第13章动力学普遍方程习题解
电动力学习题解答1

电动力学习题解答若干运算公式的证明ϕψψϕϕψψϕϕψψϕϕψ∇+∇=∇+∇=∇+∇=∇c c c c )()()(f f f f f f f ⋅∇+⋅∇=⋅∇+⋅∇=⋅∇+⋅∇=⋅∇ϕϕϕϕϕϕϕ)()()()()(c c c c f f f f f f f ⨯∇+⨯∇=⨯∇+⨯∇=⨯∇+⨯∇=⨯∇ϕϕϕϕϕϕϕ)()()()()(c c c c )()()(g f g f g f ⨯⋅∇+⨯⋅∇=⨯⋅∇c c )()(g f f g ⨯∇⋅-⨯∇⋅=c c)()(g f g f ⨯∇⋅-⋅⨯∇=)()()(g f g f g f ⨯⨯∇+⨯⨯∇=⨯⨯∇c cg f f g g f f g )()()()(∇⋅-⋅∇+⋅∇-∇⋅=c c c cg f f g g f f g )()()()(∇⋅-⋅∇+⋅∇-∇⋅=)()()(c c g f g f g f ⋅∇+⋅∇=⋅∇)()(c c g f f g ⋅∇+⋅∇=(利用公式b a c b a c c b a )()()(⋅+⨯⨯=⋅得)f g f g g f g f )()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=c c c cf g f g g f g f )()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=第一章 电磁现象的普遍规律1. 根据算符∇的微分性与向量性,推导下列公式:B A B A A B A B B A )()()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=⋅∇ A A A A )()(221∇⋅-∇=⨯∇⨯A解:(1))()()(c c A B B A B A ⋅∇+⋅∇=⋅∇B A B A A B A B )()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=c c c cB A B A A B A B )()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=(2)在(1)中令B A =得:A A A A A A )(2)(2)(∇⋅+⨯∇⨯=⋅∇,所以 A A A A A A )()()(21∇⋅-⋅∇=⨯∇⨯即 A A A A )()(221∇⋅-∇=⨯∇⨯A2. 设u 是空间坐标z y x ,,的函数,证明:u uf u f ∇=∇d d )( , uu u d d )(A A ⋅∇=⋅∇, uu u d d )(A A ⨯∇=⨯∇ 证明: (1)z y x z u f y u f x u f u f e e e ∂∂+∂∂+∂∂=∇)()()()(z y x zu u f yu u f x u u f e e e ∂∂+∂∂+∂∂=d d d d d du uf zu y u xuu f z y x ∇=∂∂+∂∂+∂∂=d d )(d d e e e(2)zu A yu A xu A u z y x ∂∂+∂∂+∂∂=⋅∇)()()()(A zu u A y u u A x u u A z y x ∂∂+∂∂+∂∂=d d d d d d uu zu yu x u uA uA uA z y x z z y y x x d d )()d d d d d d (A e e e e e e ⋅∇=∂∂+∂∂+∂∂⋅++=(3)uA uA uA z u y u x u uu z y x zyxd /d d /d d /d ///d d ∂∂∂∂∂∂=⨯∇e e e A zx y y z x x y z y u u A x u u A x u u A z u u A z u u A y u u A e e e )d d d d ()d d d d ()d d d d (∂∂-∂∂+∂∂-∂∂+∂∂-∂∂=z x y y z x x y z yu A xu A xu A zu A zu A yu A e e e ])()([])()([])()([∂∂-∂∂+∂∂-∂∂+∂∂-∂∂=)(u A ⨯∇=3. 设222)'()'()'(z z y y x x r -+-+-=为源点'x 到场点x 的距离,r 的方向规定为从源点指向场点。
动力学普遍方程和拉格朗日方程

(i 1,2,......... .n)
对这n个式子求和
(25.2)
iq
(F N F
i 1 i i
n
) r i 0
(25.3)
若为理想约束,由虚位移和理想约束的条件知
N r
i 1 i
n
i
0
上式变为:
(F F
i 1 i
n
iq
) r i 0或者 (F i mi ai ) r i 0 (25.4)
s
k 2 2 i i i s j 1 j s j s k i i j 1 j s j s
即
v q
r
i s
r d ( ri ) dt q
s
也可以写为
v q
r
i j
r d ri ( ) dt q
j
n
或
r q
r
i j
r d ri ( ) dt q
j
j
( j 1,2...k )
r 在任意瞬时,加速度为a
i
根据达朗伯原理,在其上加达朗伯惯性力
r r mi ai F iq
则
约束反力的合力
r rr F N F
i i
0
iq
(i 1,2,......... .n)
(25.1)
达朗伯惯性力
作用于此质点上 的主动力的合力
点积虚位移 ri
( F i N i F iq) r i 0
对时间求导
得到
q
vi
j
q
ri
j
或
q ri
j
( j 1,2...k )
《工程力学》课后习题与答案全集

由 ,作出速度平行四边形,如图示:
即:
7.图示平行连杆机构中, mm, 。曲柄 以匀角速度 2rad/s绕 轴转动,通过连杆AB上的套筒C带动杆CD沿垂直于 的导轨运动。试示当 时杆CD的速度和加速度。
解:取CD杆上的点C为动点,AB杆为动系。对动点作速度分析和加速度分析,如图(a)、(b)所示。图中:
解:设该力系主矢为 ,其在两坐标轴上的投影分别为 、 。由合力投影定理有:
=-1.5kN
kN
kN
;
由合力矩定理可求出主矩:
合力大小为: kN,方向
位置: m cm,位于O点的右侧。
2.火箭沿与水平面成 角的方向作匀速直线运动,如图所示。火箭的推力 kN与运动方向成 角。如火箭重 kN,求空气动力 和它与飞行方向的交角 。
(d)由于不计杆重,杆AB在A、C两处受绳索作用的拉力 和 ,在B点受到支座反力 。 和 相交于O点,
根据三力平衡汇交定理,
可以判断 必沿通过
B、O两点的连线。
见图(d).
第二章力系的简化与平衡
思考题:1.√;2.×;3.×;4.×;5.√;6.×;7.×;8.×;9.√.
1.平面力系由三个力和两个力偶组成,它们的大小和作用位置如图示,长度单位为cm,求此力系向O点简化的结果,并确定其合力位置。
则
(mm/s)
故 =100(mm/s)
又有: ,因
故:
即:
第四章刚体的平面运动
思考题
1.×;2.√; 3.√;4.√;5.×.
习题四
1.图示自行车的车速 m/s,此瞬时后轮角速度 rad/s,车轮接触点A打滑,试求点A的速度。
中国石油大学(华东)动力学普遍定理例题

由平面运动微分方程,得
J A εA F r
将
aA 3 g εA r 8r
解得
3 F mg 16
1 2 , J A m r 代入上式,得 方法二 2
13
[例7] 质量为m 的杆置于两个半径为r ,质量为 的实心圆柱上, 2 P 圆柱放在水平面上,求当杆上加水平力 时,杆的加速度。设 接触处都有摩擦,而无相对滑动。 解:(1)用动能定理求解。 取系统为研究对象,杆作平动,圆柱体作平面运动。设任一瞬时, 杆的速度为v,则圆柱体质心速度为v/2,角速度 v 系统的动能
由动能定理的微分形式:
两边除以 ,并求导数,得 dt
11 m 2v a P v 16
a 8P 11m
14
(2) 用动量矩定理求解 取系统为研究对象
m v 1 m 2 v 11 LO mv 2 r 2( r r ) mvr 2 2 2 2 2r 4
2r 1 1 m v 1 1 m 2 v 2 11 2 T mv 2 2[ ( ) 2 ( r )( ) ] mv 2 2 2 2 2 22 2r 16
m
主动力的元功之和: W ( F ) PdS
dT W ( F )
d( 11 2 mv ) PdS 16
W
F
2mg S sin f mgS cos mg S ( 2 sin f cos )
T1 0
T2
v r 运动学关系: 由动能定理: 5 mv 2 0 mgS ( 2sin f cos ) 4 a ( 4 sin 2 f cos ) g 对t求导,得 5 5
功: W
(F)
P h 2 Ph 2
(完整版)化学动力学习题及答案

第一部分:1.对元反应A+2B→C,若将其反应速率方程写为下列形式, 则k A 、k B 、k C 间的关系应为:( )A k A = kB = kC B k A =2 k B = k C C k A =1/2 k B = k C [解]C ,反应速率之比r A :r B :r C =1:2:1,k A :k B :k C=1:2:12.某反应,无论反应物初始浓度为多少, 在相同时间和温度时, 反应物消耗的浓度为定值,此反应是A 负级数反应B 一级反应C 零级反应D 二级反应 [解]C ,一级反应积分速率方程C A ,0-C A =kt ,反应物浓度的消耗C A ,0-C A 就是与k 和t 有关,k 和温度有关,当温度和时间相同时,反应物浓度的消耗是定值。
3.关于反应级数的各种说法中正确的是 A 只有基元反应的级数是正整数 B 反应级数不会小于零C 反应总级数一定大于对任一反应物级数D 反应级数都可通过实验来确定 [解]D ,4.某反应,A→Y,其速率系数k A =6.93min -1,则该反应物A 的浓度从1.0mol ×dm -3变到0.5 mol ×dm -3所需时间是( )A 0.2minB 0.1minC 1min[解]B ,从速率系数的单位判断是一级反应,代入积分速率方程,0lnA AC kt C =,1ln6.930.5t =,t=0.1min 。
5.某反应,A→Y,如果反应物A 的浓度减少一半,它的半衰期也缩短一半,则该反应的级数为( )A 零级B 一级C 二级[解]A ,半衰期与浓度成正比,所以是零级反应。
6.某化学反应的速率常数为2.0mol ·l -1·s -1,该化学反应的级数为 A.1 B.2 C.0 D.-1 [解]C ,从速率常数的单位判断是零级反应。
7.放射性Pb 201的半衰期为8小时,1克放射性Pb 201经24小时衰变后还剩 A.1/3g B.1/4g C.1/8g D.0gBA B B d d c c k t c =-B A C C d d c c k t c =B A A A d d c c k t c =-[解]C ,放射性元素的衰变是一级反应,通过半衰期公式12ln 2t k =,ln 28k =,再代入一级反应积分速率方程,,0lnA AC ktC =,起始浓度为1g ,1ln 2n*248A C =,18A C g =。
动力学课后习题答案

第一章 质点动力学1-3 解:运动方程:θtan l y =,其中kt =θ。
将运动方程对时间求导并将030=θ代入得34cos cos 22lk lk l y v ====θθθ938cos sin 2232lk lk ya =-==θθ1-6证明:质点做曲线运动,所以质点的加速度为:n t a a a +=,设质点的速度为v ,由图可知: aa v v y n cos ==θ,所以: yv v a a n =将c v y =,ρ2n va =代入上式可得 ρc va 3=证毕 1-7证明:因为n2a v=ρ,va a v a ⨯==θsin n所以:va ⨯=3vρ证毕1-10解:设初始时,绳索AB 的长度为L ,时刻t 时的长度 为s ,则有关系式:t v L s 0-=,并且 222x l s +=将上面两式对时间求导得:0v s -= ,x x s s 22=由此解得:xsv x 0-= (a )(a)式可写成:s v x x 0-= ,将该式对时间求导得:2002v v s x x x=-=+ (b)xoovovFNFgmyθ将(a)式代入(b)式可得:3220220xl v xxv xa x -=-== (负号说明滑块A 的加速度向上)取套筒A 为研究对象,受力如图所示,根据质点矢量形式的运动微分方程有:gF F a m m N ++=将该式在y x ,轴上投影可得直角坐标形式的运动微分方程:N F F y m F mg x m +-=-=θθsin cos其中:2222sin ,cos lx l lx x +=+=θθ0,3220=-=yxl v x将其代入直角坐标形式的运动微分方程可得:23220)(1)(x l xl v g m F ++=1-11解:设B 点是绳子AB 与圆盘的切点,由于绳子相对圆盘无滑动,所以R v B ω=,由于绳子始终处于拉直状态,因此绳子上A 、B 两点的速度在 A 、B 两点连线上的投影相等,即:θcos A B v v = (a )因为x Rx 22cos -=θ (b )将上式代入(a )式得到A 点速度的大小为:22Rx x Rv A -=ω (c )由于x v A -=,(c )式可写成:Rx R x xω=--22 ,将该式两边平方可得:222222)(x R R x x ω=-将上式两边对时间求导可得:x x R x x R x x x 2232222)(2ω=--将上式消去x2后,可求得: 22242)(R x xR x--=ω (d)由上式可知滑块A 的加速度方向向左,其大小为 22242)(R x xR a A -=ω取套筒A 为研究对象,受力如图所示,根据质点矢量形式的运动微分方程有:gF F a m m N ++=将该式在y x ,轴上投影可得直角坐标形式的 运动微分方程:mg F F ym F x m N -+=-=θθsin cos其中:xR x x R 22cos ,sin -==θθ, 0,)(22242=--=yR x x R xω将其代入直角坐标形式的运动微分方程可得2525)(,)(225222242R x x R m mg F R x xR m F N --=-=ωω1-13解:动点:套筒A ;动系:OC 杆;定系:机座;运动分析:绝对运动:直线运动;相对运动:直线运动;牵连运动:定轴转动。
理论力学动力学典型习题+答案

.《动力学I 》第一章 运动学部分习题参考解答1-3 解:运动方程:θtan l y =,其中kt =θ。
将运动方程对时间求导并将030=θ代入得34cos cos 22lklk l y v ====θθθ&& 938cos sin 2232lk lk y a =-==θθ&&1-6证明:质点做曲线运动,所以n t a a a +=, 设质点的速度为v ,由图可知:a a v v yn cos ==θ,所以: yv va a n =将c v y =,ρ2n va =代入上式可得 ρc v a 3=证毕1-7证明:因为n2a v=ρ,va a v a ⨯==θsin n所以:va ⨯=3v ρ证毕1-10解:设初始时,绳索AB 的长度为L ,时刻t 时的长度 为s ,则有关系式:t v L s 0-=,并且 222x l s +=将上面两式对时间求导得:0v s -=&,xx s s &&22= 由此解得:xsv x-=& (a ) (a)式可写成:s v x x 0-=&,将该式对时间求导得: 2002v v s x x x =-=+&&&& (b)将(a)式代入(b)式可得:3220220xlv x x v x a x -=-==&&&(负号说明滑块A 的加速度向上)1-11解:设B 点是绳子AB 与圆盘的切点,由于绳子相对圆盘无滑动,所以R v B ω=,由于绳子始终处于拉直状态,因此绳子上A 、B 两点的速度在 A 、B 两点连线上的投影相等,即: θcos A B v v = (a ) 因为xR x 22cos -=θ (b ) 将上式代入(a )式得到A 点速度的大小为: 22Rx x Rv A -=ω (c )由于x v A &-=,(c )式可写成:Rx R x xω=--22&,将该式两边平方可得: 222222)(x R R x x ω=-&将上式两边对时间求导可得:x x R x x R x x x &&&&&2232222)(2ω=--将上式消去x &2后,可求得:22242)(R x xR x --=ω&&由上式可知滑块A 的加速度方向向左,其大小为 22242)(R x xR a A -=ω1-13解:动点:套筒A ;动系:OA 杆; 定系:机座; 运动分析:o vAxω OθAvAx ωO BvB Ra ve vr vxyoanavy vθ θxyo anatθ.绝对运动:直线运动; 相对运动:直线运动; 牵连运动:定轴转动。
第13章 动力学普遍方程习题解

习题13-1图*第13章 动力学普遍方程 和第二类拉格朗日方程13-1 图示均质细杆OA 长为l ,重力为P ,在重力作用下可在铅垂平面内摆动,滑块O 质量不计,斜面倾角θ,略去各处摩擦,若取x 及ϕ为广义坐标,试求对应于x 和ϕ的广义力。
解:应用几何法,令0δ=x ;0δ≠ϕ则:ϕϕϕϕϕϕsin 21δδ2sin δδPl lP W Q -=-='= 令0δ≠x ;0δ=ϕ 则:θθsin δδsin δδP xxP x W Q x -=-=''=13-2 图示在水平面内运动的行星齿轮机构,已知固定齿轮半径为R ,均质行星齿轮半径为r ,质量为m ,均质杆OA 质量为m 1,杆受矩为M 的力偶作用而运动,若取ϕ为广义坐标,试求相应的广义力。
解:应用几何法,设对应于ϕ的虚位移0δ≠ϕ 则:M M W Q ===ϕϕϕϕδδδδ13-3 在图示系统中,已知:均质圆柱A 的质量为M 、半径为R ,物块B 的质量为m ,光滑斜面的倾角为β,滑轮质量忽略不计,并假设斜绳段平行斜面。
若以θ 和y 为广义坐标,试分别用动力学普遍方程和第二类拉格朗日方程求:(1)系统运动微分方程;(2)圆柱A 的角加速度和物块B 的加速度。
解:(1)在系统上施加惯性力如图(a )所示。
其中:)(I θ R y M F A -=;y m F B=I θθ2I 21MR J M A A == 应用动力学普遍方程,δ)sin (δ)sin (I I I I =+-+---θββR Mg M R F y Mg F F mg A A A B 可得系统运动微分方程:0sin )(=----βθMg R yM y m mg 0sin 21)(2=+--R Mg MR R R yM βθθ 整理后有:0)sin ()(=-+-+g m M MR yM m βθ 0sin 23=--βθg yR习题13-2图习题13-3图F I应用第二类拉格朗日方程:2222)(21212121θθ R y M MR y m T -+⋅+=;)(sin θβR y Mg mgy V -+-= =-=V T L 2222)(21212121θθ R y M MR y m -+⋅+)(sin θβR y Mg mgy --+ )(d d θ R yM y m y L t -+=∂∂;βsin Mg mg yL -=∂∂ 0d d =∂∂-∂∂y L y L t ;0)sin ()(=-+-+g m M MR y M m βθ (a ) )(21d d 2θθθ R y RM MR L t --=∂∂;R Mg L βθsin =∂∂ 0d d =∂∂-∂∂θθL L t;0sin 23=--βθg y R (b ) (2)求圆柱A 的角加速度和物块B 的加速度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题13-1图*第13章 动力学普遍方程 和第二类拉格朗日方程13-1 图示均质细杆OA 长为l ,重力为P ,在重力作用下可在铅垂平面内摆动,滑块O 质量不计,斜面倾角θ,略去各处摩擦,若取x 及ϕ为广义坐标,试求对应于x 和ϕ的广义力。
解:应用几何法,令0δ=x ;0δ≠ϕ则:ϕϕϕϕϕϕsin 21δδ2sin δδPl lP W Q -=-='= 令0δ≠x ;0δ=ϕ 则:θθsin δδsin δδP xxP x W Q x -=-=''=13-2 图示在水平面内运动的行星齿轮机构,已知固定齿轮半径为R ,均质行星齿轮半径为r ,质量为m ,均质杆OA 质量为m 1,杆受矩为M 的力偶作用而运动,若取ϕ为广义坐标,试求相应的广义力。
解:应用几何法,设对应于ϕ的虚位移0δ≠ϕ 则:M M W Q ===ϕϕϕϕδδδδ13-3 在图示系统中,已知:均质圆柱A 的质量为M 、半径为R ,物块B 的质量为m ,光滑斜面的倾角为β,滑轮质量忽略不计,并假设斜绳段平行斜面。
若以θ 和y 为广义坐标,试分别用动力学普遍方程和第二类拉格朗日方程求:(1)系统运动微分方程;(2)圆柱A 的角加速度和物块B 的加速度。
解:(1)在系统上施加惯性力如图(a )所示。
其中:)(I θ R y M F A -=;y m F B=I θθ2I 21MR J M A A == 应用动力学普遍方程,δ)sin (δ)sin (I I I I =+-+---θββR Mg M R F y Mg F F mg A A A B 可得系统运动微分方程:0sin )(=----βθMg R yM y m mg 0sin 21)(2=+--R Mg MR R R yM βθθ 整理后有:0)sin ()(=-+-+g m M MR yM m βθ 0sin 23=--βθg yR应用第二类拉格朗日方程:习题13-2图习题13-3图F I2222)(21212121θθ R y M MR y m T -+⋅+=;)(sin θβR y Mg mgy V -+-= =-=V T L 2222)(21212121θθ R y M MR y m -+⋅+)(sin θβR y Mg mgy --+ )(d d θ R yM y m y L t -+=∂∂;βsin Mg mg yL -=∂∂ 0d d =∂∂-∂∂y L yL t ;0)sin ()(=-+-+g m M MR y M m βθ (a ) )(21d d 2θθθ R y RM MR L t --=∂∂;R Mg L βθsin =∂∂ 0d d =∂∂-∂∂θθL L t ;0sin 23=--βθg y R(b ) (2)求圆柱A 的角加速度和物块B 的加速度。
由式(b )得:βθsin 23g R y-=代入式(a ),有 0)sin ()sin 23)((=-+--+g m M MR g R M m βθβθ 解得:R m M mg A )3()sin 1(2++==βθα ;mM gM m g m M mg y a B 3)sin 3(sin 3)sin 1(3+-=-++==βββ13-4 在图示系统中,已知滑块A 的质量为M ,至于光滑水平面上,其上作用有水平力F ,均质杆AB 长2b ,质量为m ,若选取x 和θ 作为系统的广义坐标,试建立系统运动微分方程。
解:应用第二类拉格朗日方程。
对应于广义坐标x 和θ的广义力分别为:F Q x =;θθsin mgb Q -=杆AB 质心C 的速度为:22)sin ()cos (θθθθ b b xv C ++= 系统的动能为:)cos 2(2141212*********θθθθ b b x x m b m xM T +++⋅+=)sin cos (d d 2θθθθ -++=∂∂mb x m x M x T t ;0=∂∂x T x Q x T xT t =∂∂-∂∂ d d ;0sin cos )(2=--++F mb mb x M m θθθθ (a ) )sin cos (31d d 22θθθθθθ x x mb mb mb T t -++=∂∂;θθθ x mb T sin -=∂∂ θθθQ T T t=∂∂-∂∂ d d ;0sin cos 342=++θθθgb x b b(b ) 式(a )、(b )即为系统运动微分方程。
13-5 在图示系统中,已知:均质圆轮A 的质量为M 、半径为r ,摆球B 的质量为m 、摆长为b ,弹簧刚度为k ,弹簧及刚杆AB 质量不计,圆盘在水平面上作纯滚动。
若选取ϕ 和习题13-4图θ 作为系统的广义坐标,设ϕ = 0时弹簧为原长。
试分别用动力学普遍方程和第二类拉格朗日方程建立系统运动微分方程。
解:(1)在系统上施加惯性力如图(a )所示。
其中惯性力为:ϕ Mr F A =I ;ϕϕ 2I 21Mr J M A A == ϕ mr F B =e I ;θ mb F B =t r I ;2n r I θ mb F B = 应用动力学普遍方程,0δ)sin cos (n r I t r I e I I I =+-----ϕθθr F r F r F Fr M r F B B B A A0δ)cos sin (t r I e I =---θθθb F F mg B B可得系统运动微分方程(F = kr ϕ):0)sin cos ()23(2=-+++θθθθϕϕ mb kr r m M 0sin cos =++θθϕθmg mb mr 整理后有:02)sin cos (2)23(2=+-++ϕθθθθϕkr mb r m M0sin cos =++θθϕθmg mb mr 应用第二类拉格朗日方程:])sin ()cos [(212121)(2122222θθθθϕϕϕb b r m Mr r M T +++⋅+=; 2)(21cos ϕθr k b mg V +-==-=V T L ])(cos 2)[(21)(43222θθθϕϕϕ b rb r m r M +++2)(21cos ϕθr k b mg -+ )sin cos (23d d 222θθθθϕϕϕ -++=∂∂mrb mr Mr L t ;ϕϕ2kr L -=∂∂ 0d d =∂∂-∂∂ϕϕL L t ;02)sin cos (2)32(2=+-++ϕθθθθϕkr mb r M m (a ) )sin cos (d d 2θϕθθϕθθ -+=∂∂mbr mb L t ;b mg mrb L θθθϕθsin sin --=∂∂ 0d d =∂∂-∂∂θθL L t;0sin cos =++θθϕθmg mb mr (b ) 式(a )、(b )即为系统运动微分方程。
13-6 图示系统由摆长为l 、质量为m 的摆锤和两根弹簧刚度为k 的弹簧组成,弹簧、滑块A 及刚杆AB 的质量均不计,水平面光滑。
若选取x 和θ 作为系统的广义坐标,试用第二类拉格朗日方程建立系统运动微分方程。
解:摆锤B 的速度为:22)sin ()cos (θθθθ l l xv B ++= 习题13-6图系统的动能、势能分别为:)cos 2(21222θθθ l l x x m T ++=;2cos kx mgl V +-=θ =-=V T L )cos 2(21222θθθ l l x x m ++2cos kx mgl -+θ )sin cos (d d 2θθθθ -+=∂∂ml x m x L t ;kx x L 2-=∂∂ 0d d =∂∂-∂∂x L x L t ;02sin cos 2=+-+kx ml ml x m θθθθ (a ) )sin cos (d d 2θθθθθ x x ml ml L t -+=∂∂;θθθθsin sin mgl x ml L --=∂∂ 0d d =∂∂-∂∂θθL L t;0sin cos 2=++θθθmgl x ml ml (b ) 式(a )、(b )即为系统运动微分方程。
13-7 在图示系统中,已知:物块A 质量为m ,均质圆柱B 质量为M 、半径为r ,弹簧刚度为k ,自然长度为d ,圆柱B 相对于物块A 作纯滚动,物块A 沿光滑水平面运动。
若选取x 和ϕ 作为系统的广义坐标,试用第二类拉格朗日方程建立系统运动微分方程。
解:系统的动能、势能分别为:2222)(214121ϕϕ r x M Mr xm T +++=; 22)(21)(21ϕr k d x k V +-= V T L -=)(d d ϕ r x M x m x L t ++=∂∂;)(d x k x L--=∂∂0d d =∂∂-∂∂x LxL t ;0)()(=-+++d x k Mr x M m ϕ(a ) )(21d d 2ϕϕϕ r x Mr Mr L t ++=∂∂;ϕθ2kr L-=∂∂0d d =∂∂-∂∂ϕϕL L t ;023=++ϕϕkr Mr xM (b ) 式(a )、(b )即为系统运动微分方程。
13-8 在图示系统中,已知:摆球B 的质量为m 、摆长为b ,弹簧的刚度系数为k ,其他物体质量不计。
若选取y (从点A 的静平衡位置算起)和θ 作为系统的广义坐标,试用第二类拉格朗日方程建立系统运动微分方程。
解:应用第二类拉格朗日方程:)sin 2(21222θθθ b y b ym T +-=;221cos ky mgb V +-=θ V T L -=)cos sin (d d 2θθθθ +-=∂∂mb ym y L t ;ky yL -=∂∂ 习题13-7图习题13-8图B0d d =∂∂-∂∂y L yL t ;0cos sin 2=+--ky mb mb y m θθθθ(a ) )cos sin (d d 2θθθθθ y y mb mb L t +-=∂∂;θθθθsin cos mgb y mb L --=∂∂ 0d d =∂∂-∂∂θθL L t;0sin sin =+-θθθg y b (b ) 式(a )、(b )即为系统运动微分方程。
13-9 重力为P 1的楔块B 放在光滑水平面上,铅直杆重力P 2,均质圆盘重力P 3,如图所示。
在楔块上作用一水平力F 。
若圆盘在楔块斜面上作纯滚动,斜面与水平面的夹角为β,试求楔块的加速度。
解:此系统只有一个自由度,若选取x为广义坐标,应用第二类拉格朗日方程:2322232121)sin (4121O O v gP P r v r g P x g P T +++=β 如图所示圆盘的速度瞬心在点D ,且x v B =, 则:βββtan cos sin x r r v v BO == 223222321tan 21cos 4121x gP P x g P x g P T ββ+++= βtan )(δδ)(δ3232P P F xr P P x F Q Ox +-=+-=;(βtan δδx r O =)x g P P x g P x g P x T t ββ232231tan cos 2d d +++=∂∂;0=∂∂xTx Q x T xT t =∂∂-∂∂ d d ;ββββtan )(cos 2sin )(2cos 2322232321P P F x g P P P P +-=+++)sin 21()sin cos (2cos ]tan )([2232221232βββββ++++-==P P P P P F g x a13-10 在图示系统中,已知:均质杆AB 质量为m 、长为b ,光滑斜面的倾角为β,滚轮A 的质量不计。