对称的两位置时,振子的位移、回复力、加速度、动能、势能、速度、动量等均是等大的(位移、回复力、加速度的方向相反,速度动量的方向不确定)。
运动时间也具有对称性,即在平衡位置对称两段位移间运动的时间相等。
理解好对称性这一点对解决有关问题很有帮助。
4、简谐运动的周期性5、简谐运动图象简谐运动图象能够反映简谐运动的运动规律,因此将简谐运动图象跟具体运动过程联系起来是讨论简谐运动的一种好方法。
6、受迫振动与共振(1)、受迫振动:物体在周期性驱动力作用下的振动,其振动频率和固有频率无关,等于驱动力的频率;受迫振动是等幅振动,振动物体因克服摩擦或其它阻力做功而消耗振动能量刚好由周期性的驱动力做功给予补充,维持其做等幅振动。
位移x回复力F=-Kx 加速度a=-Kx/m 位移x 势能E p =Kx 2/2 动能E k =E-Kx 2/2 速度m E V K 2(2)、共振:○1共振现象:在受迫振动中,驱动力的频率和物体的固有频率相等时,振幅最大,这种现象称为共振。
高中物理第十一章机械振动章末总结课件选修34高中选修34物理课件

机
外力
阻尼振动 机械能逐渐(zhújiàn)转化为其他形式的能
械 作用
振
(wài lì
周期性驱动力作用下的振动
zuò yònɡ)
动
下的
受迫振动(shòu p受ò zh迫èn d振ònɡ动) 的频率等于____驱__动___力__的__频率
振动
共振:f驱= f固时,受迫振动的振幅最大
12/10/2021
第五页,共七页。
2021/12/10
第六页,共七页。
内容(nèiróng)总结
章末总结。运动特点:a=
(变加速运动),周期性和对称性。位移(wèiyí)x:以
为参考点。振幅A:离开平衡位
置的
距离。周期T:完成
需要的时间。频率f:
内完成全振动的次数。水平弹簧振子:由弹簧和小球
组成,忽略阻力,由
提供回。f固
振动位移随时间的变化规律:正弦函数规律x=___A__s_in__(ω__t+_ φ)
描述
物理量
位移x:以 平衡位置为参考点 振幅A:离开平衡位置的 最距大离 周期T:完成 一次全振动需要的时间 频率f: 单位时间内完成全振动的次数 相位:描述周期性运动在各时刻所处状态
1 T=__f_
第三页,共七页。
动理 想 化 模
型 12/10/2021
单摆
回复力来源:重力沿___圆_弧__切__线__方__向__的__分_力__
做简谐运动的条件:θ≤___ 5°
等时性
l 周期公式:T=__2__π___g_ 用单摆测定重力加速度的实验:g=___4_Tπ_22l
第四页,共七页。
振幅__逐__渐__减__小_
No
Image
高三物理机械振动和机械波知识点总结

3. 描述简谐运动的物理量(1)位移x:由平衡位置指向振动质点所在位置的有向线段,是矢量,其最大值等于振幅。
(2)振幅A:振动物体离开平衡位置的最大距离,是标量,表示振动的强弱。
(3)周期T和频率f:表示振动快慢的物理量,二者互为倒数关系,即T=1/f。
4. 简谐运动的图像(1)意义:表示振动物体位移随时间变化的规律,注意振动图像不是质点的运动轨迹。
(2)特点:简谐运动的图像是正弦(或余弦)曲线。
(3)应用:可直观地读取振幅A、周期T以及各时刻的位移x,判定回复力、加速度方向,判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况。
二、弹簧振子定义:周期和频率只取决于弹簧的劲度系数和振子的质量,与其放置的环境和放置的方式无任何关系。
如某一弹簧振子做简谐运动时的周期为T,不管把它放在地球上、月球上还是卫星中;是水平放置、倾斜放置还是竖直放置;振幅是大还是小,它的周期就都是T。
三、单摆1. 定义:摆线的质量不计且不可伸长,摆球的直径比摆线的长度小得多,摆球可视为质点。
单摆是一种理想化模型。
2. 单摆的振动可看作简谐运动的条件是:最大摆角α<5°。
3. 单摆的回复力是重力沿圆弧切线方向并且指向平衡位置的分力。
4. 作简谐运动的单摆的周期公式为:T=2π(1)在振幅很小的条件下,单摆的振动周期跟振幅无关。
(2)单摆的振动周期跟摆球的质量无关,只与摆长L和当地的重力加速度g有关.(3)摆长L是指悬点到摆球重心间的距离,在某些变形单摆中,摆长L 应理解为等效摆长,重力加速度应理解为等效重力加速度(一般情况下,等效重力加速度g'等于摆球静止在平衡位置时摆线的张力与摆球质量的比值)。
四、受迫振动1. 受迫振动:振动系统在周期性驱动力作用下的振动叫受迫振动。
2. 受迫振动的特点:受迫振动稳定时,系统振动的频率等于驱动力的频率,跟系统的固有频率无关。
3. 共振:当驱动力的频率等于振动系统的固有频率时,振动物体的振幅最大,这种现象叫做共振。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理第十一章 机械振动总结一、机械振动: (一)简谐运动: 1、简谐运动的特征:1)运动学特征:振动物体离开平衡位置的位移随时间按正弦规律变化在振动中位移常指是物体离开平衡位置的位移2)动力学特征:回复力的大小与振动物体离开平衡的位移成正比,方向与位移方向相反(指向平衡位置) kx F -=①回复力:使振动物体回到平衡位置的力叫做回复力。
②回复力是根据力的效果来命名的。
③回复力的方向总是指向平衡位置。
④回复力可以是物体所受的合外力,也可以是几个力的合力,也可以是一个力,或者某个力的分力。
⑤由回复力产生的加速度与位移成正比,方向与位移方向相反x mk a -= ⑥证明一个物体是否是作简谐运动,只需要看它的回复力的特征 2、简谐运动的运动学分析: 1)简谐运动的运动过程分析:(1)常用模型:弹簧振子(其运动过程代表了简谐运动的过程) (2)运动过程:简谐运动的基本过程是两个加速度减小的加速运动过程和两个加速度增大的减速运动过程(3)简谐运动的对称性:做简谐运动的物体在经过关于平衡位置对称的两点时,两处的加速度、速度、回复力大小相等 (大小相等、相等)。
动能、势能相等(大小相等、相等)。
2)表征简谐运动的物理量:(1)振幅:振动物体离开平衡位置的最大距离叫做振动的振幅。
①振幅是标量。
②振幅是反映振动强弱的物理量。
(2)周期和频率:①振动物体完成一次全振动所用的时间叫做振动的周期。
②单位时间内完成全振动的次数叫做全振动的频率。
它们的关系是T=1/f 。
在一个周期内振动物体通过的路程为振幅的4倍;在半个周期内振动物体通过的路程为振幅2倍;在1/4个周期内物体通过的路程不一定等于振幅 3)简谐运动的表达式:)sin(ϕω+=t A x 4)简谐运动的图像:振动图像表示了振动物体的位移随时间变化的规律。
反映了振动质点在所有时刻的位移。
从图像中可得到的信息: ①某时刻的位置、振幅、周期②速度:方向→顺时而去;大小比较→看位移大小 ③加速度:方向→与位移方向相反;大小→与位移成正比 3、简谐运动的能量转化过程:1)简谐运动的能量:简谐运动的能量就是振动系统的总机械能。
①振动系统的机械能与振幅有关,振幅越大,则系统机械能越大。
②阻尼振动的振幅越来越小。
2)简谐运动过程中能量的转化:系统的动能和势能相互转化,转化过程中机械能的总量保持不变。
在平衡位置处,动能最大势能最小,在最大位移处,势能最大,动能为零。
(二)简谐运动的一个典型例子→单摆:1、单摆振动的回复力:摆球重力的切向分力。
2、单摆振动看成简谐运动的条件:l3、单摆的振动周期:T=2πg对周期公式的理解和应用注意以下几个问题:①简谐振动物体的周期和频率是由振动系统本身的条件决定的。
②单摆周期公式中的L是指摆动圆弧的圆心到摆球重心的距离,一般也叫等效摆长。
4、利用单摆测重力加速度:(三)受迫振动:1、受迫振动的含义:物体在外界驱动力的作用下的运动叫做受迫振动。
2、受迫振动的规律:物体做受迫振动的频率等于策动力的频率,而跟物体固有频率无关。
1)受迫振动的频率:物体做稳定的受迫振动时振动频率等于驱动力的频率,与物体的固有频率无关。
2)受迫振动的振幅:与振动物体的固有频率和驱动力频率差有关3、共振:当策动力的频率跟物体固有频率相等时,受迫振动的振幅最大,这种现象叫共振。
(1)条件:驱动力的频率等于物体的固有频率(2)特点:振幅最大共振是受迫振动的一种特殊情况。
声波的共振现象叫做共鸣。
第十二章机械波二、机械波:1、机械波的含义:1)机械波的含义:机械振动在介质中的传播,形成机械波。
①机械波传播到什么地方,该处的质点就要在其平衡位置附近振动(重复振源的振动)②介质中各质点的振动都是受迫振动③简谐运动在介质中的传播形成的机械波称为简谐波2)机械波产生的条件:(1)要有波源,(2)要有传播振动的介质。
3)机械波传播的内容:传播振动,传播波形,传播能量,但不传播物质4)机械波的种类:(1)横波:质点振动方向与波的传播方向垂直(2)纵波:质点振动方向与波的传播方向在同一直线上2、描述机械波的物理量:1)波长:(1)含义:在波的传播方向上,相对平衡位置的位移总是相等的两个相邻质点间的距离,叫波长。
相隔波长整数倍的两质点的振动情况相同,相隔半个波长的奇数倍的两质点的振动情况相反。
(2)几种说法:①一个周期时间内波传播的距离是一个波长。
②在横波中,两个相邻的波峰(或波谷)间的距离,等于波长。
③在纵波中,两个相邻的密部(或疏部)间的距离,等于波长。
(3)决定因素:由介质与振源共同决定2)波的周期和频率:(1)含义:波在传播过程中介质中各质点的振动周期与频率(2)决定因素:由振源决定,与介质无关 3)波速:波速反映波在介质中传播的快慢。
V =t s =Tλ=λf 3、波的图像:(1)波的图像描述的问题:介质中各个质点在某一时刻相对平衡位置的位移。
(2)作法:横坐标→各质点的平衡位置;纵坐标→各质点在同一时刻的位移①简谐波的图像是正弦曲线 ②不同时刻波的图像不同 (2)波的图像的物理意义:①各个质点的位置、波长、振幅 ②下一时刻波的图像③振动速度(方向→逆波而行;大小→比较位移大小) ④加速度(方向→与位移方向相反;大小→与位移成正比) 4、波的现象: 1)波的反射与折射: (1)惠更斯原理:①波阵面(波面):振动情况相同的点组成的面 ②波线:与波面垂直的线,表示波的传播方向③惠更斯原理:介质中任一波面上的各点,都可以看做发射子波的波源,其后任意时刻,这些子波在波前进方向的包络面就是新的波面 (2)波的反射:①反射波线与入射波线在同一平面内 ②反射波线与入射波线分居界面法线的两侧 ③反射角等于入射角 (3)波的折射:※:要求两波源的振动情况相同,否则无此结论4)多普勒效应:(1)含义:由于波源和观察者之间有相对运动,使观察者感到波的频率发生变化的现象,叫做多普勒效应。
一切波都能发生多普勒效应(2)规律:①当波源和观察者相对静止时,观察者接收到的频率等于波源的频率。
②当波源和观察者相对靠近时,观察者接收到的频率大于波源的频率。
③当波源和观察者相对远离时,观察者接收到的频率小于波源的频率。
设波源S振动的频率为f,波源和观察者A孝沿同一直线运动,相对于地面的速度分别为v S和v A。
波在介质中的传播速度为v p,且v S<v p,v A<v p,则观察者接收到光从介质进入真空:n1sin sin 21=θθ 3)测定玻璃的折射率:4、全反射:(1)含义:光射到两种介质的界面上全部返回原介质而无折射的现象 (2)发生全反射的条件: ①光从光密介质射向光疏介质②入射角大于等于临界角(4)光密介质与光疏介质:两种介质相比,折射率大的介质称为光密介质;折射率小的介质称为光疏介质(4)临界角: ①含义:折射角为90○时对应的入射角②计算公式:nC 1sin =(从介质射向真空) (5)光从光密介质射向光疏介质时的其他情况:入射角增大折射角增大,折射光的强度变小 (6)全反射的应用→光导纤维:※:光导纤维的应用:医学上的内窥镜,光纤通信5、白光经过棱镜的色散(1)产生的原因:不同色光在同一介质中的传播速度不同 (2)说明的问题:白光是一种复色光(3)不同色光折射率、光速、频率、波长的比较: 二、光的波动性: 1、光的干涉: 1)双缝干涉:(1)P 点到两光源的路程差:d Lx =∆ (2)相邻亮条纹或相邻暗条纹间隔:λdL x =∆ (3)干涉图样: ①单色光干涉:等宽的明暗相间和条纹②白光干涉:条纹是彩色的2)薄膜干涉:(1)两反射光的路程差:d 2=∆ (2)白光干涉:彩色图样(3)应用: ①增透膜:厚度为4/λ②检查平面:(4)光的干涉说明的问题:光是一种波 2、光的衍射:1)明显衍射的条件:光的波长与孔、缝、障碍物的尺寸相差不多 2)几种衍射:(1)光通过小孔的衍射 (2)光通过狭缝的衍射(3)泊松亮斑(4)衍射光栅:狭缝数多→衍射条纹宽度变小,亮度增加(5)衍射说明的问题:光是一种波3、光的偏振:1)光的偏振现象:2)偏振光:在垂直光的传播方向上只有某个特定方向振动的光3)反射现象中的偏振:4)光的偏振说明的问题:光是一种横波三、激光的特性及应用:(1)相干性好:应用于传递信息(光纤通信)(2)平行度好:精确测距(激光雷达)、读光盘(3)亮度高:切割、焊接(医学上的“光刀”、“焊接”视网膜)、引起核聚变第十四章电磁波一、电磁波1、麦克斯韦电磁理论(1)变化的磁场产生电场①均匀变化的磁场产生稳定的电场②周期性变化的磁场产生周期性变化的电场(2)变化的电场产生磁场①均匀变化的电场产生稳定的磁场②周期性变化的电场产生周期性变化的磁场2、电磁场:(1)含义:变化的电场和变化的磁场交替产生,所形成的不可分离的统一体称为电(2)特点:①电场与磁场交替产生②从产生处向外传播3、电磁波:(1)含义:电磁场在空中的传播①电磁波是一种横波,具有横波的一切特性②电磁波传播依靠的是电磁场的交替产生,不需要介质(与机械波不同)③在真空中的传播速度为c=3×108m/s,在介质中的传播速度由介质决定,与波的频率有关④关系:f=Vλ⑤预言电磁波存在的是麦克斯韦,首先用实验证实电磁波存在的是赫兹(2)波的图像:二、电磁振荡①电路中的电流、电容器极板上的电荷量、电容器中的电场、线圈中的磁场在作周期性变化 ②振荡周期:LC T π2=三、电磁波的发射的接收:(均利用LC 振荡电路)1、无线电波的发射:(1)发射要求: ①要有足够高的频率②电场磁场要分散到尽可能大的空间要求的达到:开放电路(2)利用无线电波输送信号:对高频电磁波进行调制(调幅、调频)2、无线电波的接收:对接收电路进行调谐取出信号:要检波第十五章 相对论简介一、狭义相对论的基本假设:(1)在不同的惯性参考系中,一切物理定律都是相同的(相对性原理)(2)真空中的光速在不同的惯性参考系中都是相同的(光速不变原理)二、狭义相对论的几个重要结论:(1)“同时”的相对性:在一个惯性系中同时发生的两事件,在另一个参考系中不同时(2)长度的相对性:物体运动时的长度(沿运动方向)比静止时的长度短(3)时间间隔的相对性:(4)相对论质量:物体静止与运动的质量不同(5)物体的总能量。