2014-2015(1)期末考试试卷(A)(线性代数)

合集下载

2014-2015线性代数A

2014-2015线性代数A

内蒙古大学 2014-2015 学年第 1 学期线性代数 期末考试(A 卷)姓名 学号 专业 年级重修标记 □ (闭卷 120分钟)一、填空题(本题满分 30 分,每小题 3 分)1.n 阶行列式0100002000100n n =- 。

2. 设123234A ⎛⎫= ⎪⎝⎭,使得PA 为行最简的可逆矩阵P = 。

3. A 是3阶方阵,12||A =,则1|(2)7|A A -*-= 。

4. 1400021053-⎛⎫ ⎪= ⎪⎪⎝⎭________________________。

5.二次型21213233246+2f x x x x x x x =-++的矩阵A = 。

6.设向量(1,2,3,4)(0,,2,1)T Tx αβ=-=-和正交,那么x =____________。

7. 设3阶矩阵A 的特征值为1,2,-1,则行列式2|2|A A E -+=_____________。

8. 5元齐次线性方程组123450x x x x x ++++=,则它的基础解系包含______个向量。

9.n 元非齐次线性代数方程组Ax b =有无穷解的充分必要条件是 。

10. n 阶方阵A 可对角化的充分必要条件是 。

二、计算下列各题(本题满分20分,每小题10 分)(1) 设3112513421111233D---=---,求D的代数余子式的和11213141A A A A+++(2) 求非齐次线性方程组12341234123421363251054x x x xx x x xx x x x++-=⎧⎪+--=⎨⎪++-=⎩的通解,并求所对应的齐次线性方程组的基础解系。

三、计算题(本题满分20分,每小题 10 分)(1) 求解矩阵方程AX B =,其中21311122,2013225A B --⎛⎫⎛⎫ ⎪ ⎪=-= ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭。

(2) 求向量组1234(2,1,4,3),(1,1,6,6),(1,1,2,7),(2,4,4,9)T T T Tαααα==--=-=的秩和一个最大无关组,并把不属于最大无关组的列向量用最大无关组线性表示。

14-15-1线代试题答案

14-15-1线代试题答案

2014-2015-1线性代数参考答案及评分标准一(每小题3分,共15分)1、32 2 、3 3 、1 4、2 5、0二(每小题3分,共15分)1 B2 B3 C4 A5 D三(5分)0321103221036666=D ……………………………………………………(2分) 40000400121011116---=…………………………………………… (2分)96-=……………………………………………………………(1分)四(10分)1-=A ,A 可逆…………………………………………………(1分) 121)(---=-=A A E A A B ……………………………………………………(4分)()⎪⎪⎪⎭⎫ ⎝⎛---→100100110010211001,E A⎪⎪⎪⎭⎫ ⎝⎛---=-1001102111A ……………………………………………………………(4分) ⎪⎪⎪⎭⎫ ⎝⎛=000000120B …………………………………………………………………(1分) 五(15分)()211111211112-=-----λλλλλλλ………………………………………………(5分) 0≠λ且2≠λ时,有唯一解…………………………………………………(2分)2=λ时()⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛-----=100051103111111111133111,b A3),(2)(=<=b A R A R ,方程组无解…………………………………………(3分)0=λ时,()⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛=000000001111111111111111,b A3),(1)(<==b A R A R 方程组有无穷多解,1321+--=x x x 取2312,c x c x ==得方程组通解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=00110101121321c c x x x x ………………………(5分)六(12分)()⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=0000010000712100230102301085235703273812,,,,54321a a a a a ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-→00000100000121002301……………………………………(4分) 向量组秩为3,……………………………………………………………(2分) 一个最大无关组为:521,,a a a ……………………………………………(2分) 21323a a a +=………………………………………………………………(2分) 2152a a a -=…………………………………………………………………(2分) 七(10分)证明:设存在数1k ,2k ,3k ,使0332211=++βββk k k ………………(2分) 将1β,2β,3β带入并整理得0)32()()2(33212321131=+-+-+-++αααk k k k k k k k …………………(2分)由1α,2α,3α线性无关知⎪⎩⎪⎨⎧=+-=-+-=+03200232132131k k k k k k k k , 因0312111201=---,故齐次线性方程组有非零解,…………………(4分)从而存在1k ,2k ,3k 不全为零,使0332211=++βββk k k ,从而1β,2β,3β是线性相关的。

武汉理工大学 2014-2015第一学期现代试卷A答案

武汉理工大学 2014-2015第一学期现代试卷A答案
方式二:
向量组1,2 ,3 线性相关,知 R(2 ,3,1) R(1,2,3) 3 -----------1 分 向量组2 ,3,4 线性无关,知 R(2 ,3,4 )=3.
由整体无关则部分无关,知2 ,3 也线性无关。---------------------2 分
而 R(2 ,3,1) R(2 ,3) 2 ,综上知
--------------6 分
A卷3
A卷4
1 1
1 2 1, 3 2 为特征值
1 1
当 1 1解方程组 (A E)x 0 ,得正交的的特征向量为 p1 1 , p2 1
0
2
1

3
2
解方程组 ( A
2E)x
0

p3
1
为对应特征向量
1
故所求正交矩阵 P 为
1
1
1
2
P(
p1
,
p2
,
p3
) 1
p1 p2 p3 2


31
11
… …
4 31 23 若 1,4 是最大无关组,则3 2 1 2 4 ,2 2 1 2 4

4. k=-2.


线
… … … …
A卷1
四、(本题 15 分)
(1)a=-8,b≠1,无解;--------------6 分
(2)a≠-8,唯一解;--------------8 分
,3
线性表示。-----------------6

第二部分还可以用反证法:假设即4 能由1,2 ,3 线性表示,由于1 能由2 ,3 线性表示,
且表示法唯一,故4 能由2 ,3 线性表示,------------5 分

2014线性代数与解析几何期末试卷(A)含参考答案

2014线性代数与解析几何期末试卷(A)含参考答案

装 订 线 内 不 要 答 题自觉遵 守 考 试 规 则,诚 信 考 试,绝 不作 弊)(A 2)(2121211ββααα-+++k k )(B 2)(2121211ββααα++-+k k )(C 2)(2121211ββββα-+++k k )(D 2)(2121211ββββα++-+k k4.设矩阵21407003A a -⎛⎫ ⎪= ⎪ ⎪⎝⎭与10002000b ⎛⎫⎪Λ= ⎪ ⎪⎝⎭相似,则a ,b 满足 ( C ))(A 1,3a b =-= )(B 1,3a b ==- )(C 1,3a b == )(D 1,3a b =-=- 5.若二次型2221231231223(,,)22f x x x x x x x x tx x =++++正定,则t 的取值范围是( C ) (A)0t << (B )22t -<< (C)t << (D)22t -<<三、(本题10分)设2XA X B =+,其中311010003A ⎛⎫⎪= ⎪ ⎪⎝⎭,101321B -⎛⎫= ⎪-⎝⎭,求X .解 由2XA X B =+得1(2)X B A I -=-110100(2)010*********A I I ⎛⎫ ⎪-=- ⎪ ⎪⎝⎭100110010010001001⎛⎫⎪→- ⎪ ⎪⎝⎭1110101111(2)010*********X B A I -⎛⎫---⎛⎫⎛⎫⎪=-=-= ⎪ ⎪ ⎪--⎝⎭⎝⎭⎪⎝⎭四、(本题10分) 求向量组()11,1,1,1T α=--,()20,1,0,1Tα=-,()33,2,1,4T α=--,()44,5,2,7Tα=--的秩和它的一个极大线性无关组,并用该极大线性无关组表示其余向量. 解103410341034101112501110111010210120022001100111147011300220000⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪-- ⎪ ⎪ ⎪ ⎪→→→⎪ ⎪ ⎪⎪--- ⎪ ⎪ ⎪⎪---------⎝⎭⎝⎭⎝⎭⎝⎭初等行变换初等行变换初等行变换所以1234(,,,r αααα)=3,向量组123,,ααα是一个极大线性无关组,41232αααα=++五、(本题10分)求通过点(2,0,1)P -且又通过直线12213x y z +-==-的平面方程. 解 已知直线过点(1,0,2)M -,方向向量{2,1,3}s =-, 所求平面的法向量{3,15,3}n MP s ⨯=---,取{1,5,1}n = 所求平面方程为(1)5(0)(2)0x y z ++-+-=,即510x y z ++-=六、(本题12分) λ取何值时,线性方程组123123123322x x x x x x x x x λλλλ++=-⎧⎪++=-⎨⎪++=-⎩有唯一解,无解或有无穷多解?当方程组有无穷多解时求其通解.解 2112112112011011301133A λλλλλλλλλλ--⎛⎫⎛⎫ ⎪ ⎪=-→-- ⎪⎪⎪ ⎪----⎝⎭⎝⎭初等行变换112011000(1)(2)3(1)λλλλλλ-⎛⎫⎪→-- ⎪ ⎪--+-⎝⎭初等行变换 (1) 当2λ≠-且1λ≠时, 原方程组有唯一解. (2) 当2λ=-时,原方程组无解.(3) 当1λ=时, 原方程组有无穷多解, 111200000000A -⎛⎫⎪→ ⎪ ⎪⎝⎭通解为12(2,0,0)(1,1,0)(1,0,1)TTTx k k =-+-+-,12,k k 为任意常数.七、(本题12分)求一个正交变换x Qy =,将二次型22212312323(,,)2334f x x x x x x x x =+++化成标准形,并指出123(,,)4f x x x =表示的曲面名称. 解 二次型的矩阵 200032023A ⎛⎫⎪= ⎪ ⎪⎝⎭,232(2)(1)(5)0023I A λλλλλλλ--=--=---=--得特征值为11λ=,232,5λλ== 对11λ=,由1()0I A x λ-=得()10,1,1Tξ=-,单位化得)10,1,1Te =- 对22λ=,由2()0I A x λ-=得()21,0,0Tξ=,单位化得()21,0,0Te =, 对35λ=,由3()0I A x λ-=得()30,1,1Tξ=,单位化得)30,1,1Te =取01000Q ⎛⎫ ⎪=,由x Qy =得222123123(,,)25f x x x y y y =++ 曲面123(,,)4f x x x =表示椭球面.八、(本题6分)设n 阶实对称矩阵A 的特征值为12,,,n λλλ,α是A 的对应于特征值1λ的单位特征向量,矩阵1TB A λαα=-,证明:B 的特征值为20,,,n λλ. 证明 因为A 为n 阶实对称矩阵,且有特征值12,,,n λλλ所以存在正交矩阵12(,,,)n P p p p =,使得12(,,,)T n P AP diag λλλ=因为α是A 对应于特征值1λ的单位特征向量,取1p α=,且(,)0,2,3,,i p i n α==1110TB A ααλαααλαλα=-=-=,所以0是B 的特征值 10,2,3,,T i i i i i i i Bp Ap p p p i n λααλλ=-=-==,所以,2,3,,i i n λ=也是B 的特征值综上,B 的特征值为20,,,n λλ.。

2014线代期末

2014线代期末
2014-2015 第一学期期终试题 (考试时间: 2015.1.13)
一、单项选择(请将正确选项填写在后面的括号中,每小题 3 分,共 15 分)
1.
设矩阵 A
1 0 3 0
0 2 0 4
2 0 4 0
1003 ,则行列式 2 A 的值为
(A) 320
(B) 320
(C) 40
(D) 40


(A) 必可由 , , 线性表示 (B) 必可由 , , 线性表示
(C) 必可由 , , 线性表示 (D) 必不可由 , , 线性表示
4.
设矩阵 A
1 x
3
1 4
3
1 y
5

3
个线性无关的特征向量,
2
是二重特征值,
则 x 和 y 依次为


(A) 2, 2 (B) 2, 2 (C) 3, 1 (D) 1, 3
四、(12 分) 取何值时,线性方程组
(22x1()5x12) xx22
2x3 4x3
1 2
2x1 4x2 (5 )x3 1
有唯一解、无解、无穷多解?并在有无穷多解时,求其结构解.
五、(12 分)设有直线 L
:
3xxyy3z
与点
1
M
(1,0,1)
.
(1)求 L 的对称式方程; (2)求点 M 到直线 L 的距离.


2.
0 0 1
0 1 0
1 0 0
1896
a d g
b e h
c f i
0 0 1
0 1 0
1 0 0
2015
=


(A)

线性代数a期末考试题及答案

线性代数a期末考试题及答案

线性代数a期末考试题及答案一、选择题(每题5分,共20分)1. 以下哪个矩阵是可逆的?A. 零矩阵B. 单位矩阵C. 对角矩阵D. 奇异矩阵答案:B2. 矩阵的秩是指:A. 矩阵的行数B. 矩阵的列数C. 矩阵中非零行的最大数目D. 矩阵中非零列的最大数目答案:C3. 如果一个矩阵A的行列式为0,则:A. A是可逆的B. A是不可逆的C. A是正定的D. A是负定的答案:B4. 以下哪个选项不是线性方程组解的性质?A. 唯一性B. 存在性C. 零解D. 非零解答案:D二、填空题(每题5分,共20分)1. 矩阵的________是矩阵中所有元素的和。

答案:迹2. 如果一个向量组线性无关,则该向量组的________等于向量的个数。

答案:秩3. 对于一个n阶方阵A,如果存在一个非零向量x使得Ax=0,则称x为矩阵A的________。

答案:零空间4. 一个矩阵的________是指矩阵中所有行向量或列向量的最大线性无关组的个数。

答案:秩三、解答题(每题10分,共60分)1. 已知矩阵A=\[\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}\],求A的行列式。

答案:\[ \text{det}(A) = 1*4 - 2*3 = 4 - 6 = -2 \]2. 设A=\[\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}\],B=\[\begin{pmatrix} 2 & 0 \\ 1 & 3 \end{pmatrix}\],求AB。

答案:\[ AB = \begin{pmatrix} 1*2 + 2*1 & 1*0 + 2*3 \\ 3*2 +4*1 & 3*0 + 4*3 \end{pmatrix} = \begin{pmatrix} 4 & 6 \\ 10 & 12 \end{pmatrix} \]3. 已知矩阵A=\[\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}\],求A的特征值。

2014级线性代数试卷及答案

2014级线性代数试卷及答案

e2

1
1
0
1 2

1 1

,
e3

2
1 6

1 1

2 0 2
(3)取 P (e1 e2 e3 )
1

6
2 2
3 3
1 ,正交变换 x Py , 1
第 6页(A 卷,共 7页)
第 1页(A 卷,共 7页)
6. 已知 n 阶方阵 A 满足 A2 A 2E O ,则【 】.
A. A E 与 A 2E 均可逆
B. A 与 E A 均可逆
C. A 可逆, E A 不可逆
D. A 不可逆, E A 可逆
7. 下列说法错误的是【 】. A. 实对称矩阵的特征值均为实数 B. 实反对称矩阵的特征值为零或虚数 C. 实正交矩阵的特征值的模为 1 D. 若 A 与 B 相似,则 A 与 B 合同
0 1
1 0
0 1



0 0
1 0
0 1
0 1
1 0
01
1 0 2

A

(B

2E )1


0
1
0

.
1 0 1
第 4页(A 卷,共 7页)
6. AT A* AT A A* A AT A | A | E
| A |2 ( | A |)3 | A | 0 or | A | 1 .
10.曲线 ez y2 关于 Oz 轴旋转而成的旋转曲面方程为【 】.
二、计算题与证明题(共 8 小题,每小题 5 分,共 40 分)

线性代数期末考试试题及答案

线性代数期末考试试题及答案

线性代数期末考试试题及答案一、选择题(每题5分,共30分)1. 若矩阵A的秩为r(A),则下列结论正确的是()A. r(A) ≤ n,其中n是矩阵A的列数B. r(A) ≤ m,其中m是矩阵A的行数C. r(A) ≤ min(m, n)D. r(A) = max(m, n)答案:C2. 下列矩阵中,哪一个不是对称矩阵?()A. \(\begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}\)B. \(\begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}\)C. \(\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 &5 \end{pmatrix}\)D. \(\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 &9 \end{pmatrix}\)答案:D3. 若向量组α1, α2, α3线性无关,则向量组()A. α1 + α2, α2 +α3, α3 + α1 线性无关B. α1 - α2, α2 - α3, α3 - α1 线性无关C. α1 + 2α2, 2α2 + 3α3, 3α3 + α1 线性无关D. α1 + α2 + α3, 2α2 + 3α3, 3α3 + α1 线性无关答案:B4. 设矩阵A是n阶可逆矩阵,则下列结论正确的是()A. A的伴随矩阵A也是可逆矩阵B. A的逆矩阵A-1也是可逆矩阵C. A的转置矩阵AT也是可逆矩阵D. A的n次幂An也是可逆矩阵答案:D5. 若行列式D = |A|的值为0,则下列结论正确的是()A. 方程组Ax = b有唯一解B. 方程组Ax = b无解C. 方程组Ax = 0有非零解D. 方程组Ax = b有无穷多解答案:C6. 若矩阵A是正交矩阵,则下列结论正确的是()A. A的行列式值为1B. A的行列式值为-1C. A的转置矩阵AT等于A的逆矩阵A-1D. A的平方等于单位矩阵E答案:CD二、填空题(每题5分,共30分)7. 若矩阵A的行列式值为3,则矩阵A的伴随矩阵A的行列式值为________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考试课程:
班级:
姓名:
学号:
-------------------------------------------------密----------------------------------封-----------------------------线---------------------------------------------------------
第1页(共1页)
3、设⎪⎪⎪⎭⎫ ⎝⎛=100152321A ,⎪⎪⎪⎭
⎫ ⎝⎛=141B ,利用初等变换求1
-A ,并求解求矩阵方程B AX =。

4、设有向量组T
T
T
T
---=--=-==)1,1,3,4(,)3,1,0,3(,)7,1,3,2(,)0,0,1,1(4321αααα,(1)求此向量组的秩和一个极大无关组;(2)将其余向量用极大无关组线性表示。

5、设四元非齐次线性方程组b Ax =的系数矩阵A 的秩为3,已知4321,,,ηηηη是它的四个解向量,且
T )2,2,0,1(1=η,T )8,2,5,1(432=++ηηη,求其通解。

6、λ为何值时,线性方程组⎪⎩⎪
⎨⎧-=++-=++-=++2
23
321321321x x x x x x x x x λλλλ有唯一解?无解?有无穷多组解?
7、设⎪⎪⎪⎭⎫ ⎝⎛=1010111a a A 与⎪⎪⎪


⎝⎛=b B 10相似,求b a ,的值。

8、求一个正交变换,将二次型212
32
22
132142),,(x x x x x x x x f -+-=化为标准形。

9、设⎪⎪⎪

⎫ ⎝⎛=30201t t t t A ,且A 为正定矩阵,求t 的取值范围。

三、证明题(每小题6分,共12分)
1、设向量组321,,ααα线性无关,321αααβ++=,证明:1αβ-、2αβ-、3αβ-线性无关。

2、设A 是正交矩阵,证明:A 的特征值为1或1-。

考试课程:
班级:
姓名:
学号:
-------------------------------------------------密----------------------------------封-----------------------------线---------------------------------------------------------
满分8分得分
4、
满分8分得分
5、
满分8分得分
满分8分得分
7、
满分8分得分
8、
满分8分得分
满分8分
得分
三、证明题1、
满分6分
得分
2、
满分6分
得分。

相关文档
最新文档