必修解析几何初步单元检测题及答案
北师大版高中数学必修二第二章《解析几何初步》检测(含答案解析)

一、选择题1.在坐标平面内,与点()1,2A 距离为1,且与点()3,1B 距离为2的直线共有( ) A .1条B .2条C .3条D .4条2.若直线y x b =+与曲线24y x =-有公共点,则b 的取值范围为( )A .[]22-,B.2,22⎡⎤-⎣⎦C .22,22-⎡⎤⎣⎦D .()2,22-3.已知方程2234-+=-kx k x 有两个不同的解,则实数k 的取值范围是( )A .13,24⎡⎤⎢⎥⎣⎦B .53,124C .13,24⎛⎫ ⎪⎝⎭D .53,124⎛⎫ ⎪⎝⎭4.已知半径为2的圆经过点()5,12,则其圆心到原点的距离的最小值为( ) A .9B .11C .13D .155.若直线0x y b +-=与曲线210x y -+=有公共点,则b 的取值范围是( ) A .[1,2]-B .[2,1]-C .[1,1]-D .[2,2]-6.直线l 经过()2,1A ,()2(,)1B m m R ∈两点,那么直线l 的倾斜角的取值范围为( )A .0,B .30,,44πππ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦C .0,4⎡⎤⎢⎥⎣⎦π D .0,,42πππ⎡⎤⎛⎫⎪⎢⎥⎣⎦⎝⎭7.已知平面,αβ,直线l ,记l 与,αβ所成的角分别为1θ,2θ,若αβ⊥,则( ) A .12sin sin 1θθ+≤B .12sin sin 1θθ+≥C .122πθθ+≤D .122πθθ+≥8.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,四边形ABCD 为正方形,PA AB =,E 为AP 的中点,则异面直线PC 与DE 所成的角的正弦值为( ).A .25B 5C .155D .1059.现有一个三棱锥形状的工艺品P ABC -,点P 在底面ABC 的投影为Q ,满足12QAB QAC QBC PABPACPBCS S S S S S ===△△△△△△,22222213QA QB QC AB BC CA ++=++,93ABCS =品放入一个球形容器(不计此球形容器的厚度)中,则该球形容器的表面积的最小值为( ) A .42πB .44πC .48πD .49π10.设m ,n 为两条不同的直线,α,β为两个不同的平面,给出下列命题: ①若//m α,//m n ,则//n α; ②若m α⊥,//m β,则αβ⊥; ③若αβ⊥,n αβ=,m n ⊥,则m β⊥;④若//m n ,//αβ,则m 与α所成的角和n 与β所成的角相等. 其中正确命题的序号是( )) A .①②B .①④C .②③D .②④11.已知正方体1111ABCD A B C D -的棱长为2,E 为棱1AA 的中点,截面1CD E 交棱AB 于点F ,则四面体1CDFD 的外接球表面积为( ) A .394πB .414πC .12πD .434π12.某三棱锥的三视图如图所示,已知网格纸上小正方形的边长为1,则该三棱锥的体积为( )A .43 B .83C .3D .4二、填空题13.2020年是中国传统的农历“鼠年”,有人用3个圆构成“卡通鼠”的形象,如图:(0,3)Q -是圆Q 的圆心,圆Q 过坐标原点O ;点L 、S 均在x 轴上,圆L 与圆S 的半径都等于2,圆S 、圆L 均与圆Q 外切.已知直线l 过点O .若直线l 截圆L 、圆S 、圆Q 所得弦长均等于d ,则d =_____.14.已知直线l 斜率的取值范围是()3,1-,则l 的倾斜角的取值范围是______. 15.已知点(1,0),(3,0)M N .若直线:0l x y m +-=上存在一点P 使得0PM PN ⋅=成立,则m 的取值范围是_____________.16.经过两条直线2310x y ++=和340x y -+=的交点,并且平行于直线3470x y +-=的直线方程是________.17.已知点()3,2A ,()2,3B -,直线():32260l k x y k ---+=.若直线l 与线段AB 有公共点,则实数k 的取值范围是________.18.已知A 是直角坐标平面内一定点,点(0,0)O ,若圆22()(–12)3x y -+=上任意一点M 到定点A 与点(0,0)O 的距离之比是一个定值λ,则这个定值λ的大小是________.19.已知直三棱柱111ABC A B C -,14AB BC AA ===,42AC =,若点P 是上底面111 A B C 所在平面内一动点,若三棱锥P ABC -的外接球表面积恰为41π,则此时点P 构成的图形面积为________.20.如图所示,Rt A B C '''∆为水平放置的ABC ∆的直观图,其中A C B C ''''⊥,2B O O C ''''==,则ABC ∆的面积是________________.21.正四面体ABCD 棱长为2,AO ⊥平面BCD ,垂足为O ,设M 为线段AO 上一点,且90BMC ︒∠=则二面角M BC O --的余弦值为________.22.表面积为16π的球与一个正三棱柱各个面都相切,则这个正三棱柱的体积为___________.23.三棱锥P ABC -的各顶点都在同一球面上,PC ⊥底面ABC ,若1PC AC ==,2AB =,且60BAC ∠=︒,给出如下命题:①ACB △是直角三角形;②此球的表面积等于11π; ③AC ⊥平面PBC ;④三棱锥A PBC -的体积为3. 其中正确命题的序号为______.(写出所有正确结论的序号)24.如图①,一个圆锥形容器的高为2a ,内装有一定量的水.如果将容器倒置,这时水面的高恰为a (如图②),则图①中的水面高度为_________.三、解答题25.如图所示,在边长为2的菱形ABCD 中,60BAC ∠=,沿BD 将三角形BCD 向上折起到PBD 位置,E 为PA 中点,若F 为三角形ABD 内一点(包括边界),且//EF 平面PBD .(1)求点F 轨迹的长度;(2)若EF ⊥平面ABD ,求证:平面PBD ⊥平面ABD ,并求三棱锥P ABD -的体积. 26.在所有棱长均为2的直棱柱1111ABCD A B C D -中,底面ABCD 是菱形,且60BAD ∠=︒,O ,M 分别为1,BD B C 的中点.(Ⅰ)求证:直线//OM 平面11DB C ; (Ⅱ)求二面角1D AC D --的余弦值.27.如图,在直三棱柱111ABC A B C -中,底面是等腰直角三角形,90ACB ∠=︒且AC a =,侧棱12AA =,D ,E 分别是1CC ,11A B 的中点.(1)求直三棱柱111ABC A B C -的体积(用字母a 表示); (2)若点E 在平面ABD 上的射影是三角形ABD 的重心G , ①求直线EB 与平面ABD 所成角的余弦值; ②求点1A 到平面ABD 的距离28.如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C D ,的点.(1)证明:平面AMD ⊥平面BMC ;(2)在线段AM 上是否存在点P ,使得//MC 平面PBD ?若不存在,说明理由,若存在请证明你的结论并说明P 的位置.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【详解】根据题意可知,所求直线斜率存在,可设直线方程为y =kx +b , 即kx -y +b =0, 所以1211d k ==+,2221d k ==+,解之得k =0或43k =-, 所以所求直线方程为y =3或4x +3y -5=0, 所以符合题意的直线有两条,选B.2.B解析:B 【分析】直线y x b =+与曲线24y x =-y x b =+与半圆()224,0x y y +=≥有交点,分析几何图形得出有交点的临界情况.【详解】 由24y x =-()224,0x y y +=≥,表示圆心 (0,0),2r =的半圆,当y x b =+经过(2,0)时,此时2b =-; 当y x b =+与此半圆相切时,222221(1)r b ==⇒=+-,作出半圆与直线的图象如下,由图象可知,要使直线y x b =+与曲线24y x =-有公共点,则2,22b ⎡⎤∈-⎣⎦.故选:B 【点睛】 关键点点睛:由24y x =-变形可知其图象为半圆,找出直线y x b =+与其有公共点的临界情况,是解决问题的关键.3.B解析:B 【分析】如图,当直线在AC 位置时,斜率303224k -==+,当直线和半圆相切时,由半径22002321k k --+=+解得k 值,即得实数k 的取值范围.【详解】 由题意得,半圆24y x =-与直线32y kx k =+-有两个交点,又直线323(2)y kx k y k x =+-⇒-=-过定点C (2,3),如图所示,又点(2,0),(2,0)A B -,当直线在AC 位置时,斜率303224k -==+.当直线和半圆相切时,由半径2=解得512k =, 故实数k 的取值范围为53(,]124故选:B 【点睛】关键点点睛:由函数解析式转化为直线与半圆有两个公共点,根据直线与圆的位置关系,点到直线的距离公式的应用,求出直线在AC 位置时的斜率k 值及切线CD 的斜率,是解题的关键.4.B解析:B 【分析】设圆心坐标为(),a b ,则圆的圆心轨迹方程()()225124a b -+-=,再利用点与点的距离公式求解 【详解】半径为2的圆经过点()5,12,设圆心坐标为(),a b ,则其方程为()()224x a y b -+-= ,由其过点()5,12,则()()225124a b -+-=,即()()225124a b -+-=可得该圆的圆心轨迹是以()5,12为圆心,2为半径的圆, 故圆心到原点的距离的最小值为()5,12到原点的距离减半径,213211=-=, 故选:B . 【点睛】关键点睛:本题考查轨迹问题和点与圆上的点的距离的最值,解答本题的关键是由题意得到圆心的轨迹方程()()225124a b -+-=,再根据点与圆上的点的距离的最值的求法得出答案,属于中档题.5.B解析:B 【分析】根据题意,对曲线的方程变形,分析可得曲线为圆x 2+y 2=1的下半部分,结合图形分析可得答案. 【详解】根据题意,y 21x =--,变形可得x 2+y 2=1(0y ≤),为圆x 2+y 2=1的下半部分, 若直线x +y ﹣b =0与曲线y 21x =--有公共点,则当直线经过点A 时,直线x +y ﹣b =0与曲线y 21x =-有公共点 此时b =1,将直线向下平移至直线与曲线相切时,有2b -=1,解可得b =±2,又由b <0,则b 2=-,则b 的取值范围为[2,1]-; 故选:B .【点睛】关键点点睛:曲线y 21x =--,变形可得x 2+y 2=1(0y ≤),为圆x 2+y 2=1的下半部分,数形结合解决即可.6.D解析:D 【分析】根据直线过两点,求出直线的斜率,再根据斜率求出倾斜角的取值范围. 【详解】解:直线l 的斜率为2212121121y y m k m x x --===---,因为m R ∈,所以(],1k ∈-∞,所以直线的倾斜角的取值范围是0,,42πππ⎡⎤⎛⎫⎪⎢⎥⎣⎦⎝⎭. 故选:D. 【点睛】本题考查了利用两点求直线的斜率以及倾斜角的应用问题,属于基础题.7.C解析:C 【分析】如图,作出1θ和2θ,再由线面角推得12sin sin 2πθθ⎛⎫≤- ⎪⎝⎭,利用三角函数的单调性判断选项. 【详解】设直线l 为直线AB ,m αβ=,AD m ⊥,BC m ⊥,连结BD ,AC ,1ABD θ=∠,2BAC θ=∠,12sin sin 2AD AC AB AB πθθ⎛⎫=≤=- ⎪⎝⎭,12,2πθθ-都是锐角, 122πθθ∴≤-,即122πθθ+≤故选:C 【点睛】关键点点睛:本题的关键是作图,并利用线段AD AC ≤,传递不等式,12sin sin 2AD AC AB AB πθθ⎛⎫=≤=- ⎪⎝⎭. 8.D解析:D 【分析】先取正方形的中心O ,连接OE ,由PC//OE 知OED ∠为异面直线PC 与DE 所成的角,再在OED 中求OED ∠的正弦即可. 【详解】连AC ,BD 相交于点O ,连OE 、BE ,因为E 为AP 的中点,O 为AC 的中点,有PC//OE ,可得OED ∠为异面直线PC 与DE 所成的角,不妨设正方形中,2AB =,则2PA =,由PA ⊥平面ABCD ,可得,PA AB PA AD ⊥⊥, 则145BE DE ==+=,1122222OD BD ==⨯=, 因为BE DE =,O 为BD 的中点,所以90EOD ∠=︒,210sin 55OD OED DE ∠===. 故选:D. 【点睛】 方法点睛:求空间角的常用方法:(1)定义法,由异面直线所成角、线面角、二面角的定义,结合图形,作出所求空间角,再结合题中条件,解对应三角形,即可求出结果;(2)向量法:建立适当的空间直角坐标系,通过计算向量夹角(直线方向向量与直线方向向量、直线方向向量与平面法向量,平面法向量与平面法向量)余弦值,即可求出结果.9.D解析:D 【分析】作QM AB ⊥,连接PM ,易证AB PM ⊥,由112122QAB PABAB QMS S AB PM ⨯⨯==⨯⨯△△,得到2PM QM =,再根据12QAB QAC QBC PABPACPBCS S S S S S ===△△△△△△,由对称性得到AB BC AC ==,然后根据22222213QA QB QC AB BC CA ++=++,93ABCS =,求得6,23AB AQ ==,在AOQ△中,由222AO OQ AQ =+求解半径即可.【详解】 如图所示:作QM AB ⊥与M ,连接PM , 因为PQ ⊥平面ABC ,所以PQ AB ⊥,又QM PQ Q ⋂=, 所以AB ⊥平面PQM , 所以AB PM ⊥,所以112122QAB PABAB QM S S AB PM ⨯⨯==⨯⨯△△, 2PM QM =,因为12QAB QAC QBC PABPACPBCS S S S S S ===△△△△△△, 由对称性得AB BC AC ==,又因为22222213QA QB QC AB BC CA ++=++,ABCS =所以21sin 60932ABCSAB =⨯⨯= 解得6,ABAQ ==所以3QM PM PQ ===,设外接球的半径为r ,在AOQ △中,222AOOQ AQ =+,即()(2223r r =-+,解得72r =, 所以外接球的表面积为2449S r ππ==, 即该球形容器的表面积的最小值为49π. 故选:D 【点睛】关键点点睛:本题关键是由12QAB QAC QBC PABPACPBCS S S S S S ===△△△△△△得到三棱锥是正棱锥,从而找到外接球球心的位置而得解..10.D解析:D 【分析】①根据//n α或n ⊂α判断;②利用面面垂直的判定定理判断;③根据m β⊂,或//m β,或m 与β相交判断;④利用线面角的定义判断.【详解】①若//m α,//m n ,则//n α或n ⊂α,因此不正确;②若//m β,则β内必存在一条直线//m m ',因为m α⊥,所以m α'⊥,又因为m β'⊂,所以αβ⊥,正确;③若αβ⊥,n αβ=,m n ⊥,则m β⊂,或//m β,或m 与β相交,因此不正确;④若//m n ,//αβ,则m 与α所成的角和n 与β所成的角相等,正确. 其中正确命题的序号是②④. 故选:D . 【点睛】空间直线、平面平行或垂直等位置关系命题的真假判断,除了利用定理、公理、推理判断外,还常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.11.B解析:B 【分析】可证F 为AB 的中点,设1DD 的中点为G ,DFC △的外接圆的球心为1O ,四面体1CDFD 的外接球的球心为O ,连接11,,,OG OF OO A B ,利用解三角形的方法可求DFC △的外接圆的半径,从而可求四面体1CDFD 的外接球的半径.【详解】设1DD 的中点为G ,DFC △的外接圆的圆心为1O ,四面体1CDFD 的外接球的球心为O ,连接11,,,OG OF OO A B ,因为平面11//A ABB 平面11D DCC ,平面1CD E ⋂平面11A ABB EF =, 平面1CD E ⋂平面111D DCC D C =,故1//EF D C , 而11//A B D C ,故1//EF A B ,故F 为AB 的中点,所以145DF CF ==+=,故3cos 5255DFC ∠==⨯⨯,因为DFC ∠为三角形的内角,故4sin 5DFC ∠=,故DFC △的外接圆的半径为1254245⨯=,1OO ⊥平面ABCD ,1DD ⊥平面ABCD ,故11//OO DD ,在平面1GDO O 中,111,OG DD O D DD ⊥⊥,故1//OG O D , 故四边形1GDO O 为平行四边形,故1//OO GD ,1OO GD =, 所以四面体1CDFD 的外接球的半径为25411164+=, 故四面体1CDFD 的外接球表面积为41414164ππ⨯=, 故选:B. 【点睛】方法点睛:三棱锥的外接球的球的半径,关键是球心位置的确定,通常利用“球心在过底面外接圆的圆心且垂直于底面的直线上”来确定.12.A解析:A 【分析】首先由三视图还原几何体,然后由几何体的空间结构特征求解三棱锥的体积即可. 【详解】由三视图可知,在棱长为2的正方体中,其对应的几何体为棱锥P ABC -,该棱锥的体积:11142223323V Sh ⎛⎫==⨯⨯⨯⨯= ⎪⎝⎭. 故选:A. 【点睛】方法点睛:(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.二、填空题13.【分析】圆L 与圆S 关于原点对称直线l 过原点求出圆L 与圆S 的圆心坐标设出直线l 方程由三个弦长相等得直线方程从而可得弦长d 【详解】由题意圆与圆关于原点对称设则即设方程为则三个圆心到该直线的距离分别为:则 解析:125【分析】圆L 与圆S 关于原点对称,直线l 过原点,求出圆L 与圆S 的圆心坐标,设出直线l 方程,由三个弦长相等得直线方程,从而可得弦长d . 【详解】由题意圆L 与圆S 关于原点对称,设(),0(0)S a a >23,4a =+=,即()()4,04,0S L ∴-,. 设方程为(0y kx k =≠),则三个圆心到该直线的距离分别为:1d =,2d =,3d =,则()()()2222123444449d d d d =-=-=-,即有222449⎛⎫⎛⎫⎛⎫-=-=-,解得2421k =, 则24161442144425121d ⎛⎫⨯ ⎪=-= ⎪ ⎪+⎝⎭,即125d =. 故答案为: 125. 【点睛】本题考查直线与圆的位置关系,考查直线与圆相交弦长问题.求出圆心到直线的距离,用勾股定理求得弦长是求圆弦长的常用方法.14.【分析】根据斜率与倾斜角的关系即可求解【详解】因为直线斜率的取值范围是所以当斜率时倾斜角当斜率时倾斜角综上倾斜角的取值范围故答案为:【点睛】本题主要考查了直线的斜率直线的倾斜角属于中档题解析:20,,43πππ⎡⎫⎛⎫⎪⎪⎢⎣⎭⎝⎭【分析】根据斜率与倾斜角的关系即可求解. 【详解】因为直线l 斜率的取值范围是(), 所以当斜率01k ≤<时,倾斜角04πα≤<,当斜率0k <<时,倾斜角23παπ<<, 综上倾斜角的取值范围20,,43πππ⎡⎫⎛⎫⎪⎪⎢⎣⎭⎝⎭, 故答案为:20,,43πππ⎡⎫⎛⎫⎪⎪⎢⎣⎭⎝⎭【点睛】本题主要考查了直线的斜率,直线的倾斜角,属于中档题.15.【分析】根据可确定点轨迹为以为圆心为半径的圆利用直线与圆有交点可知由此构造不等式求得结果【详解】点轨迹是以为圆心为半径的圆上存在点与以为圆心为半径的圆有交点圆心到直线距离解得:即的取值范围为:故答案解析:[22【分析】根据PM PN ⊥可确定P 点轨迹为以()2,0为圆心,1为半径的圆,利用直线l 与圆有交点可知d r ≤,由此构造不等式求得结果. 【详解】0PM PN ⋅=,PM PN ∴⊥,P ∴点轨迹是以()2,0为圆心,1为半径的圆.:0l x y m +-=上存在点P ,l ∴与以()2,0为圆心,1为半径的圆有交点,∴圆心()2,0到直线l 距离1d =≤,解得:22m ≤+即m 的取值范围为:22⎡-+⎣.故答案为:22⎡+⎣.【点睛】本题考查根据直线与圆的位置关系求解参数范围的问题;关键是能够根据平面向量数量积得到垂直关系,进而确定动点轨迹,从而将问题转化为直线与圆位置关系的求解问题.16.【分析】先求出两相交直线的交点设出平行于直线的直线方程根据交点在直线上求出直线方程【详解】联立直线的方程得到两直线的交点坐标平行于直线的直线方程设为则所以直线的方程为:故答案为:【点睛】本题考查了直 解析:1934011x y ++=【分析】先求出两相交直线的交点,设出平行于直线3470x y +-=的直线方程,根据交点在直线上,求出直线方程. 【详解】联立直线的方程23103470x y x y ++=⎧⎨+-=⎩,得到两直线的交点坐标135(,)1111-,平行于直线3470x y +-=的直线方程设为340x y c ++=, 则1353()4()+01111c ⋅-+⋅= 所以直线的方程为:1934011x y ++= 故答案为:1934011x y ++= 【点睛】本题考查了直线的交点,以及与已知直线平行的直线方程,考查了学生概念理解,转化与划归的能力,属于基础题.17.【分析】首先求出直线恒过定点表示出直线的斜率再结合图形即可求出参数的取值范围【详解】解:因为直线所以令解得故直线恒过点直线的斜率为则依题意直线与线段有公共点由图可知或解得或即故答案为:【点睛】本题考解析:[)3,7,2⎛⎤-∞+∞ ⎥⎝⎦【分析】首先求出直线恒过定点()2,0P ,表示出直线的斜率,再结合图形即可求出参数的取值范围. 【详解】解:因为直线():32260l k x y k ---+= 所以()()23260k x x y -+--+=令203260x x y -=⎧⎨--+=⎩解得20x y =⎧⎨=⎩故直线():32260l k x y k ---+=恒过点()2,0P直线l 的斜率为32k -则20232AP k -==-,303224BP k -==--- 依题意直线l 与线段AB 有公共点,由图可知322k -≥或3324k -≤- 解得7k ≥或32k ≤,即[)3,7,2k ⎛⎤∈-∞+∞ ⎥⎝⎦故答案为:[)3,7,2⎛⎤-∞+∞ ⎥⎝⎦【点睛】本题考查直线恒过定点问题以及直线的斜率的计算,属于中档题.18.【分析】设按距离之比为定值求出点的轨迹方程它就是方程比较后可得【详解】设则整理得:易知方程化为已知圆的一般式方程为所以解得故答案为:【点睛】本题考查平面轨迹方程解题时由点到两点距离之比为常数求出的轨 15【分析】设(,)A m n ,(,)M x y ,按距离之比为定值求出M 点的轨迹方程,它就是方程22()(–12)3x y -+=,比较后可得λ.【详解】设(,)A m n ,(,)M x y ,则2222()()MA x m y n MOx yλ-+-==+,整理得:222222(1)(1)220x y mx ny m n λλ-+---++=,易知210λ-≠,方程化为2222222220111m n m n x y x y λλλ++--+=---,已知圆22()(–12)3x y -+=的一般式方程为222420x y x y +--+=,所以2222222124121mnm n λλλ⎧=⎪-⎪⎪=⎨-⎪⎪+=⎪-⎩,解得2545m n λ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩.. 【点睛】本题考查平面轨迹方程,解题时由M 点到,A O 两点距离之比为常数λ,求出M 的轨迹方程,它就是已知圆,比较系数可得结论.19.【分析】确定是等腰直角三角形的中点分别是和的外心由直棱柱性质得的外接球的球心在上外接球面与平面的交线是圆是以为圆心为半径的圆求出可得面积【详解】则设分别是的中点则分别是和的外心由直三棱柱的性质得平面 解析:4π【分析】确定ABC 是等腰直角三角形,11,AC A C 的中点1,D D 分别是ABC 和111A B C △的外心,由直棱柱性质得P ABC -的外接球的球心O 在1DD 上,外接球面与平面111A B C 的交线是圆,是以1D 为圆心,1D P 为半径的圆,求出1PD 可得面积. 【详解】4,AB BC AC ===90ABC ∠=︒,设1,D D 分别是11,AC A C 的中点,则1,D D 分别是ABC 和111A B C △的外心,由直三棱柱的性质得1DD ⊥平面ABC , 所以P ABC -的外接球的球心O 在1DD 上,如图,24()41OA ππ=,则2OP OA ==,32OD ===, 所以11135422OD DD OD AA OD =-=-=-=,12PD ===, P ABC -的外接球面与平面111A B C 的交线是圆,是以1D 为圆心,1D P 为半径的圆,其面积为224S ππ=⨯=.故答案为:4π.【点睛】关键点点睛:本题考查立体几何中动点轨迹问题的求解,重点考查了几何体的外接球的有关问题的求解,关键是根据外接球的性质确定球心位置,结合勾股定理得出动点所满足的具体条件,结论:三棱锥的外接球的球心在过各面外心且与此面垂直的直线上.20.【分析】根据直观图和原图的之间的关系由直观图画法规则将还原为如图所示是一个等腰三角形直接求解其面积即可【详解】由直观图画法规则将还原为如图所示是一个等腰三角形则有所以故答案为:【点睛】关键点点睛:根 解析:82【分析】根据直观图和原图的之间的关系,由直观图画法规则将Rt A B C '''还原为ABC ,如图所示,ABC 是一个等腰三角形,直接求解其面积即可. 【详解】由直观图画法规则将Rt A B C '''还原为ABC ,如图所示,ABC 是一个等腰三角形,则有2BO OC B O O C ''''====,242AO A O ''==所以114428222ABCSBC AO =⋅=⨯⨯= 故答案为:2【点睛】关键点点睛:根据斜二测画法的规则,可得出三角形的直观图,并求出对应边长,根据面积公式求解.21.【分析】连接延长交于则是中点可得是二面角的平面角求出可得结论【详解】由已知是中心连接延长交于则是中点连接则而∴平面平面∴∴是二面角的平面角由对称性又由平面平面得∴故答案为:【点睛】关键点点睛:本题考 解析:3 【分析】 连接DO 延长交BC 于E ,则E 是BC 中点,可得MEO ∠是二面角M BC O --的平面角.求出,ME OE 可得结论.【详解】由已知O 是BCD △中心,连接DO 延长交BC 于E ,则E 是BC 中点,连接AE ,则BC AE ⊥,BC DE ⊥,而AE DE E =,∴BC ⊥平面AED ,ME ⊂平面AED ,∴BC ME ⊥,∴MEO ∠是二面角M BC O --的平面角.2BC =,90BMC ︒∠=,由对称性2BM CM ==,112ME BC ==, 又1133233EO DE ==⨯⨯=, 由AO ⊥平面BCD ,EO ⊂平面BCD ,得AO EO ⊥, ∴3cos EO MEO ME ∠==. 故答案为:3.【点睛】关键点点睛:本题考查求二面角,解题关键是作出二面角的平面角.这可根据平面角的定义作出(并证明),然后在直角三角形中求角即得.注意一作二证三计算三个步骤. 22.【分析】求出正三棱柱的高底面三角形的边长和高即可求出正三棱柱的体积【详解】设球的半径为r 由得则球的半径为2正三棱柱的高为正三棱柱底面正三角形的内切圆的半径是2所以正三角形的边长是高是6正三棱柱的体积 解析:3【分析】求出正三棱柱的高、底面三角形的边长和高,即可求出正三棱柱的体积.【详解】设球的半径为r ,由2416r π=π,得2r ,则球的半径为2,正三棱柱的高为24r =,正三棱柱底面正三角形的内切圆的半径是2,所以正三角形的边长是6,正三棱柱的体积为1642⨯⨯=故答案为:【点睛】本题考查正三棱柱的内切球、正三棱柱的体积,考查空间想象能力与计算能力. 23.①③【分析】①先求出再得到最后判断①正确;②先判断三棱锥的外接球就是以为顶点以棱的长方体的外接球再求半径最后求出球的表面积判断②错误;③先证明最后证明平面判断③正确;④直接求出三棱锥的体积判断④错误解析:①③.【分析】①先求出BC =222AB BC AC =+,最后判断①正确;②先判断三棱锥P ABC -的外接球就是以C 为顶点,以CA ,CB ,CP 棱的长方体的外接球,再求半径r ,最后求出球的表面积,判断②错误;③先证明AC PC ⊥,AC BC ⊥,⋂=PC CB C ,最后证明AC ⊥平面PBC ,判断③正确;④直接求出三棱锥A PBC -的体积,判断④错误.【详解】解:①在ACB △,因为1AC =,2AB =,且60BAC ∠=︒,所以2222cos 3BC AB AC AB AC BAC =+-⋅⋅∠=,则BC =所以222AB BC AC =+,所以ACB △是直角三角形,故①正确;②由(1)可知AC BC ⊥,又因为PC ⊥底面ABC ,所以三棱锥P ABC -的外接球就是以C 为顶点,以CA ,CB ,CP 棱的长方体的外接球,则2r ==,则此球的表面积等于245S r ππ==,故②错误; ③因为PC ⊥底面ABC ,所以AC PC ⊥,由(1)可知AC BC ⊥,⋂=PC CB C , 所以AC ⊥平面PBC ,故③正确;④三棱锥A PBC -的体积11(1132V =⨯⨯⨯=,故④错误. 故答案为:①③.【点睛】本题考查判断三角形是直角三角形、求三棱锥的外接球的表面积、求三棱锥的体积、线面垂直的证明,是中档题.24.【分析】由第二个图可知水的体积占整个圆锥体积的在第一个图中水的体积占圆锥的上面小圆锥体积占大圆锥体积的根据小圆锥体积与大圆锥体积比是其高的三次方的比即可解得a 的值【详解】在图②中水形成的小圆锥和大圆解析:(2a【分析】 由第二个图可知,水的体积占整个圆锥体积的18,在第一个图中,水的体积占圆锥的18,上面小圆锥体积占大圆锥体积的78,根据小圆锥体积与大圆锥体积比是其高的三次方的比,即可解得a 的值.【详解】在图②中,水形成的小“圆锥”和大圆锥形容器高的比为12,底面半径比为12,故其底面积的比为14,所以体积比为18,则在图①中,无水部分形成的小“圆锥”和大圆锥形容器的体积比为78,设水面高度为h ,则小“圆锥”和大圆锥形容器的高的比为22a h a-,体积比为327(=28a h a -),解的h =(2a .故答案为: (2a【点睛】本题考查了圆锥的体积的计算,属于中档题目,解题中的关键是要准确利用圆锥体积公式得到大小圆锥体积比与大小圆锥的高比的关系.三、解答题25.(1;(2)证明见解析,三棱锥P ABD - 【分析】(1)取AB 、AD 中点为M 、N ,连接MN ,证明出平面//PBD 平面EMN ,可得出点F 的轨迹为线段MN ,求出BD 的长,可求得线段MN 的长,即可得解;(2)连接AF 延长交BD 于点O ,利用面面平行的性质定理可得出//EF PO ,可得出PO ⊥平面ABD ,利用面面垂直的判定定理可证得平面PBD ⊥平面ABD ,可得出三棱锥P ABD -的高为PO ,利用锥体的体积公式可求得结果.【详解】(1)如图,取AB 、AD 中点为M 、N ,连接MN ,则点F 在线段MN 上,证明如下:连接EM 、EN ,因为E 为PA 中点,M 为AB 中点,所以//EM PB ,EM ⊄平面PBD ,PB ⊂平面PBD ,//EM ∴平面PBD ,同理可证//EN 平面PBD , 又EM EN E =,所以平面//PBD 平面EMN ,EF ⊂平面EMN ,所以//EF 平面PBD ,所以点F 的轨迹为线段MN ,因为60BAC ∠=,所以120BAD ∠=,2sin 23BD AB BAC ∴=∠=,所以132MN BD ==,即点F 的轨迹的长度为3; (2)连接AF 延长交BD 于点O ,因为平面//PBD 平面EMN , 且平面APO平面EMN EF =,平面APO 平面PBD PO =,所以//EF PO ,因为EF ⊥平面ABD ,所以PO ⊥平面ABD ,又PO ⊂平面PBD ,所以平面PBD ⊥平面ABD ,可得PO 为三棱锥P ABD -的高,且cos 1PO AO AB BAC ==∠=,1113231332P ABD ABD V S PO -=⨯⨯=⨯⨯=△. 【点睛】方法点睛:求空间几何体体积的方法如下:(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.26.(Ⅰ)证明见解析;(Ⅱ5. 【分析】(Ⅰ)由中位线定理证明1//OM C D ,即可得线面平行;(Ⅱ)连1D O ,证明1D OD ∠为二面角1D AC D --的平面角, 在直角1D DO △中计算可得.【详解】解:(Ⅰ)连1BC ,则M 也为1BC 的中点,又M 为BD 的中点,所以1//OM C D ,因为OM ⊄平面11DB C ,1C D ⊂平面11DC B ,所以直线//OM 平面11DB C ;(Ⅱ)连1D O ,因为ABCD 是菱形,所以DO AC ⊥,又1111ABCD A B C D -为直棱柱,底面为菱形,所以11D A D C =,而O 为AC 中点,所以1D O AC ⊥,所以1D OD ∠为二面角1D AC D --的平面角,因为ABCD 是边长为2的菱形,且60BAD ∠=︒,所以1DO =,又12DD =, 由直棱柱知1DD DO ⊥,所以15DO =,所以115cos DO D OD D O ∠==.【点睛】 方法点睛:本题考查证明线面平行,考查求二面角角,求二面角常用方法:(1)定义法:作出二面角的平面角并证明,然后在三角形中计算可得;(2)向量法:建立空间直角坐标系,求出两个平面的法向量夹角的余弦即可得二面角的余弦(注意判断二面角是锐角还是钝角). 27.(1)2a ;(2)①519;30. 【分析】 (1)直接由体积公式计算;(2)取AB 的中点F ,连接1,,,EF FC EC BG ,得1EFCC 是矩形,由G 是DAB 的重心,EG ⊥平面DAB ,求出a , ①EBG ∠是直线EB 与平面DAB 所成的角,在直角三角形中计算可得;②由点1A 到平面ABD 的距离等于点E 到平面ABD 的距离可得.【详解】(1)由题意111221122ABC A B C ABC V S AA a a -=⋅=⨯=△;(2)如图,取AB 的中点F ,连接1,,,EF FC EC BG ,由AC BC =,90ACB ∠=︒,F 是AB 中点得CF AB ⊥,12CF AB =, 由直三棱柱111ABC A B C -可得1EFCC 是矩形,设CF x =,则21ED FD x ==+,2EF =.11C D =,G 是DAB 的重心,则222133DG DF x ==+,2113GF x =+, 又EG ⊥平面DAB ,DF ⊂平面DAB ,∴EG DF ⊥,∴2222EF FG ED DG -=-,即222144(1)(1)(1)99x x x -+=+-+,解得5x =, ∴10AC AB a ===,①由EG ⊥平面DAB ,知EBG ∠是直线EB 与平面DAB 所成的角, 21304(1)93EG x =-+=,()22523EB =+=, ∴1017933BG =-=, ∴17513cos 9BG EBG BE ∠===. ②∵1//A E AB ,AB 平面DAB ,1A E ⊄面DAB ,∴1//A E 面DAB ,∴点1A 到平面ABD 的距离等于点E 到平面ABD 的距离为30EG =.【点睛】关键点点睛:本题考查求棱柱的体积,求直线与平面所成的角及点到平面的距离.本题关键是由点E 在平面ABD 上的射影是三角形ABD 的重心G 求出a ,然后根据直线与平面所成角的定义得出这个角后计算即可得.28.(1)证明见解析;(2)存在;证明见解析;P 为AM 中点.。
中国人民大学附属中学必修二第二章《解析几何初步》测试题(含答案解析)

一、选择题1.设两条直线的方程分别为0x y a ++=,0x y b ++=,已知,a b 是方程20x x c ++=的两个实根,且108c ≤≤,则这两条直线之间的距离的最大值和最小值分别为( ) A3, B13, C.122, D.23, 2.已知点(,0)A m -,(,0)B m ,R m ∈,若圆22:(3)(3)2C x y -+-=上存在点P ,满足PA PB ⊥,则m 最大值是( )A.B.C.D.3.已知圆()()2295x a y a -+=>上存在点M ,使2OM MQ =(O 为原点)成立,()2,0Q ,则实数a 的取值范围是( )A .7a >B .57a <<C .1373a ≤≤ D .57a <≤4.已知直线:20()l kx y k R +-=∈是圆22:6260C x y x y +-++=的一条对称轴,若点(2,)A k ,B 为圆C 上任意的一点,则线段AB 长度的最小值为( ) A2B .2CD25.已知M 、N 分别是圆()()22:161C x y ++-=和圆()()22:261D x y -+-=上的两个动点,点P 在直线:l y x =上,则PM PN +的最小值是( ) A.2B .10C2D .126.设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则PA PB ⋅的最大值是( ) A .4B .10C .5D7.在正方体1111ABCD A B C D -中,点,E F 分别是梭BC ,CD 的中点,则1A F 与1C E 所成角的余弦值为( ) ABC.15D.158.现有一个三棱锥形状的工艺品P ABC -,点P 在底面ABC 的投影为Q ,满足12QAB QAC QBC PABPACPBCS S S S S S ===△△△△△△,22222213QA QB QC AB BC CA ++=++,ABCS =品放入一个球形容器(不计此球形容器的厚度)中,则该球形容器的表面积的最小值为( )A .42πB .44πC .48πD .49π9.如图,在Rt ABC △中,1AC =,BC x =,D 是斜边AB 的中点,将BCD △沿直线CD 翻折,若在翻折过程中存在某个位置,使得CB AD ⊥,则x 的取值范围是( )A .(0,3⎤⎦B .2,22⎛⎤⎥ ⎝⎦C .3,23D .(]2,410.如图,圆形纸片的圆心为O ,半径为6cm ,该纸片上的正方形ABCD 的中心为O .E ,F ,G ,H 为圆O 上的点,ABE △,BCF △,CDG ,ADH 分别是以AB ,BC ,CD ,DA 为底边的等腰三角形.沿虚线剪开后,分别以AB ,BC ,CD ,DA 为折痕折起ABE △,BCF △,CDG ,ADH ,使得E ,F ,G ,H 重合得到一个四棱锥.当该四棱锥的侧面积是底面积的2倍时,该四棱锥的外接球的表面积为( )A .163πB .253πC .643πD .1003π11.已知平面图形PABCD ,ABCD 为矩形,4AB =,是以P 为顶点的等腰直角三角形,如图所示,将PAD △沿着AD 翻折至P AD '△,当四棱锥P ABCD '-体积的最大值为163,此时四棱锥P ABCD '-外接球的表面积为( )A .12πB .16πC .24πD .32π12.如图,在矩形ABCD 中,1AB =,3BC =,沿BD 将矩形ABCD 折叠,连接AC ,所得三棱锥A BCD -正视图和俯视图如图,则三棱锥A BCD -中AC 长为( )A .32B 3C .102D .2二、填空题13.已知直线1:210l x my ++=与2:310l x y --=平行,则m 的值为__________. 14.已知直线l :230ax y a --+=与圆C :()()22124x y -+-=相交于P ,Q 两点,则PQ 的最小值为______.15.经点()2,3P -,作圆2220x y +=的弦AB ,使得P 平分AB ,则弦AB 所在直线方程是______.16.若双曲线C :22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,双曲线C 的离心率为______.17.若直线30ax by +-=与圆22410x y x ++-=相切于点()1,2P -,则a b +=________.18.将一张坐标纸折叠一次,使点(10,0)与点(6,8)-重合,则与点(4,2)-重合的点是______.19.已知H 是球O 的直径AB 上一点,:1:3AH HB =,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为__________.20.如图,在一个底面面积为4,侧棱长为10的正四棱锥P ABCD -中,大球1O 内切于该四棱锥,小球2O 与大球1O 及四棱锥的四个侧面相切,则小球2O 的体积为___________.21.如图,四边形ABCD 是矩形,且有2AB BC =,沿AC 将ADC 翻折成AD C ',当二面角D AC B '--的大小为3π时,则异面直线D C '与AB 所成角余弦值是______.22.如图,在正方体1111ABCD A B C D -中,E ,F ,G 分别是棱11A B ,1BB ,11B C 的中点,则下列结论中:①FG BD ⊥; ②1B D ⊥面EFG ;③面//EFG 面11ACC A ; ④//EF 面11CDD C . 正确结论的序号是________.23.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40︒,则晷针与点A 处的水平面所成角的大小为_________.24.在三棱锥-P ABC 中,侧面PBC 和底面ABC 都是边长为2的正三角形,若3PA =,则侧棱PA 与底面ABC 所成的角的大小是___________.三、解答题25.如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥底面ABCD ,E 为PD 的中点.(1)证明://PB 平面AEC ; (2)设1AP =,3AD =,四棱锥P ABCD -的体积为1,求证:平面PAC ⊥平面PBD .26.如图,在长方体1111ABCD A B C D -中,12AB BC AA ==,1O 是底面1111D C B A 的中心.(Ⅰ)求证:1//O B 平面1ACD ;(Ⅱ)求二面角1D AC D --的平面角的余弦值. 27.如图,在三棱锥A BCD -中,2,22,23,BCBD AB CD AC AB BD =====⊥(1)证明:平面ABC ⊥平面ABD .(2)在侧面ACD 内求作一点H ,使得BH ⊥平面ACD ,写出作法(无需证明),并求线段AH 的长.28.如图,四边形ABCD 为矩形,且4=AD ,22AB =,PA ⊥平面ABCD ,2PA =,E 为BC 的中点.(1)求证:PC DE ⊥;(2)若M 为PC 的中点,求三棱锥M PAB -的体积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由韦达定理求出1,a b ab c +=-=,然后求出2||()4a b a b ab -=+-两平行线间的距离范围. 【详解】由已知得两条直线的距离是d =, 因为,a b 是方程20x x c ++=的两个根,所以1,a b ab c +=-=,则||a b -=, 因为108c ≤≤,所以12222,即1222d . 故选:C 【点睛】本题考查平行线间的距离公式,韦达定理和不等式,属于基础题.2.C解析:C 【分析】首先设点(),P x y ,利用0AP BP ⋅=,转化为m =m 的最大值. 【详解】由圆的方程可知,圆的圆心()3,3C ,设(),P x y 则(),AP x m y =+,(),BP x m y =-,()()20AP BP x m x m y ⋅=+-+=,即222m x y m =+⇒=m 的最大值就是圆上的点到原点的距离的最大值,即圆心到原点的距离加半径,即OC r +== 故选:C 【点睛】结论点睛:与圆的几何性质有关的最值,具体结论如下:(1)设O 为圆的圆心,半径为r ,圆外一点A 到圆上的距离的最小值为AO r -,最大值为AO r -;(2)过圆内一点的最长弦为圆的直径,最短弦是以该点为中点的弦;(3)记圆的半径为r ,圆心到直线的距离为d ,直线与圆相离,则圆上的点到直线的最大距离为d r +,最小值为d r -;3.D解析:D 【分析】根据2OM MQ =可得M 的轨迹方程.由点M 在圆()()2295x a y a -+=>上,可得M的轨迹方程与圆()()2295x a y a -+=>有公共点,即可由其位置关系求解. 【详解】 由题意,设(),M x y则由2OM MQ =,()2,0Q =化简变形可得2281639x y ⎛⎫-+= ⎪⎝⎭ 所以M 的轨迹为以8,03⎛⎫ ⎪⎝⎭为圆心,以43为半径的圆 由题意可知M 为2281639x y ⎛⎫-+= ⎪⎝⎭与()()2295x a y a -+=>的公共点即两个圆有公共点,由圆与圆的位置关系可知48433333a -≤-≤+ 解得1373a ≤≤ 又因为5a >所以57a <≤ 故选:D 【点睛】本题考查了点的轨迹方程求法,圆与圆位置关系式的应用,属于中档题.4.D解析:D 【分析】由直线l 是圆C 的一条对称轴,求得1k =,得到点(2,1)A ,再结合圆的性质,即可求解. 【详解】由题意,圆22:6260C x y x y +-++=,可得圆心(3,1)C -,半径为2r因为直线:20l kx y +-=是圆22:6260C x y x y +-++=的一条对称轴, 则(3,1)C -在直线l 上,即3120k --=,解得1k =,所以(2,1)A ,则AC ==所以线段AB 长度的最小值为min ||||2AB AC r =-=.2. 【点睛】本题主要考查了直线与圆的位置关系及其应用,其中解答中熟练应用直线与圆的位置关系求得k 的值,转化为点与圆的位置关系,结合圆的性质求解是解得关键,着重考查转化思想,以及计算能力.5.C解析:C 【分析】计算圆心()1,6-关于直线:l y x =的对称点为()16,1C -,计算1C D =. 【详解】圆()()22:161C x y ++-=的圆心为()1,6-,圆()()22:261D x y -+-=的圆心为()2,6,()1,6-关于直线:l y x =的对称点为()16,1C -,1C D ==故PM PN +的最小值是1122C D r r --=. 故选:C. 【点睛】本题考查了点关于直线对称,与圆相关的距离的最值,意在考查学生的计算能力和应用能力,转化能力.6.C解析:C 【分析】由题意结合直线位置关系的判断可得两直线互相垂直,由直线过定点可得定点A 与定点B ,进而可得22210PA PB AB +==,再利用基本不等式,即可得解.【详解】由题意直线0x my +=过定点(0,0)A ,直线30mx y m --+=可变为(1)30m x y --+=,所以该直线过定点()1,3B , 所以2221310AB =+=,又()110m m ⨯+⨯-=,所以直线0x my +=与直线30mx y m --+=互相垂直, 所以22210PA PB AB +==,所以22102PA PB PA PB =+≥⋅即5PA PB ⋅≤,当且仅当=PA PB , 所以PA PB ⋅的最大值为5. 故选:C. 【点睛】本题考查了直线位置关系的判断及直线过定点的应用,考查了基本不等式的应用,合理转化条件是解题关键,属于中档题.7.D解析:D【分析】延长DA 至G ,使AG CE =,可证11//A G C E ,得1GA F ∠是异面直线1A F 与1C E 所成的角(或其补角).在1AGF △中,由余弦定理可得结论. 【详解】延长DA 至G ,使AG CE =,连接1,GE GA ,GF ,11,AC A C , 又//AG CE 所以AGEC 是平行四边形,//,GE AC GE AC =, 又正方体中1111//,AC AC AC AC =, 所以1111//,AC DE AC DE =,所以11AC EG 是平行四边形,则11//A G C E ,所以1GA F ∠是异面直线1A F 与1C E 所成的角(或其补角). 设正方体棱长为2,在正方体中易得15AG =,10GF =,22222112(21)3A F AA AF =+=++=,1AGF △中,2221111125cos 215253AG A F GF GA F AG A F +-∠===⋅⨯⨯. 故选:D .【点睛】方法点睛:本题考查空间向量法求异面直线所成的角,求异面直线所成角的方法: (1)定义法:根据定义作出异面直线所成的角并证明,然后解三角形得结论; (2)建立空间直角坐标系,由两异面直线的方向向量的夹角得异面直线所成的角.8.D解析:D 【分析】作QM AB ⊥,连接PM ,易证AB PM ⊥,由112122QAB PABABQMS S AB PM ⨯⨯==⨯⨯△△,得到2PM QM =,再根据12QAB QAC QBC PABPACPBCS S S S S S ===△△△△△△,由对称性得到AB BC AC ==,然后根据22222213QA QB QC AB BC CA ++=++,93ABCS =,求得6,23AB AQ ==,在AOQ△中,由222AO OQ AQ =+求解半径即可.【详解】 如图所示:作QM AB ⊥与M ,连接PM , 因为PQ ⊥平面ABC ,所以PQ AB ⊥,又QM PQ Q ⋂=, 所以AB ⊥平面PQM , 所以AB PM ⊥,所以112122QAB PABAB QM S S AB PM ⨯⨯==⨯⨯△△, 2PM QM =,因为12QAB QAC QBC PABPACPBCS S S S S S ===△△△△△△, 由对称性得AB BC AC ==,又因为22222213QA QB QC AB BC CA ++=++,93ABCS =所以21sin 60932ABCSAB =⨯⨯=解得6,23AB AQ ==,所以3,23,3QM PM PQ ===,设外接球的半径为r ,在AOQ △中,222AO OQ AQ =+,即()()222323r r =-+, 解得72r =, 所以外接球的表面积为2449S r ππ==, 即该球形容器的表面积的最小值为49π. 故选:D 【点睛】关键点点睛:本题关键是由12QAB QAC QBC PABPACPBCS S S S S S ===△△△△△△得到三棱锥是正棱锥,从而找到外接球球心的位置而得解..9.A解析:A 【分析】取BC 中点E ,连接DE ,AE ,若CB AD ⊥,则可证明出BC ⊥平面ADE ,则可得BC AE ⊥. 根据题目中各边长的关系可得出AE ,AD 关于x 的表达式,然后在ADE 中,利用三边关系求解即可. 【详解】由题意得BC x =,则21x AD CD BD +===,如图所示,取BC 中点E ,翻折前,在图1中,连接DE ,CD ,则1122DE AC ==, 翻折后,在图2中,若CB AD ⊥,则有:∵BC DE ⊥,BC AD ⊥,AD DE D ⋂=,且,AD DE 平面ADE ,∴BC ⊥平面ADE ,∴BC AE ⊥,又BC AE ⊥,E 为BC 中点,∴1AB AC ==∴AE =AD =,在ADE 中,由三边关系得:①122+>②122<+③0x >;由①②③可得0x <<.故选:A. 【点睛】本题考查折叠性问题,考查线面垂直的判定及性质在解题中的运用,解答本题的主要思路分析在于将异面直线间的垂直转化为线面垂直关系,即作出辅助线DE 与AE ,根据题目条件确定出BC ⊥平面ADE ,得到BC AE ⊥,从而通过几何条件求解.10.D解析:D 【分析】连接OE 交AB 于点I ,设E ,F ,G ,H 重合于点P ,正方形的边长为x (0x >)cm ,则2x OI =,62xIE =-,求出x 的值,再利用勾股定理求R ,代入球的表面积公式,即可得答案. 【详解】连接OE 交AB 于点I ,设E ,F ,G ,H 重合于点P ,正方形的边长为x (0x >)cm ,则2x OI =,62x IE =-, 因为该四棱锥的侧面积是底面积的2倍, 所以246222x x x ⎛⎫⨯⨯-= ⎪⎝⎭,解得4x =. 设该四棱锥的外接球的球心为Q ,半径为R ,如图,则QP QC R ==,22OC =16423OP =-= 所以()(22232R R =+,解得3R =所以外接球的表面积为2100433S ππ==(2cm ).故选:D . 【点睛】关键点点睛:本题考查平面图形的折叠,四棱锥外接球的半径,解题关键在于平面图形折叠成立体图形后,要明确变化的量和没有变的量,以及线线的位置,线面的位置关系,对于几何体的外接球的问题,关键在于确定外接球的球心的位置.11.C解析:C 【分析】分析出当平面P AD '⊥平面ABCD 时,四棱锥P ABCD '-的体积取最大值,求出AD 、P A '的长,然后将四棱锥P ABCD '-补成长方体P AMD QBNC '-,计算出该长方体的体对角线长,即为外接球的直径,进而可求得外接球的表面积. 【详解】取AD 的中点E ,连接P E ',由于P AD '△是以P '为顶点的等腰直角三角形,则P E AD '⊥,设AD x =,则1122P E AD x '==, 设二面角P AD B '--的平面角为θ,则四棱锥P ABCD '-的高为1sin 2h x θ=, 当90θ=时,max 12h x =,矩形ABCD 的面积为4S AB AD x =⋅=,2111216433233P ABCD V Sh x x x '-=≤⨯⨯==,解得22x =.将四棱锥P ABCD '-补成长方体P AMD QBNC '-, 所以,四棱锥P ABCD '-的外接球直径为22222226R P N P A P D P Q AD AB ''''==++=+=,则6R =,因此,四棱锥P ABCD '-的外接球的表面积为2424R ππ=. 故选:C.【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.12.C解析:C 【分析】先由正视图、俯视图及题意还原三棱锥,过A 作AM ⊥BD 于点M ,连结MC ,把AC 放在直角三角形AMC 中解AC . 【详解】根据三棱锥A BCD -正视图和俯视图,还原后得到三棱锥的直观图如图示,由图可知:平面ABD ⊥平面CBD ,过A 作AM ⊥BD 于点M ,连结MC ,则AM ⊥平面CBD , ∴△MCA 为直角三角形. 过C 作CN ⊥BD 于点N ,在直角三角形ABD 中,AB =1,AD ,∴2BD ==所以∠ABD=60°,∠ADB=30°,则在直角三角形ABM 中,AB =1,∠ABM=60°,∴1,22BM AM ==.同理,在直角三角形CBD 中,1,22DN CN ==. ∴MN =BD -BM -DN =112122--=,∴2CM ===在直角三角形AMC 中,2AC === 故选:C 【点睛】(1)根据三视图画直观图,可以按下面步骤进行:①、首先看俯视图,根据俯视图画出几何体地面的直观图 ;②、观察正视图和侧视图找到几何体前、后、左、右的高度;③、画出整体,让后再根据三视图进行调整.(2)立体几何中求线段长度:①、把线段放在特殊三角形中,解三角形;②、用等体积法求线段.二、填空题13.【分析】解方程即得解【详解】由题得当时两直线不重合故答案为:【点睛】结论点睛:直线和直线平行则且两直线不重合解析:23-【分析】解方程230m ⨯⨯=(-1)-即得解. 【详解】由题得2230,3m m ⨯⨯=∴=-(-1)-. 当23m =-时,两直线不重合.故答案为:23-. 【点睛】结论点睛:直线1111:0l a x b y c ++=和直线2222:0l a x b y c ++=平行,则12210a b a b -=且两直线不重合.14.【分析】首先求出直线所过定点的坐标当时取得最小再根据弦长公式计算可得;【详解】解:因为所以令所以故直线恒过定点又因为故点在圆内当时取得最小因为所以故答案为:【点睛】本题考查直线和圆的位置关系弦长公式解析:【分析】首先求出直线所过定点M 的坐标,当PQ MC ⊥时,PQ 取得最小,再根据弦长公式计算可得; 【详解】解:因为230ax y a --+=,所以()()230x a y -+-=,令2030x y -=⎧⎨-=⎩,所以23x y =⎧⎨=⎩,故直线恒过定点()2,3M ,又因为()()22213224-+-=<,故点()2,3M 在圆内,当PQ MC ⊥时,PQ 取得最小,因为MC ==所以minPQ ===故答案为:【点睛】本题考查直线和圆的位置关系,弦长公式、两点间的距离公式的应用,关键是掌握直线与圆的位置关系以及应用,属于中档题.15.【分析】由题意知圆的圆心从而可求出由从而可求出弦所在直线的斜率是由直线的点斜式可写出弦所在直线方程【详解】解:设圆的圆心为则由是的中点知因为所以点在圆内且所以弦所在直线的斜率是则弦所在的直线方程是整解析:23130x y --=. 【分析】由题意知圆2220x y +=的圆心()0,0O ,从而可求出32OP k =-,由AB OP ⊥,从而可求出弦AB 所在直线的斜率是123AB OP k k =-=,由直线的点斜式,可写出弦AB 所在直线方程.解:设圆2220x y +=的圆心为O ,则()0,0O .由P 是AB 的中点,知AB OP ⊥.因为()22231320+-=<,所以点P 在圆O 内,且303202OP k --==--. 所以弦AB 所在直线的斜率是123AB OP k k =-=,则弦AB 所在的直线方程是23(2)3y x +=-, 整理可得,23130x y --=. 故答案为:23130x y --=. 【点睛】本题考查了直线的点斜式方程,考查了两直线垂直的应用.本题的关键是分析出AB OP ⊥,进而求出弦所在直线的斜率.16.2【分析】求得双曲线的一条渐近线方程求得圆心和半径运用点到直线的距离公式和弦长公式可得ab 的关系即可得到所求离心率公式【详解】双曲线C :的一条渐近线方程设为圆的圆心为半径可得圆心到渐近线的距离为则化解析:2 【分析】求得双曲线的一条渐近线方程,求得圆心和半径,运用点到直线的距离公式和弦长公式,可得a ,b 的关系,即可得到所求离心率公式. 【详解】双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线方程设为0bx ay -=,圆22(2)4x y -+=的圆心为(2,0),半径2r ,可得圆心到渐近线的距离为d =则2=,化为22223a b c a ==-, 即224a c =,1ce a=>,解得2e =. 故答案为:2. 【点睛】本题考查圆与圆锥曲线的综合,解题关键是点到直线距离公式及弦长公式建立a ,b 的等量关系,即可求解a 、c 关系,属于中等题.17.3【分析】根据题意先由圆的方程求出圆心为根据直线和圆相切的性质列出方程组求出即得解【详解】根据题意的圆心为:若直线与圆相切于则有故答案为:3【点睛】本题考查了直线和圆的位置关系考查了学生转化与划归数【分析】根据题意,先由圆的方程求出圆心为()2,0-,根据直线和圆相切的性质列出方程组,求出,a b ,即得解.【详解】根据题意22410x y x ++-=的圆心为:()2,0-,若直线30ax by +-=与圆22410x y x ++-=相切于()1,2P -,则有2301,2302()1(2)(1)a b a b a b a b -+-=⎧⎪∴==∴+=-⎨⨯-=-⎪---⎩故答案为:3 【点睛】本题考查了直线和圆的位置关系,考查了学生转化与划归,数学运算的能力,属于中档题.18.【分析】先求得点的垂直平分线的方程然后根据点关于直线对称点的求法求得的对称点由此得出结论【详解】已知点点可得中点则∴线段AB 的垂直平分线为:化为设点关于直线的对称点为则解得∴与点重合的点是故答案为: 解析:()4,2-【分析】先求得点()()10,0,6,8-的垂直平分线的方程,然后根据点关于直线对称点的求法,求得()4,2-的对称点,由此得出结论.【详解】已知点(10,0)A ,点(6,8)B -,可得中点(2,4)M . 则816102AB k ==---.∴线段AB 的垂直平分线为:42(2)y x -=-, 化为20x y -=.设点()4,2-关于直线20x y -=的对称点为(,)P a b ,则2214422022baa b -⎧⨯=-⎪⎪--⎨-++⎪⨯-=⎪⎩,解得42a b =⎧⎨=-⎩. ∴与点()4,2-重合的点是()4,2-. 故答案为:()4,2-. 【点睛】本小题主要考查线段垂直平分线方程的求法,考查点关于直线对称点的坐标的求法,属于19.【分析】求出截面圆的半径设可得出从而可知球的半径为根据勾股定理求出的值可得出球的半径进而可求得球的表面积【详解】如下图所示设可得出则球的直径为球的半径为设截面圆的半径为可得由勾股定理可得即即所以球的 解析:163π【分析】求出截面圆H 的半径,设AH x =,可得出3HB x =,从而可知,球O 的半径为2x ,根据勾股定理求出x 的值,可得出球O 的半径,进而可求得球O 的表面积. 【详解】如下图所示,设AH x =,可得出3HB x =,则球O 的直径为4AB x =,球O 的半径为2x ,设截面圆H 的半径为r ,可得2r ππ=,1r ∴=,由勾股定理可得()2222OH r x +=,即()22214x AH x -+=,即2214x x +=,33x ∴=, 所以,球O 的半径为232x =,则球O 的表面积为22316433S ππ⎛⎫=⨯= ⎪ ⎪⎝⎭. 故答案为:163π. 【点睛】方法点睛:在求解有关球的截面圆的问题时,一般利用球的半径、截面圆的半径以及球心到截面圆的距离三者之间满足勾股定理来求解.20.【分析】设为正方形的中心的中点为连接求出如图分别可求得大球与小球半径分别为和进而可得小球的体积【详解】解:由题中条件知底面四边形是边长为2的正方形设O 为正方形的中心的中点为M 连接则如图在截面中设N 为解析:224π 【分析】设O 为正方形ABCD 的中心,AB 的中点为M ,连接PM ,OM ,PO,求出OM ,PM ,PO ,如图,分别可求得大球1O 与小球2O 半径分别为22和24,进而可得小球的体积. 【详解】解:由题中条件知底面四边形ABCD 是边长为2的正方形.设O 为正方形ABCD 的中心,AB 的中点为M ,连接PM ,OM ,PO ,则1OM =,221013PM PA AM =-=-=,9122PO =-=,如图,在截面PMO 中,设N为球1O 与平面PAB 的切点,则N 在PM 上,且1O N PM ⊥,设球1O 的半径为R ,则1O N R =,∵1sin 3OM MPO PM ∠==,∴1113NO PO =,则13PO R =,11422PO PO OO R =+==,∴2R =,设球1O 与球2O 相切于点Q ,则22PQ PO R R =-=,设球2O 的半径为r ,同理可得4PQ r =,∴22R r ==,故小球2O 的体积342324V r ππ==.故答案为:224π.【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.21.【分析】作于于可得等于二面角的平面角从而可得然后求得而因此可得是异面直线与所成角(或补角)这样在求解可得【详解】如图作于于则连接根据二面角平面角的定义知与的夹角等于二面角的平面角所以因为所以设则在矩解析:12. 【分析】作DM AC ⊥于M ,BN AC ⊥于N ,可得,MD NB '<>等于二面角D AC B '--的平面角,从而可得DMD '∠,然后求得DD ',而//AB CD ,因此可得D CD '∠是异面直线D C '与AB 所成角(或补角).这样在DCD '求解可得.【详解】如图,作DM AC ⊥于M ,BN AC ⊥于N ,则//DM BN ,连接,D M DD '', 根据二面角平面角的定义知MD '与NB 的夹角等于二面角D AC B '--的平面角, 所以,3MD NB π'<>=,因为//DM BN ,所以23DMD π'∠=, 设1BC =,则22AB BC ==,在矩形ABCD 中,3AC =,12633DM ⨯==, 6D M DM '==, 则222222666612cos 2232DD DM D M DM D M π⎛⎫⎛⎫⎛⎫'''=+-⋅=+-⨯⨯⨯-= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以2DD '=,因为//AB CD ,所以D CD '∠是异面直线D C '与AB 所成角(或补角).DCD '是正三角形,3D CD π'∠=,1cos 2D CD '∠=. 所以异面直线D C '与AB 所成角余弦值是12. 故答案为:12.【点睛】关键点点睛:本题考查求异面直线所成的角,解题方法根据异面直线所成角定义作出它们所成的角,然后解三角形可得,解题关键是利用图中MD '与NB 的夹角等于二面角D AC B '--的平面角,从而求得DMD '∠,只要设1BC =,可求得DD ',从而求得结论.22.②④【分析】由是正三角形可判断①;判断出平面平面平面可判断②;假设面面则可以推出可判断③;由平面平面平面可判断④【详解】连接分别是的中点对于①因方是正三角形所以与不垂直;对于②连接因为且所以平面平面解析:②④. 【分析】由1//FG BC ,1BDC 是正三角形,可判断①;判断出1DB ⊥平面11A C B ,平面11//AC B 平面EFG ,可判断②;假设面//EFG 面11ACC A ,则可以推出1//AA EF 可判断③;由平面11//ABB A 平面11DCC D ,EF ⊂平面11ABB A ,可判断④. 【详解】连接11A C ,1A B ,1BC ,BD ,1B D ,E ,F ,G 分别是1A B ,1BB ,11B C 的中点. 对于①,因方1//FG BC ,1BDC 是正三角形,所以FG 与BD 不垂直; 对于②,连接11D B ,因为1111111AC B D ,AC BB ⊥⊥,且1111B D BB B ⋂=,所以11A C ⊥平面11BDD B ,1DB ⊂平面11BDD B ,所以111AC DB ⊥,同理11BC DB ⊥,且1111A C BC C ,所以1DB ⊥平面11A C B ,因为1//A B EF ,11//AC EG ,且111A B AC A ⋂=,EF EG E =,所以平面11//AC B 平面EFG ,所以1B D ⊥平面EFG .正确;对于③,如果面//EFG 面11ACC A ,由平面EFG 平面11ABB A EF =,平面11CC A A平面111BB A A A A =,则1//AA EF ,显然不正确;对于④,因为平面11//ABB A 平面11DCC D ,EF ⊂平面11ABB A ,所以//EF 平面11CDD C ,正确故选:②④. 【点睛】方法点睛:本题主要考查了正方体中垂直与平行关系,考查了线线垂直、线面垂直的判定、线面平行的判断、面面平行的判断与性质,对于证明线线关系、线面关系,面面关系等方面的问题,必须在熟练掌握有关的定理和性质的前提下,再利用已知来进行证明, 属于中档题.23.40°【分析】画出过球心和晷针所确定的平面截地球和晷面的截面图根据面面平行的性质定理和线面垂直的定义判定有关截线的关系根据点处的纬度计算出晷针与点处的水平面所成角【详解】画出截面图如下图所示其中是赤解析:40° 【分析】画出过球心和晷针所确定的平面截地球和晷面的截面图,根据面面平行的性质定理和线面垂直的定义判定有关截线的关系,根据点A 处的纬度,计算出晷针与点A 处的水平面所成角. 【详解】画出截面图如下图所示,其中CD 是赤道所在平面的截线;l 是点A 处的水平面的截线,依题意可知OA l ⊥;AB 是晷针所在直线.m 是晷面的截线,依题意依题意,晷面和赤道平面平行,晷针与晷面垂直,根据平面平行的性质定理可得可知//m CD 、根据线面垂直的定义可得AB m ⊥.. 由于40,//AOC m CD ∠=︒,所以40OAG AOC ∠=∠=︒, 由于90OAG GAE BAE GAE ∠+∠=∠+∠=︒,所以40BAE OAG ∠=∠=︒,也即晷针与点A 处的水平面所成角为40BAE ∠=︒. 故答案为:40°.【点睛】本小题主要考查中国古代数学文化,解题的关键是将稳文中的数据建立平面图形,属于中档题.24.【分析】先画出直观图证明平面平面然后侧棱与底面ABC 所成的角即为根据题目中的数据算出即可【详解】如图作的中点连结因为侧面PBC 和底面ABC 都是边长为2的正三角形而为的中点所以又所以平面同时平面所以平解析:o 60. 【分析】先画出直观图,证明平面PAD ⊥平面ABC ,然后侧棱PA 与底面ABC 所成的角即为PAD ∠,根据题目中的数据算出即可. 【详解】如图,作BC 的中点D ,连结AD 、PD 因为侧面PBC 和底面ABC 都是边长为2的正三角形 而D 为BC 的中点,所以BC PD ⊥,BC AD ⊥,又PD AD D ⋂=,所以BC ⊥平面PAD ,同时BC ⊂平面ABC 所以平面PAD ⊥平面ABC ,所以PAD ∠即为侧棱PA 与底面ABC 所成的角 由侧面PBC 和底面ABC 都是边长为2的正三角形得3AD PD ==3PA =所以PAD ∆为等边三角形,则=PAD ∠o 60 即侧棱PA 与底面ABC 所成的角为o 60 故答案为:o 60 【点睛】本题主要考查空间直线与平面所成角的计算,较简单.三、解答题25.(1)证明见解析;(2)证明见解析. 【分析】( 1)设BD 与AC 的交点为O ,连接EO ,通过直线与平面平行的判定定理证明//PB 平面AEC ;( 2)通过体积得到底面为正方形,再由线面垂直得到面面垂直即可. 【详解】(1)连接BD 交AC 于点O ,连结EO , 因为ABCD 为矩形,所以O 为BD 的中点, 又E 为PD 的中点,所以//EO PB ,EO ⊂平面AEC ,PB ⊄平面AEC ,所以//PB 平面AEC .(2)因为113P ABCD V AB AD AP -=⨯⨯⨯=, 所以3AB =ABCD 为正方形,所以BD AC ⊥,因为PA ABCD ⊥,所以BD PA ⊥,且AC PA A ⋂=,所以BD ⊥平面PAC , 又BD ⊂平面PBD ,所以平面PAC ⊥平面PBD .【点睛】本题主要考查了立体几何及其运算,要证明线面平行先证明线线平行,要证明面面垂直,先证明线面垂直,考查了学生的基础知识、空间想象力. 26.(Ⅰ)证明见解析;(Ⅱ)63. 【分析】(Ⅰ)连接BD 交AC 于点O ,连接1D O ,连接11B D ,可证11//O B D O ,即可得证; (Ⅱ)依题意可得1D OD ∠是二面角1D AC D --的平面角,再根据锐角三角函数计算可得; 【详解】(Ⅰ)证明:连接BD 交AC 于点O ,连接1D O ,连接11B D , 由长方体的性质知11BO O D =,且11//BO O D , 故四边形11BO D O 是平行四边形, 所以11//O B D O .又因为1D O ⊂平面1ACD ,1O B ⊄平面1ACD , 所以1//O B 平面1ACD .(Ⅱ)解:设122AB BC AA ===,由长方体底面ABCD 是正方形,得DO AC ⊥. 因为11D A D C =,O 是AC 的中点,所以1D O AC ⊥, 所以1D OD ∠是二面角1D AC D --的平面角.。
最新北师大版高中数学必修二第二章《解析几何初步》测试题(含答案解析)(1)

一、选择题1.已知直线1l :10ax y -+=,2l :10x ay ++=,a R ∈,以下结论不正确的是( )A .不论a 为何值时,1l 与2l 都互相垂直B .当a 变化时,1l 与2l 分别经过定点()0,1A 和()1,0B -C .不论a 为何值时,1l 与2l 都关于直线0x y +=对称D .如果1l 与2l 交于点M ,则MO 的最大值是22.如图,棱长为2的正四面体ABCD 的三个顶点,,A B C 分别在空间直角坐标系的坐标轴,,Ox Oy Oz 上,则定点D 的坐标为( )A .()1,1,1B .2,2,2C .3,3,3D .()2,2,23.已知点P 是直线:3420l x y +-=上的一个动点,过点P 作圆()()222:23C x y r +++=的两条切线PM ,PN ,其中M ,N 为切点,若MPN ∠的最大值为120°,则r 的值为( ) A 3B .3C .4D .64.已知直线10kx y k ---=和以()3,1M -,()3,2N 为端点的线段相交,则实数k 的取值范围为( ) A .32k ≤B .12k ≥-C .1322k -≤≤ D .12k ≤-或32k ≥ 5.若直线440(0,0)ax by a b --=>>被圆224240x y x y +-+-=截得的弦长为6,则4b aab+的最小值为( ) A .32 B .322+C .5D .76.直线3y x m =+与圆221x y += 在第一象限内有两个不同的交点,则m 的取值范围是( ) A .3,2)B .3,3)C .323⎝⎭D .23⎛ ⎝⎭7.已知AB 是平面α外的一条直线,则下列命题中真命题的个数是( ) ①在α内存在无数多条直线与直线AB 平行;②在α内存在无数多条直线与直线AB 垂直; ③在α内存在无数多条直线与直线AB 异面; ④一定存在过AB 且与α垂直的平面β. A .1个B .2个C .3个D .4个8.如图,四棱柱ABCD A B C D ''''-中,底面ABCD 为正方形,侧棱AA '⊥底面ABCD ,32AB =,6AA '=,以D 为圆心,DC '为半径在侧面BCC B ''上画弧,当半径的端点完整地划过C E '时,半径扫过的轨迹形成的曲面面积为( )A .964π B .934π C .962π D .93π 9.如图,在长方体1111ABCD A B C D -中,1AB AD ==,12AA =,M 为棱1DD 上的一点.当1A M MC +取得最小值时,1B M 的长为( )A 3B 6C .23D .2610.在我国古代,将四个角都是直角三角形的四面体称为“鳖臑”.在“鳖臑”ABCD 中,AB ⊥平面BCD ,BD CD ⊥且AB BD CD ==,若该四面体的体积为43,则该四面体外接球的表面积为( )A .8πB .12πC .14πD .16π11.在正方体1111ABCD A B C D -,中,M ,N ,P ,Q 分别为1A B ,1B D ,1A D ,1CD 的中点,则异面直线MN 与PQ 所成角的大小是( )A .6π B .4π C .3πD .2π12.已知二面角l αβ--为60,AB α⊂,AB l ⊥,A 为垂足,CD β⊂,C l ∈,45ACD ∠=,则异面直线AB 与CD 所成角的余弦值为( )A .14B .24C .34D .12二、填空题13.已知圆2260x y x +-=,过点1,2的直线被圆所截得的弦的长度最小值为______. 14.在极坐标系中,过点22,4π⎛⎫⎪⎝⎭作圆4sin ρθ=的切线,则切线的极坐标方程是__________.15.若圆222(3)(5)r x y -++=上有且只有两个点到直线432x y -=的距离为1,则半径r 的取值范围是______.16.经过两直线11370x y +-=和12190x y +-=的交点,且与()3,2A -,()1,6B -等距离的直线的方程是______.17.若直线()():1210l m x m y m -+--=与曲线()2:422C y x =--有公共点,则直线l 的斜率的最小值是_________.18.若直线1y kx =+与圆2240x y kx my +++-=交于M 、N 两点,且M 、N 两点关于直线0x y +=对称,则20182019k m -=______.19.已知直三棱柱111ABC A B C -,90CAB ∠=︒,1222AA AB AC ===,则直线1A B 与侧面11B C CB 所成角的正弦值是______.20.点A 、B 、C 、D 在同一个球的球面上,3AB BC AC ===,若四面体ABCD 体积的最大值为32,则这个球的表面积为______. 21.如图,已知四棱锥S ABCD -的底面为等腰梯形,//AB CD ,1AD DC BC ===,2AB SA ==,且SA ⊥平面ABCD ,则四棱锥S ABCD -外接球的体积为______.22.在正三棱锥S ABC -中,23AB =,4SA =,E 、F 分别为AC 、SB 的中点,过点A 的平面α//平面SBC ,α平面=ABC l ,则异面直线l 和EF 所成角的余弦值为_________.23.如下图所示,三棱锥P ABC -外接球的半径为1,且PA 过球心,PAB △围绕棱PA 旋转60︒后恰好与PAC △重合.若3PB =,则三棱锥P ABC -的体积为_____________.24.如图在长方形ABCD 中,AB 6=BC 2=E 为线段DC 上一动点,现将△AED 沿AE 折起.使点D 在面ABC 上的射影K 在直线AE 上,当E 从D 运动到C .则K 所形成轨迹的长度为_____.三、解答题25.如图所示,在四棱锥P ABCD -中,//AD BC ,3AD =,4BC =,M 为线段AD 上点,且满足2AM MD =,N 为PC 的中点.(Ⅰ)证明://MN 平面PAB ;(Ⅱ)设三棱锥N BCM -的体积为1V ,四棱锥P ABCD -的体积为2V,求12V V . 26.正四棱台两底面边长分别为3和9,若侧棱所在直线与上、下底面正方形中心的连线所成的角为45,求棱台的侧面积.27.如图1,在梯形ABCD 中,//BC AD ,4=AD ,1BC =,45ADC ∠=︒,梯形的高为1,M 为AD 的中点,以BM 为折痕将ABM 折起,使点A 到达点N 的位置,且平面NBM ⊥平面BCDM ,连接NC ,ND ,如图2.(1)证明:平面NMC ⊥平面NCD ;(2)求图2中平面NBM 与平面NCD 所成锐二面角的余弦值.28.如图,圆柱的轴截面ABCD 是长方形,点E 是底面圆周上异于A ,B 的一点,AF DE ⊥,F 是垂足.(1)证明:AF DB ⊥;(2)若2AB =,3AD =,当三棱锥D ABE -体积最大时,求点C 到平面BDE 的距离.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】利用直线垂直,系数满足()110a a ⨯+-⨯=即可判断A ;根据直线过定点与系数无关即可判断B ; 在1l 上任取点(),1x ax +,关于直线0x y +=对称的点的坐标为()1,ax x ---,代入2:10l x ay ++=,左边可得不恒为0,从而可判断C ;将两直线联立求出交点,在利用两点间的距离公式即可求解. 【详解】对于A ,()110a a ⨯+-⨯=恒成立,1l 与2l 都互相垂直恒成立,故A 正确;对于B ,直线1:10l ax y -+=, 当a 变化时,0x =,1y =恒成立, 所以1l 恒过定点(0,1)A ;2:10l x ay ++=,当a 变化时,1x =-,0y =恒成立, 所以2l 恒过定点(1,0)B -,故B 正确. 对于C ,在1l 上任取点(),1x ax +,关于直线0x y +=对称的点的坐标为()1,ax x ---, 代入2:10l x ay ++=, 得20ax =,不满足不论a 为何值时,20ax =成立, 故C 不正确;对于D ,联立1010ax y x ay -+=⎧⎨++=⎩,解得221111a x a a y a --⎧=⎪⎪+⎨-+⎪=⎪+⎩,即2211,11a a M a a ---+⎛⎫⎪++⎝⎭,所以MO ==≤, 所以MOD 正确. 故选:C. 【点睛】本题考查了直线垂直时系数之间的关系、直线过定点问题、直线关于直线对称问题、两直线的交点、两点间的距离公式,考查了考生的计算求解能力,综合性比较强,属于中档题.2.A解析:A 【解析】的正四面体ABCD 可以放到正方体中,已知D 点、O 点的连线是正方体的体对角线,故D 点坐标为()1,1,1,选A.3.B【分析】由切线得四边形PMCN 的性质,要使得MPN ∠最大,则PC 最小,PC 的最小值即为圆心C 到直线的距离,再由已知角的大小可求得r . 【详解】由题意,PM PN CM CN r ===,sin MC rCPM PC PC∠==,2MPN MPC ∠=∠,所以MPN ∠最大时,PC 最小. 由题意知min 223(2)4(3)2434PC ⨯-+⨯--==+,又120MPN ∠=︒,所以sin 604r=︒,23r =. 故选:B . 【点睛】关键点点睛:本题考查直线与圆相切问题,过圆外一点P 作圆的两条切线,PM PN (,M N 是两切点),C 是圆心,则PC 是四边形PMCN 的对称轴,90PMC PNC ∠=∠=︒,P 点对圆的张角MPN ∠取得最大值时,PC 最小. 4.D解析:D 【分析】直线10kx y k ---=过定点()1,1P -,分别求出PM k 和PN k ,结合图形,可求出答案. 【详解】由题意,直线10kx y k ---=可化为()110k x y ---=,令1x =,得1y =-,即该直线过定点()1,1P -,111312PM k +==---,213312PN k +==-,所以当12k ≤-或32k ≥时,直线10kx y k ---=和以()3,1M -,()3,2N 为端点的线段故选:D. 【点睛】本题考查了直线系方程的应用,以及过两点的直线的斜率的求法,考查了数形结合的解题思想方法,是中档题.5.B解析:B 【分析】由题意结合直线与圆的位置关系可得直线经过圆心即12ab +=,再由基本不等式即可得解. 【详解】由题得圆的方程可以化为22(2)(1)9x y -++=,所以圆心为(2,1)-,半径为3r =, 因为直线440(0,0)ax by a b --=>>被圆224240x y x y +-+-=截得的弦长为6, 所以直线经过圆心,所以2440a b +-=,即12ab +=,所以441433322b a a b a b ab a b a b +⎛⎫⎛⎫=++=++≥+=+ ⎪⎪⎝⎭⎝⎭当且仅当41a b =-=时取等号,所以4b aab +的最小值为3+ 故选:B. 【点睛】本题考查了直线与圆位置关系、基本不等式求最值的应用,考查了运算求解能力与转化化归思想,属于中档题.6.D解析:D 【分析】求出直线过(0,1)时m 的值,以及直线与圆相切时m 的值,即可确定出满足题意m 的范围. 【详解】 解:如图所示:当直线过(0,1)时,将(0,1)代入直线方程得:1m =;当直线与圆相切时,圆心到切线的距离d r =1=,解得:m =或m =(舍去),则直线与圆在第一象限内有两个不同的交点时,m的范围为2313m<<.故选:D.【点睛】本题考查了直线与圆相交的性质,利用了数形结合的思想,熟练掌握数形结合法是解本题的关键,属于中档题.7.C解析:C【分析】根据线面平行,线面垂直,异面直线等有关结论和定义即可判断.【详解】对于A,若直线AB与平面α相交,则在α内不存在直线与直线AB平行,错误;对于B,若直线AB与平面α相交且不垂直,设AB Mα=,过平面α外直线AB上一点P作PCα⊥,垂足为C,则在平面α内过点C一定可以作一条直线CD,使得CD CM⊥,所以CD AB⊥,而在平面α内,与直线CD平行的直线有无数条,所以在α内存在无数多条直线与直线AB垂直,若直线AB与平面α垂直,显然在α内存在无数多条直线与直线AB垂直,当直线AB与平面α平行时,显然可知在α内存在无数多条直线与直线AB垂直,正确;对于C,若直线AB与平面α相交,设AB Mα=,根据异面直线的判定定理,在平面α内,不过点M的直线与直线AB异面,所以在α内存在无数多条直线与直线AB异面,当直线AB与平面α平行时,显然可知在α内存在无数多条直线与直线AB异面,正确;对于D,若直线AB与平面α相交且不垂直,设AB Mα=,过平面α外直线AB上一点P作PCα⊥,垂足为C,所以平面ABC与平面α垂直,若直线AB与平面α垂直,则过直线AB的所有平面都与平面α垂直,当直线AB与平面α平行时,在直线AB上取一点P作PCα⊥,垂足为C,所以平面ABC与平面α垂直,正确.故真命题的个数是3个.故选:C.【点睛】本题主要考查线面平行,线面垂直,异面直线等有关结论和定义的理解和应用,熟记定义,定理和有关结论是解题的关键,属于中档题.8.A解析:A【分析】先确定曲面面积占以点D 为顶点, DC '为母线在平面 BCC B ''所形成的圆锥的侧面积的18,利用圆锥的侧面积S rl π=即可得出结论. 【详解】由题意 6,32CE CC AA BC AB ''=====,所以22361832BE CE CB =-=-=,所以45BCE ∠=, 45ECC '∠=, 所以曲面面积占以点D 为顶点, DC '为母线在平面 BCC B ''所形成的圆锥的侧面积的18,所以圆锥的侧面积 636186S rl CC DC ππππ'==⨯⨯=⨯⨯=, 所以曲面面积为1961868ππ⨯=. 故选:A. 【点睛】方法点睛:本题考查曲面面积,考查圆锥的侧面积,确定曲面面积占以点D 为顶点, DC '为母线在平面 BCC B ''所形成的圆锥的侧面积的18是关键,考查系数的空间想象力. 9.A解析:A 【分析】本题首先可通过将侧面11CDD C 绕1DD 逆时针转90展开得出当1A 、M 、2C 共线时1A M MC +取得最小值,此时M 为1DD 的中点,然后根据11B A ⊥平面11A D DA 得出111B A A M ⊥,最后根据221111M A B B A M =+即可得出结果.【详解】如图,将侧面11CDD C 绕1DD 逆时针转90展开,与侧面11ADD A 共面,连接12A C ,易知当1A 、M 、2C 共线时,1A M MC +取得最小值,因为1AB AD ==,12AA =,所以M 为1DD 的中点,12A M =, 因为11B A ⊥平面11A D DA ,1A M ⊂平面11A D DA ,所以111B A A M ⊥, 则222211111(2)3M B A A M B =+=+=,故选:A. 【点睛】关键点点睛:本题考查根据线面垂直判断线线垂直,能否根据题意得出当M 为1DD 的中点时1A M MC +取得最小值是解决本题的关键,考查计算能力,考查数形结合思想,是中档题.10.B解析:B 【分析】由题意计算2,AB BD CD ===分析该几何体可以扩充为长方体,所以只用求长方体的外接球即可. 【详解】因为AB ⊥平面BCD ,BD CD ⊥且AB BD CD ==, 43A BCD V -=, 而114323A BCD V BD CD AB -=⨯⨯⨯=,所以2AB BD CD ===, 所以该几何体可以扩充为正方体方体,所以只用求正方体的外接球即可.设外接球的半径为R ,则23R = 所以外接球的表面积为2412S R ππ== 故选:B 【点睛】多面体的外接球问题解题关键是找球心和半径,求半径的方法有:(1)公式法;(2) 多面体几何性质法;(3)补形法;(4)寻求轴截面圆半径法;(5)确定球心位置法.11.B解析:B 【分析】由M 也是1A B 的中点,P 也是1AD 中点,得平行线,从而找到异面直线MN 与PQ 所成角,在三角形中可得其大小. 【详解】如图,连接1AD ,1AB ,显然M 也是1A B 的中点,P 也是1AD 中点, 又N 是1B D 中点,Q 是1CD 中点,所以//MN AD ,//PQ AC , 所以CAD ∠是异面直线MN 与PQ 所成角(或补角),大小为4π. 故选:B .【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.12.B解析:B 【分析】作出图形,设2CD =,AD l ⊥,2AB =,然后以CA 、CD 为邻边作平行四边形ACDE ,可知BAD ∠为二面角l αβ--的平面角,异面直线AB 与CD 所成角为BAE∠或其补角,计算出ABE △三边边长,利用余弦定理计算出cos BAE ∠,即可得解. 【详解】 如下图所示:设2CD =,AD l ⊥,2AB =CA 、CD 为邻边作平行四边形ACDE ,在平面β内,AD l ⊥,2CD =,45ACD ∠=,则sin 2AD CD ACD =∠=cos 452AC CD ==,AB l ⊥,AD l ⊥,AB α⊂,AD β⊂,所以,BAD ∠为二面角l αβ--的平面角,即60BAD ∠=,2AB AD ==,ABD ∴为等边三角形,则2BD =,四边形ACDE 为平行四边形,//DE AC ∴,即//DE l ,AD l ⊥,AB l ⊥,DE AB ⊥∴,DE AD ⊥, AB AD A =,DE ∴⊥平面ABD ,BD ⊂平面ABD ,DE BD ∴⊥,则222BE BD DE =+=,在平行四边形ACDE 中,//AE CD 且2AE CD ==, 所以,异面直线AB 与CD 所成角为BAE ∠或其补角, 在ABE △中,2AB =2AE BE ==,由余弦定理可得2222cos 24AB AE BE BAE AB AE +-∠==⋅. 因此,异面直线AB 与CD 所成角的余弦值为24. 故选:B. 【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.二、填空题13.2【分析】由相交弦长和圆的半径及圆心到过的直线的距离之间的勾股关系求出弦长的最小值即圆心到直线的距离的最大时而当直线与垂直时最大求出的最大值进而求出弦长的最小值【详解】由圆的方程可得圆心坐标半径;设解析:2 【分析】由相交弦长||AB 和圆的半径r 及圆心C 到过(1,2)D 的直线的距离d 之间的勾股关系,求出弦长的最小值,即圆心到直线的距离的最大时,而当直线与CD 垂直时d 最大,求出d 的最大值,进而求出弦长的最小值. 【详解】由圆的方程可得圆心坐标(3,0)C ,半径3r =;设圆心到直线的距离为d ,则过(1,2)D 的直线与圆的相交弦长||AB = 当d 最大时弦长||AB 最小,当直线与CD 所在的直线垂直时d 最大,这时||d CD ==所以最小的弦长||2AB =, 故答案为:2 【点睛】关键点睛:解答本题的关键是通过分析得到当直线与CD 所在的直线垂直时d 最大,弦长||AB 最小. 与圆有关的弦长问题的最值一般利用数形结合分析解答.14.【解析】试题分析:点的直角坐标为将圆的方程化为直角坐标方程为化为标准式得圆心坐标为半径长为而点在圆上圆心与点之间连线平行于轴故所求的切线方程为其极坐标方程为考点:1极坐标与直角坐标之间的转化;2圆的解析:cos 2ρθ=. 【解析】试题分析:点4π⎛⎫⎪⎝⎭的直角坐标为()2,2,将圆4sin ρθ=的方程化为直角坐标方程为224x y y +=,化为标准式得()2224x y +-=,圆心坐标为()0,2,半径长为2,而点()2,2在圆()2224x y +-=上,圆心与点4π⎛⎫⎪⎝⎭之间连线平行于x 轴,故所求的切线方程为2x =,其极坐标方程为cos 2ρθ=.考点:1.极坐标与直角坐标之间的转化;2.圆的切线方程15.【详解】∵圆心P(3−5)到直线4x−3y=2的距离等于由|5−r|<1解得:4<r<6则半径r 的范围为(46)故答案为:(46)当时满足题意考点:1直线和圆的位置关系;2点到直线的距离 解析:46r <<【详解】∵圆心P (3,−5)到直线4x −3y =2的距离等于,由|5−r |<1,解得:4<r <6, 则半径r 的范围为(4,6). 故答案为:(4,6),当46r <<时满足题意.考点:1、直线和圆的位置关系;2、点到直线的距离.16.或【分析】直接求两直线的交点与等距离的直线一条过AB 的中点一条平行AB 【详解】两直线和的交点为的中点为因为所求直线过且与等距离故所求直线过的中点或与直线平行当直线过的中点时直线方程为即当直线与直线平解析:790x y +-=或210x y ++= 【分析】直接求两直线的交点,与(3,2),(1,6)A B --等距离的直线,一条过AB 的中点,一条平行AB . 【详解】两直线11370x y +-=和12190x y +-=的交点为(2,5)-,(3,2),(1,6)A B --的中点为(1,2),因为所求直线过(2,5)-且与()3,2A -,()1,6B -等距离, 故所求直线过AB 的中点或与直线AB 平行,当直线过AB 的中点时,2(5)712k --==--, 直线方程为27(1)y x -=--,即790x y +-=,当直线与直线AB 平行时,26823(1)4k ---===---,直线方程为52(2)y x +=--,即210x y ++=. 故答案为:790x y +-=或210x y ++= 【点睛】本题主要考查了直线交点,直线的平行,直线的斜率,直线方程,属于中档题.17.【分析】将直线的方程化为可求出直线所过的定点坐标作出曲线的图象利用数形结合思想可得出当直线与曲线有公共点时直线的斜率的最小值【详解】将直线的方程化为由得则直线过定点将曲线的方程变形为曲线为圆的上半圆解析:15【分析】将直线l 的方程化为()()210m x y x y +--+=,可求出直线l 所过的定点坐标,作出曲线C 的图象,利用数形结合思想可得出当直线l 与曲线C 有公共点时,直线l 的斜率的最小值. 【详解】将直线l 的方程化为()()210m x y x y +--+=,由2100x y x y +-=⎧⎨+=⎩,得11x y =-⎧⎨=⎩. 则直线l 过定点()1,1P -,将曲线C 的方程变形为()()()222242x y y -+-=≥,曲线C 为圆()()22224x y -+-=的上半圆,如下图所示:由图象可知,当直线l 过点A 时,直线l 的斜率取最小值211415PA k -==+. 故答案为:15. 【点睛】本题考查利用直线与圆的位置关系求直线斜率的最值,考查数形结合思想的应用,属于中等题.18.2【分析】由圆的方程得出圆心坐标根据圆的对称性可知直线通过圆心得出再由直线与直线相互垂直得出代入求解即可【详解】方程一定表示圆则圆心坐标为根据圆的对称性可知直线通过圆心则MN 两点关于直线对称直线与直解析:2 【分析】由圆的方程得出圆心坐标,根据圆的对称性可知直线0x y +=通过圆心,得出k m =-,再由直线1y kx =+与直线0x y +=相互垂直,得出1k =,代入20182019k m -求解即可. 【详解】22160k m ++>∴方程2240x y kx my +++-=一定表示圆则圆心坐标为,22k m ⎛⎫-- ⎪⎝⎭ 根据圆的对称性可知,直线0x y +=通过圆心 则022k mk m --=⇒=- M 、N 两点关于直线0x y +=对称∴直线1y kx =+与直线0x y +=相互垂直(1)11k k ∴⨯-=-⇒=20182019201820191(1)112k m ∴-=--=+=故答案为:2 【点睛】本题主要考查了圆的对称性的应用以及由直线与圆的位置关系确定参数的范围,属于中档题.19.【分析】取中点连接证明平面可得为直线与侧面所成的角进而可得答案【详解】取中点连接直三棱柱中平面平面又又面平面在平面上的射影为故为直线与侧面所成的角中中中故答案为:【点睛】方法点睛:求直线与平面所成的解析:10【分析】取11B C 中点D ,连接1,A D BD ,证明1A D ⊥平面11B C CB ,可得1A BD ∠为直线1A B 与侧面11B C CB 所成的角,进而可得答案. 【详解】取11B C 中点D ,连接1,A D BD ,直三棱柱中,1BB ⊥平面111A B C ,1A D ⊂平面111A B C ,11BB A D ∴⊥,又11111A B A C ==,111A D B C ∴⊥, 又1111B C BB B =,111,B C BB ⊂面11BB C C ,1A D ∴⊥平面11B C CB ,1A B ∴在平面11B C CB 上的射影为DB ,故1A BD ∠为直线1A B 与侧面11B C CB 所成的角,11Rt A B B 中,22211121125BB A B A B =+=+= 111Rt B A C 中,1112212122B C A D ===,1Rt A BD ∴中,1112102sin 5A D A BD AB ∠===10【点睛】方法点睛:求直线与平面所成的角有两种方法:一是传统法,证明线面垂直找到直线与平面所成的角,利用平面几何知识解答;二是利用空间向量,求出直线的方向向量以及平面的方向向量,利用空间向量夹角余弦公式求解即可.20.【分析】先由题意得到的面积以及外接圆的半径记的外接圆圆心为为使四面体体积最大只需与面垂直由此求出设球心为半径为根据为直角三角形由勾股定理列出等式求出球的半径即可得出结果【详解】根据题意知是一个等边三 解析:254π【分析】先由题意,得到ABC 的面积,以及ABC 外接圆的半径,记ABC 的外接圆圆心为Q ,为使四面体ABCD 体积最大,只需DQ 与面ABC 垂直,由此求出2DQ =,设球心为O ,半径为R ,根据AQO 为直角三角形,由勾股定理列出等式,求出球的半径,即可得出结果. 【详解】根据题意知,ABC 是一个等边三角形,其面积为()2213333322S ⎛⎫=-= ⎪ ⎪⎝⎭,ABC 外接圆的半径为131260r ==,记ABC 的外接圆圆心为Q ,则1AQ r ==;由于底面积ABCS不变,高最大时体积最大,所以DQ 与面ABC 垂直时体积最大,最大值为133ABC S DQ ⋅=,2DQ ∴=, 设球心为O ,半径为R ,则在直角AQO 中,222OA AQ OQ =+,即2221(2)R R =+-,54R ∴=, 则这个球的表面积为:2525444S ππ⎛⎫== ⎪⎝⎭.故答案为:254π. 【点睛】 思路点睛:求解几何体与球外接问题时,一般需要先确定底面外接圆的圆心位置,求出底面外接圆的半径,根据球的性质,结合题中条件确定球心位置,求出球的半径,进而即可求解.21.【分析】取AB 中点连接根据平行四边形性质可得为等腰梯形ABCD 的外心取SB 中点O 连接则可得O 是四棱锥的外接球球心在中求得r=OA 即可求得体积【详解】取AB 中点连接则所以四边形为平行四边形所以同理所以 82π取AB 中点1O ,连接11,O C O D ,根据平行四边形性质,可得1O 为等腰梯形ABCD 的外心,取SB 中点O ,连接1,,,OA OC OD OO ,则可得O 是四棱锥S ABCD -的外接球球心,在Rt SAB 中,求得r=OA ,即可求得体积.【详解】取AB 中点1O ,连接11,O C O D ,则1//CD O A ,所以四边形1ADCO 为平行四边形,所以1=1CO ,同理1=1O D ,所以1111=O A O B O C O D ==,即1O 为等腰梯形ABCD 的外心,取SB 中点O ,连接1,,,OA OC OD OO ,则1//OO SA ,因为SA ⊥平面ABCD ,所以1OO ⊥平面ABCD ,又2AB SA ==,所以=OA OB OC OD ==,又SA AB ⊥,所以OA OS =,即O 是四棱锥S ABCD -的外接球球心,在Rt SAB 中,2AB SA ==, 所以122OA SB == 所以34822)33V ππ=⨯=, 故答案为:823π. 【点睛】解决外接球的问题时,难点在于找到球心,可求得两个相交平面的外接圆圆心,自圆心做面的垂线,垂线交点即为球心,考查空间想象,数学运算的能力,属中档题.22.【分析】取中点连结根据题意得故所以为异面直线和所成角再根据几何关系求得在中故进而得答案【详解】取中点连结依题意:所以所以为异面直线和所成角在正三棱锥中是中点所以又因为平面平面所以平面所以因为分别是的 21取AB 、BC 中点D 、G ,连结DE 、DF 、GS 、GA ,根据题意得//l BC ,//DE BC ,故//l DE ,所以DEF ∠为异面直线l 和EF 所成角,再根据几何关系求得在Rt DEF ∆中,122DF SA ==,11322DE BC AB ===,227EF DE DF =+=,故321cos 77DE DEF EF ∠===,进而得答案. 【详解】取AB 、BC 中点D 、G ,连结DE 、DF 、GS 、GA ,依题意://l BC ,//DE BC ,所以//l DE ,所以DEF ∠为异面直线l 和EF 所成角.在正三棱锥S ABC -中,G 是BC 中点,所以SG BC ⊥,AG BC ⊥,又因为SG AG G ⋂=,SG ⊂平面SAG ,AG ⊂平面SAG ,所以BC ⊥平面SAG ,所以BC SA ⊥.因为F 、D 分别是SB 、AB 的中点,所以//DF SA .所以DE DF ⊥.Rt DEF ∆中,122DF SA ==,11322DE BC AB === 所以227EF DE DF +.所以321cos 7DE DEF EF ∠===.故异面直线l 和EF 所成角的余弦值为:217 故答案为:217 【点睛】 本题考查异面直线所成角的求解,考查空间思维能力与运算能力,是中档题. 23.【分析】作于可证得平面得得等边三角形利用是球的直径得然后计算出再应用棱锥体积公式计算体积【详解】∵围绕棱旋转后恰好与重合∴作于连接则∴又过球心∴而∴同理由得平面∴故答案为:【点睛】易错点睛:本题考查 解析:38【分析】作BH PA ⊥于H ,可证得PA ⊥平面BCH ,得60BHC ∠=︒,得等边三角形BCH ,利用PA 是球的直径,得PB AB ⊥,然后计算出BH ,再应用棱锥体积公式计算体积.【详解】∵PAB △围绕棱PA 旋转60︒后恰好与PAC △重合,∴PAB PAC ≅△△,作BH PA ⊥于H ,连接CH ,则,CH PA CH BH ⊥=,60BHC ∠=︒,∴BC BH CH ==.又PA 过球心,∴PB AB ⊥,而2,3PA PB ==,∴1AB =,同理1AC =,313PB AB BH PA ⋅⨯===,223333344216BCH S BH ⎛⎫=⨯=⨯= ⎪ ⎪⎝⎭△, 由BH PA ⊥,CH PA ⊥,CHBH H =,得PA ⊥平面BCH , ∴11333233P ABC BCH V S PA -=⋅=⨯⨯=△. 故答案为:38.【点睛】易错点睛:本题考查求棱锥的体积,解题关键是作BH PA ⊥于H ,利用旋转重合,得PA ⊥平面BCH ,这样只要计算出BCH 的面积,即可得体积,这样作图可以得出60BHC ∠=︒,为旋转所形成的二面角的平面角,这里容易出错在误认为旋转60︒,即为60CAB ∠=︒.旋转60︒是旋转形成的二面角为60︒.应用作出二面角的平面角. 24.【分析】由题意分析可得可知K 所形成轨迹为一个圆弧求出圆心角再求弧长即可【详解】由题意D′K ⊥AE 所以K 的轨迹是以AD′为直径的一段圆弧D′K 设AD′的中点为O ∵长方形ABCD′中ABBC ∴∠D′AC 解析:23π 【分析】 由题意分析可得DK AE ⊥可知K 所形成轨迹为一个圆弧,求出圆心角再求弧长即可.【详解】由题意,D ′K ⊥AE ,所以K 的轨迹是以AD ′为直径的一段圆弧D ′K ,设AD ′的中点为O , ∵长方形ABCD ′中,AB 6=,BC 2=, ∴∠D ′AC =60°,∴∠D ′OK =120°23π=, ∴K 所形成轨迹的长度为222323ππ⨯=,2 【点睛】 本题主要考查了空间中的轨迹问题,主要是找到定量关系分析轨迹,属于中等题型.三、解答题25.(Ⅰ)证明见解析;(Ⅱ)1227V V =. 【分析】(Ⅰ)要证明线面平行,需证明线线平行,取BP 的中点T ,连接AT ,TN ,证明//MN AT ;(Ⅱ)利用锥体体积公式,分别求两个锥体底面积和高的比值,表示体积比值.【详解】(Ⅰ)如图,取BP 的中点T ,连接AT ,TN .因为N 为PC 的中点,所以TN //BC ,且122TN BC ==. 又因为223AM AD ==,且//AD BC , 所以TN //AM ,TN AM =,即四边形AMNT 为平行四边形,所以MN //AT ,因为AT ⊂平面PAB ,MN ⊄平面PAB ,所以//MN 平面PAB .(Ⅱ)设四棱锥P ABCD -的高为h ,AD 与BC 间的距离为d .则()21117343326ABCD V h S h d hd =⨯⨯=⨯+=梯形, 11114323223BCM h h hd V S d =⨯⨯=⨯⨯⨯=△ 因此1227V V =. 【点睛】方法点睛:本题考查了线面平行的判断定理,意在考查转化与化归和计算求解能力,不管是证明面面平行,还是证明线面平行,都需要证明线线平行,证明线线平行的几种常见形式,1.利用三角形中位线得到线线平行;2.构造平行四边形;3.构造面面平行.26.723S =侧.【分析】过1C 作1C E AC ⊥于E , 过E 作EF BC ⊥于F ,得到1C F 为正四棱台的斜高, 可得答案.【详解】如图,设1O 、O 分别为上、下底面的中心,则1O O ⊥平面ABCD ,过1C 作1C E AC ⊥于E ,所以11//C E O O ,所以1C E ⊥平面ABCD ,1C E BC ⊥,过E 作EF BC ⊥于F ,连接1C F ,且1C EEF E =,所以BC ⊥平面1EFC ,1C F BC ⊥,则1C F 为正四棱台的斜高,由题意知145C CO ∠=,()11293322CE CO EO CO C O =-=-=⨯-=, 又2sin 453232EF CE =⋅=⨯=, ∴高()22231132333C F C E EF =+=+=, ∴()1393347232S =⨯+⨯⨯=侧.【点睛】本题考查了正四棱台侧面积的求法,关键点是作出正四棱台的斜高,考查了学生的空间想象力和计算能力.27.(1)证明见解析;(2)33. 【分析】(1)用分析法:要证平面NMC ⊥平面NCD ,只需证明CD ⊥平面NMC ,只需CM CD ⊥和NM CD ⊥;(2)由(1)的证明,以M 为原点,MB ,MD ,MN 所在的直线分别为x ,y ,z 轴建立空间直角坐标系M xgz -,用向量法计算.【详解】解:(1)如图,梯形ABCD 中,过点C 作CH DM ⊥于点H ,连接CM ,。
(常考题)北师大版高中数学必修二第二章《解析几何初步》测试题(含答案解析)(4)

一、选择题1.已知直线10ax by ++=与直线4350x y ++=平行,且10ax by ++=在y 轴上的截距为13,则+a b 的值为( ) A .7-B .1-C .1D .72.已知圆22:(3)(4)4C x x -+-=和两点(,0)A m -,(,0)(0)B m m >,若圆C 上存在点P ,使得90APB ∠=,则m 的取值范围是( ) A .[5,9]B .[4,8]C .[3,7]D .[2,6]3.已知圆1C :22(1)(1)1x y -++=,圆2C :22(4)(5)9x y -+-=,点M 、N 分别是圆1C 、圆2C 上的动点,P 为x 轴上的动点,则||||PN PM -的最大值是( )A .2B .4C .7D .94.已知12,F F 是椭圆()222210x y a b a b+=>>的两焦点,P 是椭圆上任意一点,过一焦点引12F PF ∠的外角平分线的垂线,垂足为Q ,则动点Q 的轨迹为( ▲ ) A .圆B .椭圆C .双曲线D .抛物线5.直线l 经过()2,1A ,()23,B t ,(t ≤点,则直线l 倾斜角的取值范围是( ) A .30,,44πππ⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭B .0,C .0,4⎡⎤⎢⎥⎣⎦πD .30,,424πππ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦6.在平面直角坐标系xoy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =+上至少存在一点,使得以该点为圆心,半径为1的圆与圆C 有公共点,则k 的最小值是( ) A .43-B .54-C .35D .53-7.已知AB 是平面α外的一条直线,则下列命题中真命题的个数是( ) ①在α内存在无数多条直线与直线AB 平行; ②在α内存在无数多条直线与直线AB 垂直; ③在α内存在无数多条直线与直线AB 异面; ④一定存在过AB 且与α垂直的平面β. A .1个B .2个C .3个D .4个8.大摆锤是一种大型游乐设备(如图),游客坐在圆形的座舱中,面向外,通常大摆锤以压肩作为安全束缚,配以安全带作为二次保险,座舱旋转的同时,悬挂座舱的主轴在电机的驱动下做单摆运动.假设小明坐在点A 处,“大摆锤”启动后,主轴OB 在平面α内绕点O 左右摆动,平面α与水平地面垂直,OB 摆动的过程中,点A 在平面β内绕点B 作圆周运动,并且始终保持OB β⊥,B β∈.设4OB AB =,在“大摆锤”启动后,下列结论错误的是( )A .点A 在某个定球面上运动;B .β与水平地面所成锐角记为θ,直线OB 与水平地面所成角记为δ,则θδ+为定值;C .可能在某个时刻,AB //α;D .直线OA 与平面α所成角的正弦值的最大值为1717. 9.在三棱锥P ABC -中,PA ⊥平面ABC ,120224BAC AP AB AC ∠====,,则三棱锥P ABC -的外接球的表面积是( ) A .18πB .36πC .40πD .72π10.已知正三棱柱111ABC A B C -,的体积为163,底面积为43,则三棱柱111ABC A B C -的外接球表面积为( )A .1123π B .563π C .2243π D .28π11.一个几何体的三视图如图所示,则该几何体的外接球的表面积是( )A .2πB .3πC .4πD .16π12.在长方体1111ABCD A BC D -中,2AB =,1AD =,12AA =,点E 为11C D的中点,则二面角11B A B E --的余弦值为( ) A .3-B .3-C .3 D .3 二、填空题13.已知直线1:220l x by ++=与直线2:210l x y -+=平行,则直线1l ,2l 之间的距离为__________.14.已知直线():0l x ay a R +=∈是圆22:4210C x y x y +--+=的一条对称轴,过点()1,P a -的直线m 与圆C 交于,A B 两点,且AB 4=,则直线m 的斜率为____.15.已知点(1,0),(3,0)M N .若直线:0l x y m +-=上存在一点P 使得0PM PN ⋅=成立,则m 的取值范围是_____________.16.在平面直角坐标xOy 系中,设将椭圆()2222110y x a a a +=>-绕它的左焦点旋转一周所覆盖的区域为D ,P 为区域D 内的任一点,射线()02x y x =≥-上的点为Q ,若PQ 的最小值为a ,则实数a 的取值为_____.17.函数2291041y x x x =++-+的最小值为_________.18.已知A 是直角坐标平面内一定点,点(0,0)O ,若圆22()(–12)3x y -+=上任意一点M 到定点A 与点(0,0)O 的距离之比是一个定值λ,则这个定值λ的大小是________. 19.在边长为3的菱形ABCD 中,对角线3AC =,将三角形ABC 沿AC 折起,使得二面角B AC D --的大小为2π,则三棱锥B ACD -外接球的体积是_________________.20.如图所示,Rt A B C '''∆为水平放置的ABC ∆的直观图,其中AC B C ''''⊥,2B O O C ''''==,则ABC ∆的面积是________________.21.如图,在三棱台111ABC A B C -中,11190,4,22ACB AC BC A B CC ∠=︒====11AA B B ⊥平面ABC ,则该三棱台外接球的表面积为___________.22.二面角a αβ--的大小为135A AE a E α︒∈⊥,,,为垂足,,B BF a F β∈⊥,为垂足,2,31AE BF EF P ===,,是棱上动点,则AP PB +的最小值为_______. 23.已知扇形的面积为56π,圆心角为6π,则由该扇形围成的圆锥的外接球的表面积为_________.24.如图,已知正四面体P ABC -的棱长为2,动点M 在四面体侧面PAC 上运动,并且总保持MB PA ⊥,则动点M 的轨迹的长度为__________.三、解答题25.如图,在正四棱柱1111ABCD A BC D -中,11,2AB AA ==,点E 为1CC 中点,点F 为1BD 中点.(1)求异面直线1BD 与1CC 的距离;(2)求直线1BD 与平面BDE 所成角的正弦值; (3)求点F 到平面BDE 的距离.26.如图1,在梯形ABCD 中,//BC AD ,4=AD ,1BC =,45ADC ∠=︒,梯形的高为1,M 为AD 的中点,以BM 为折痕将ABM 折起,使点A 到达点N 的位置,且平面NBM ⊥平面BCDM ,连接NC ,ND ,如图2.(1)证明:平面NMC ⊥平面NCD ;(2)求图2中平面NBM 与平面NCD 所成锐二面角的余弦值. 27.如图,AB 是O 的直径,PA 垂直于O 所在的平面,C 是圆周上不同于A ,B 的一动点.(1)证明:BC ⊥面PAC ;(2)若PA =AC =1,AB =2,求直线PB 与平面PAC 所成角的正切值.28.在四棱台1111ABCD A BC D -中,1AA ⊥平面ABCD ,//AB CD ,90ACD ∠=︒,26BC ==,1CD =,1AM CC ⊥,垂足为M .(1)证明:平面ABM ⊥平面11CDD C ; (2)若二面角B AM D --正弦值为217,求直线AC 与平面11CDD C 所成角的余弦.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【详解】分析:根据两条直线平行,得到,a b 的等量关系,根据直线在y 轴上的截距,可得b 所满足的等量关系式,联立方程组求得结果.详解:因为直线10ax by ++=与直线4350x y ++=平行, 所以43b a =,又直线10ax by ++=在y 轴上的截距为13, 所以1103b +=,解得3b =-,所以4a =-, 所以7a b +=-,故选A.点睛:该题考查的是有关直线的问题,在解题的过程中,涉及到的知识点有两条直线平行时系数所满足的条件,以及直线在y 轴上的截距的求法,根据题中的条件,列出相应的等量关系式,求得结果.2.C解析:C 【分析】设点P 的坐标为(),x y ,可得出点P 的轨迹方程为222x y m +=,进而可知圆222x y m +=与圆C 有公共点,可得出关于正数m 的不等式,由此可求得正数m 的取值范围. 【详解】设点P 的坐标为(),x y ,90APB ∠=,且坐标原点O 为AB 的中点,所以,12OP AB m ==,则点P 的轨迹方程为222x y m +=, 由题意可知,圆222x y m +=与圆C 有公共点,且圆心()3,4C ,半径为2 则22m OC m -≤≤+,即252m m -≤≤+,0m >,解得3m 7≤≤.因此,实数m 的取值范围是[]3,7. 故选:C. 【点睛】本题主要考查利用圆与圆的位置关系求参数的取值范围,解题的关键在于由90APB ∠=求得点P 的轨迹方程222x y m +=,进而将问题转化为圆222x y m +=与圆C 有公共点问题,考查化归与转化思想的应用,属于中等题.3.D解析:D 【分析】求出P 点到两圆心的距离,圆1C :22(1)(1)1x y -++=的圆心(11)E -,,圆2C :22(4)(5)9x y -+-=的圆心(45)F ,,由()PF R PE r +--为最大值.再求得E 关于x 轴的对应点E ',PF PE -=PF PE '-FE '≤,由此可得最大值.【详解】圆1C :22(1)(1)1x y -++=的圆心(11)E -,,半径为r =1, 圆2C :22(4)(5)9x y -+-=的圆心(45)F ,,半径是R =3, 要使||||PN PM -最大,需||PN 最大,且||PM 最小,||PN 最大值为3PF +,||PM 的最小值为1PE -,故||||PN PM -最大值是(3)(1)4PF PE PF PE +--=-+,(45)F ,关于x 轴的对称点(45)F '-,,5PF PE PF PE EF -=-≤='=',故4PF PE -+的最大值为549+=, 故选:D . 【点睛】结论点睛:设P 是圆C 外一点,圆C 半径为r ,则P 到圆上点的距离的最大值为PC r +,最小值为PC r -,直线PC 与圆的两个交点为最大值点和最小值点.4.A解析:A 【详解】不妨设过焦点1F 引12F PF ∠的外角平分线的垂线,垂足为Q ,延长F 1Q 交F 2P 与M 点,连OQ ,则21211()=22OQ F M F P PF a ==+,所以动点Q 的轨迹为圆,选A. 5.A解析:A 【分析】求出斜率的取值范围,然后可得倾斜角的范围. 【详解】由已知直线的斜率为221132t k t -==--,∵t ≤≤11k -≤≤,记直线l 的倾斜角为θ,[)0,θπ∈,即1tan 1θ-≤≤,所以3[0,][,)44ππθπ∈. 故选:A . 【点睛】本题考查直线的倾斜角和斜率的关系,直线的倾斜角的范围是[0,]π,斜率为正时,倾斜角为锐角,斜率为负时,倾斜角为钝角,因此一般要分类讨论.6.A解析:A 【分析】化圆C 的方程为22(4)1x y -+=,求出圆心与半径,由题意,只需22(4)4x y -+=与直线2y kx =+有公共点即可. 【详解】 解:圆C 的方程为228150x y x +-+=,整理得:22(4)1x y -+=,即圆C 是以(4,0)为圆心,1为半径的圆;又直线2y kx =+上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,∴只需圆22:(4)4C x y '-+=与直线2y kx =+有公共点即可.设圆心(4,0)C 到直线2y kx =+的距离为d , 则2d =,即234k k -,403k ∴-. k ∴的最小值是43-. 故选:A .【点睛】本题考查直线与圆的位置关系,将条件转化为“22(4)4x y -+=与直线2y kx =+有公共点”是关键,考查学生灵活解决问题的能力,属于中档题.7.C解析:C 【分析】根据线面平行,线面垂直,异面直线等有关结论和定义即可判断. 【详解】对于A ,若直线AB 与平面α相交,则在α内不存在直线与直线AB 平行,错误; 对于B ,若直线AB 与平面α相交且不垂直,设AB M α=,过平面α外直线AB 上一点P 作PC α⊥,垂足为C ,则在平面α内过点C 一定可以作一条直线CD ,使得CD CM ⊥,所以CD AB ⊥,而在平面α内,与直线CD 平行的直线有无数条,所以在α内存在无数多条直线与直线AB 垂直,若直线AB 与平面α垂直,显然在α内存在无数多条直线与直线AB 垂直,当直线AB 与平面α平行时,显然可知在α内存在无数多条直线与直线AB 垂直,正确;对于C ,若直线AB 与平面α相交,设AB M α=,根据异面直线的判定定理,在平面α内,不过点M 的直线与直线AB 异面,所以在α内存在无数多条直线与直线AB 异面,当直线AB 与平面α平行时,显然可知在α内存在无数多条直线与直线AB 异面,正确; 对于D ,若直线AB 与平面α相交且不垂直,设AB M α=,过平面α外直线AB 上一点P 作PC α⊥,垂足为C ,所以平面ABC 与平面α垂直,若直线AB 与平面α垂直,则过直线AB 的所有平面都与平面α垂直,当直线AB 与平面α平行时,在直线AB 上取一点P 作PC α⊥,垂足为C ,所以平面ABC 与平面α垂直,正确. 故真命题的个数是3个. 故选:C . 【点睛】本题主要考查线面平行,线面垂直,异面直线等有关结论和定义的理解和应用,熟记定义,定理和有关结论是解题的关键,属于中档题.8.C解析:C 【分析】利用已知条件确定OA 是定值,即得A 选项正确;作模型的简图,即得B 正确;依题意点B 在平面α内,不可能AB //α,得C 错误;设AB a ,结合题意知ABα⊥时,直线OA与平面α所成角最大,计算此时正弦值,即得D 正确.【详解】因为点A 在平面β内绕点B 作圆周运动,并且始终保持OB β⊥,所OA =又因为OB ,AB 为定值,所以OA 也是定值,所以点A 在某个定球面上运动,故A 正确;作出简图如下,OB l ⊥,所以2πδθ+=,故B 正确;因为B α∈,所以不可能有AB //α,故C 不正确; 设ABa ,则4OB a =,2217OA AB OB a =+=,当AB α⊥时,直线OA 与平面α所成角最大,此时直线OA 与平面α所成角的正弦值为1717a=,故D 正确. 故选:C. 【点睛】本题解题关键在于认真读题、通过直观想象,以实际问题为背景构建立体几何关系,再运用立体几何知识突破难点.9.D解析:D 【分析】先找出ABC 的外接圆的半径,然后取ABC 的外接圆的圆心N ,过N 作平面ABC 的垂线NG ,作PA 的中垂线,交NG 于O ,则O 是外接球球心, OA 为外接球半径,求解半径并求表面积即可. 【详解】如图所示,1204BAC AB AC ∠===,,取BC 中点M ,连接AM 并延长到N 使AM =MN ,则四边形ABNC 是两个等边三角形组成的菱形,AN =BN =CN ,点N 是ABC 的外接圆圆心,过N 作平面ABC 的垂线NG ,则球心一定在垂线NG 上,因为PA ⊥平面ABC ,则PA //NG ,PA 与NG 共面,在面内作PA 的中垂线,交NG 于O ,则O 是外接球球心,半径R =OA ,Rt AON 中,122ON AP ==4AN =,故()224232R =+2441872S R πππ==⨯=.【点睛】求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.本题就是采用这个方法.本题使用了定义法.10.A解析:A 【分析】由面积和体积可得三棱柱的底面边长和高,根据特征可知外接球的球心为上下底面中心连线的中点,再由勾股定理可得半径及球的表面积. 【详解】 依题意,1163443AA ==,而213sin 4324ABCS AB AC A AB =⨯⨯==, 解得4AB =,记ABC 的中心为О,111A B C △的中心为О1,则114O A O A ==, 取1OO 的中点D ,因为AO CO =,90AOD COD ∠=∠=,由勾股定理得AD CD =,同理可得111AD BD A D B D C D ====,所以正三棱柱的外接球的球心为即D ,AD 为外接球的半径, 由正弦定理得432sin 603AB AO ==, 故2221628433A O D D O A =+=+=, 故三棱柱111ABC A B C -的外接球表面积2281124433S R πππ==⨯=, 故选:A .本题考查了正三棱柱外接球的表面积的求法,关键点是确定球心的位置和球的半径的长度,考查了学生的空间想象力和计算能力.11.C解析:C 【分析】由三视图还原出原几何体,确定其结构,再求出外接球的半径得球的表面积. 【详解】由三视图,知原几何体是一个四棱锥P ABCD -,如图,底面ABCD 是边长为1的正方形,PB ⊥底面ABCD ,由PB ⊥底面ABCD ,AD ⊂面ABCD ,得PB AD ⊥,又AD AB ⊥,AB PB B ⋂=,,AB PB ⊂平面PAB ,所以AD ⊥平面PAB ,而PA ⊂平面PAB ,所以AD PA ⊥,同理DC PC ⊥,同样由PB ⊥底面ABCD 得PB BD ⊥,所以PD 中点O 到四棱锥各顶点距离相等,即为其外接球球心,PD 为球直径,222222PD PB BD PA AD AB =+=++=,∴外接球半径为12ADr ==, 表面积为2414S ππ=⨯=. 故选:C .【点睛】关键点点睛:本题考查由三视图还原几何体,考查棱锥的外接球表面积.解题关键是确定外接球的球心.棱锥的外接球球心在过各面外心(外接圆圆心)且与该面垂直的直线上.12.C解析:C 【分析】取11A B 的中点F ,过F 作1FG A B ⊥,垂足为G ,连EG ,可证EGF ∠为二面角11B A B E --的平面角,通过计算可得结果.【详解】取11A B 的中点F ,过F 作1FG A B ⊥,垂足为G ,连EG ,因为,E F 分别为1111,C D A B 的中点,所以11//EF A D ,在长方体1111ABCD A BC D -中,因为11A D ⊥平面11ABB A ,所以EF ⊥平面11ABB A , 因为1A B ⊂平面11ABB A ,所以1EF A B ⊥,因为1FG A B ⊥,且FGEF F =,所以1A B ⊥平面EFG ,因为EG ⊂平面EFG ,所以1A B EG ⊥,所以EGF ∠为二面角11B A B E --的平面角, 因为12AB AA ==,所以14FA G π∠=,因为11A F =,所以12222FG A F ==, 在直角三角形EFG 中,221612EG EF FG =+=+=, 所以cos FGEGF EG ∠==2326=. 所以二面角11B A B E --3. 故选:C 【点睛】关键点点睛:根据二面角的定义作出其中一个平面角是解题关键.二、填空题13.【分析】利用直线平行与斜率之间的关系点到直线的距离公式即可得出【详解】解:因为直线与直线平行所以解得当时则故答案为:【点睛】熟练运用直线平行与斜率之间的关系点到直线的距离公式是解题关键 5 【分析】利用直线平行与斜率之间的关系、点到直线的距离公式即可得出. 【详解】解:因为直线1:220l x by ++=与直线2:210l x y -+=平行, 所以22(1)b =⨯-,解得1b =-,当1b =-时,1:220l x y -+=,2:210l x y -+=,则d ==【点睛】熟练运用直线平行与斜率之间的关系、点到直线的距离公式,是解题关键.14.1【分析】由直线是圆的一条对称轴得到直线过圆心求得得到再根据得到点的直线必过圆心利用斜率公式即可求解【详解】由题意圆的圆心坐标半径为因为直线是圆的一条对称轴则直线过圆心即解得此时点又由直线与圆交于两解析:1 【分析】由直线l 是圆C 的一条对称轴,得到直线l 过圆心,求得2a =-,得到(1,2)P --,再根据4AB =,得到点P 的直线必过圆心(2,1)C ,利用斜率公式,即可求解.【详解】由题意,圆22:4210C x y x y +--+=的圆心坐标(2,1)C ,半径为2r,因为直线():0l x ay a R +=∈是圆22:4210C x y x y +--+=的一条对称轴, 则直线l 过圆心(2,1)C ,即210a +⨯=,解得2a =-,此时点(1,2)P --, 又由直线m 与圆C 交于,A B 两点,且4AB =,可得过点P 的直线必过圆心(2,1)C , 所以直线m 的斜率为1(2)12(1)k --==--.故答案为:1. 【点睛】本题主要考查了直线与圆的位置关系,其中解答中熟记直线与圆的位置关系,合理转化是解答的关键,着重考查了推理与运算能力.15.【分析】根据可确定点轨迹为以为圆心为半径的圆利用直线与圆有交点可知由此构造不等式求得结果【详解】点轨迹是以为圆心为半径的圆上存在点与以为圆心为半径的圆有交点圆心到直线距离解得:即的取值范围为:故答案解析:[2【分析】根据PM PN ⊥可确定P 点轨迹为以()2,0为圆心,1为半径的圆,利用直线l 与圆有交点可知d r ≤,由此构造不等式求得结果. 【详解】0PM PN ⋅=,PM PN ∴⊥,P ∴点轨迹是以()2,0为圆心,1为半径的圆.:0l x y m +-=上存在点P ,l ∴与以()2,0为圆心,1为半径的圆有交点,∴圆心()2,0到直线l 距离1d =≤,解得:22m ≤≤即m 的取值范围为:2⎡⎣.故答案为:2⎡+⎣.【点睛】本题考查根据直线与圆的位置关系求解参数范围的问题;关键是能够根据平面向量数量积得到垂直关系,进而确定动点轨迹,从而将问题转化为直线与圆位置关系的求解问题.16.【分析】先确定轨迹再根据射线上点与圆的位置关系求最值即得结果【详解】所以为以为圆心为半径的圆及其内部设射线的端点为所以的最小值为故答案为:【点睛】本题考查动点轨迹以及点与圆位置关系考查数形结合思想以【分析】先确定D 轨迹,再根据射线上点与圆的位置关系求最值,即得结果. 【详解】2222222(1)1,111,y x c a a c a a =+∴=--=∴=-, 所以D 为以(1,0)F -为圆心,1a +为半径的圆及其内部, 设射线()02x y x =≥-的端点为(2,2)A ,所以PQ 的最小值为||(1),12,AF a a a a -+===【点睛】本题考查动点轨迹以及点与圆位置关系,考查数形结合思想以及基本分析求解能力,属中档题.17.【分析】将变形为设则即轴上的一动点到的距离之和作点关于轴的对称点即可求出距离和的最小值;【详解】解:设则即轴上的一动点到的距离之和作点关于轴的对称点连接则即为距离和的最小值故答案为:【点睛】本题考查【分析】将y y =,设()0,3A ,()5,4B ,(),0C x ,则y AC BC ==+即x 轴上的一动点C 到()0,3A ,()5,4B 的距离之和,作()0,3A 点关于x 轴的对称点()10,3A -,即可求出距离和的最小值; 【详解】解:()22222291041354y x x x x x =++-+=++-+,设()0,3A ,()5,4B ,(),0C x ,则()2222354y x x AC BC =++-+=+,即x 轴上的一动点(),0C x 到()0,3A ,()5,4B 的距离之和,作()0,3A 点关于x 轴的对称点()10,3A -,连接1BA ,则1BA 即为距离和的最小值,()22153474BA =+--=min 74y ∴=故答案为:74【点睛】本题考查平面直角坐标系上两点间的距离公式的应用,将军饮马问题,属于中档题.18.【分析】设按距离之比为定值求出点的轨迹方程它就是方程比较后可得【详解】设则整理得:易知方程化为已知圆的一般式方程为所以解得故答案为:【点睛】本题考查平面轨迹方程解题时由点到两点距离之比为常数求出的轨 15【分析】设(,)A m n ,(,)M x y ,按距离之比为定值求出M 点的轨迹方程,它就是方程22()(–12)3x y -+=,比较后可得λ.【详解】设(,)A m n ,(,)M x y,则MA MOλ==,整理得:222222(1)(1)220x y mx ny m n λλ-+---++=,易知210λ-≠,方程化为2222222220111m n m n x y x y λλλ++--+=---,已知圆22()(–12)3x y -+=的一般式方程为222420x y x y +--+=,所以2222222124121mn m n λλλ⎧=⎪-⎪⎪=⎨-⎪⎪+=⎪-⎩,解得25455m n λ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩.【点睛】本题考查平面轨迹方程,解题时由M 点到,A O 两点距离之比为常数λ,求出M 的轨迹方程,它就是已知圆,比较系数可得结论.19.;【分析】分析菱形的特点结合其翻折的程度判断其外接球球心的位置放到相应三角形中利用勾股定理求得半径利用球的体积公式求得外接球的体积【详解】根据题意画出图形根据长为的菱形中对角线所以和都是正三角形又因; 【分析】分析菱形的特点,结合其翻折的程度,判断其外接球球心的位置,放到相应三角形中,利用勾股定理求得半径,利用球的体积公式求得外接球的体积. 【详解】根据题意,画出图形,3ABCD 中,对角线3AC = 所以ABC 和DBC △都是正三角形, 又因为二面角B AC D --的大小为2π, 所以分别从两个正三角形的中心做面的垂线,交于O , 则O 是棱锥B ACD -外接球的球心,且11,2GD OG GE ===, 所以球的半径225R GD OG =+=, 所以其体积为3344555(3326V R ππ==⋅=, 故答案为:556π. 【点睛】思路点睛:该题考查的是有关几何体外接球的问题,解题思路如下: (1)根据题中所给的条件,判断菱形的特征,得到两个三角形的形状;(2)根据直二面角,得到两面垂直,近一倍可以确定其外接球的球心所在的位置; (3)利用勾股定理求得半径; (4)利用球的体积公式求得结果;(5)要熟知常见几何体的外接球的半径的求解方法.20.【分析】根据直观图和原图的之间的关系由直观图画法规则将还原为如图所示是一个等腰三角形直接求解其面积即可【详解】由直观图画法规则将还原为如图所示是一个等腰三角形则有所以故答案为:【点睛】关键点点睛:根 解析:82【分析】根据直观图和原图的之间的关系,由直观图画法规则将Rt A B C '''还原为ABC ,如图所示,ABC 是一个等腰三角形,直接求解其面积即可.【详解】由直观图画法规则将Rt A B C '''还原为ABC ,如图所示,ABC 是一个等腰三角形,则有2BO OC B O O C ''''====,242AO A O ''==所以114428222ABCSBC AO =⋅=⨯⨯=故答案为:82【点睛】关键点点睛:根据斜二测画法的规则,可得出三角形的直观图,并求出对应边长,根据面积公式求解.21.【分析】取与中点根据平面平面可知平面球心必在直线上设球心为D 则可求得球心恰好为点O 从而求得外接球的半径代入球的表面积公式计算【详解】在三棱台中可得都是等腰三角形四边形为等腰梯形即如图取与中点连接则可 解析:32π【分析】取AB 与11A B 中点,O O ',根据平面11AA B B ⊥平面ABC ,可知'⊥O O 平面ABC ,球心必在直线O O '上,设球心为D ,则()22221O D O O OC O D O C ''''-+=+,可求得球心恰好为点O ,从而求得外接球的半径R ,代入球的表面积公式计算. 【详解】在三棱台111ABC A B C -中,11190,4,22ACB AC BC A B CC ∠=︒====111,A A C C B B 都是等腰三角形,11112AC B C ==,四边形11A ABB 为等腰梯形即11AA BB =,如图,取AB 与11A B 中点,O O ',连接1,,CO OO C O '',则可得122,2CO C O '=,O O AB '⊥,又平面11AA B B ⊥平面ABC ,两面交线为AB ,所以'⊥O O 平面ABC .因为OA OB OC ==,111O A O BO C '''==,面//ABC 面111A B C , 所以球心必在直线O O '上.所以在直角梯形1C O OC '中可求得6O O '=由题意可知,该三棱台外接球的外接球的球心必在直线O O '上,设球的半径为R ,球心为D ,则()22221O D O O OC O D O C ''''-+=+,得6O D '=O ,所以球的半径为2224(22)32ππ=.故答案为:32π【点睛】方法点睛:定义法:到各个顶点距离均相等的点为外接球的球心,借助面面垂直的性质,找到线面垂直,则球心一定在垂线上,再根据到其他顶点距离也是半径,列关系求解即可.22.【分析】首先将二面角展平根据两点距离线段最短求最小值【详解】如图将二面角沿棱展成平角连结根据两点之间线段最短可知就是的最小值以为邻边作矩形由可知三点共线则故答案为:【点睛】思路点睛:本题考查立体几何 解析:26【分析】首先将二面角展平,根据两点距离线段最短,求AP PB +最小值. 【详解】如图,将二面角沿棱a 展成平角,连结AB ,根据两点之间线段最短,可知AB 就是AP PB +的最小值,以,AE EF 为邻边,作矩形AEFC ,由,CF a BF a ⊥⊥可知,,C F B 三点共线, 则()222213226AB AC BC =+=++=26【点睛】思路点睛:本题考查立体几何中的折线段和的最小值,一般都是沿交线展成平面,利用折线段中,两点间距离最短求解,本题与二面角的大小无关.23.【分析】由扇形的面积及圆心角可得扇形的半径再由扇形的弧长等于圆锥的底面周长可得底面半径再由外接球的半径与圆锥的高和底面半径的关系求出外接球的半径进而求出球的表面积【详解】设扇形的长为l 半径为R 则解得 解析:36π【分析】由扇形的面积及圆心角可得扇形的半径,再由扇形的弧长等于圆锥的底面周长可得底面半径,再由外接球的半径与圆锥的高和底面半径的关系求出外接球的半径,进而求出球的表面积.【详解】设扇形的长为l ,半径为R ,则22111656222S lR R R παπ===⨯=,解得30R =,扇形弧长l 为锥底面周长2r π,∴底面的半径5r =,∴圆锥的高为225R r -=.设外接球的半径为1R ,∴()222115(5)R R =-+,解得13R =, ∴该外接球的表面积为21436R ππ=,故答案为:36π.【点睛】本题考查扇形的弧长与圆锥的底面周长的关系及外接球的半径和圆锥的高及底面半径的关系,和球的表面积公式的应用,属于中档题. 24.【分析】取PA 的中点E 连接EBEC 推出PA ⊥平面BCE 故点M 的轨迹为线段CE 解出即可【详解】取PA 的中点E 连接EBEC 因为几何体是正四面体P ﹣ABC 所以BE ⊥PAEC ⊥PAEB∩EC =E ∴PA ⊥平面解析:3【分析】取PA 的中点E ,连接EB ,EC ,推出PA ⊥平面BCE ,故点M 的轨迹为线段CE ,解出即可.【详解】取PA 的中点E ,连接EB ,EC ,因为几何体是正四面体P ﹣ABC ,所以BE ⊥PA ,EC ⊥PA ,EB ∩EC =E ,∴PA ⊥平面BCE ,且动点M 在正四面体侧面PAC 上运动,总保持MB PA ⊥,∴点M 的轨迹为线段CE ,正四面体P ﹣ABC 的棱长为2,在等边三角形PAC 中求得CE =3232⨯=. 故答案为:3【点睛】本题考查了正四面体的性质和线面垂直与线线垂直的判定,判断轨迹是解题的关键,属于中档题.三、解答题25.(12;(3 【分析】(1)取BD 中点G ,连接GC ,FG ,根据线面垂直的判定定理及性质,先证明EF 为1BD 与1CC 的公垂线,再由题中数据,计算出EF 的长,即可得出结果;(2)连接1ED ,由(1)得到EF ⊥平面1BDD ,设1D 到平面BDE 的距离为d ,根据等体积法,由11E DBD D DBE V V --=求出d ,记直线1BD 与平面BDE 所成角为θ,由1sin d BD θ=即可得出结果; (3)由(2)得到1D 到平面BDE 的距离d ,根据题中条件,得到F 到平面BDE 的距离为2d ,即可得出结果. 【详解】 (1)在正四棱柱1111ABCD A BC D -中,取BD 中点G ,连接GC ,FG ,∵F ,G 分别为1,BD BD 的中点,∴1//FG D D 且112FG D D =, 又1//CE D D ,112CE D D =,所以//FG CE 且FG CE =,则四边形EFGC 为平行四边形,又CE ⊥平面ABCD ,CG ⊂平面ABCD ,∴CE CG ⊥,∴四边形EFGC 为矩形,∴1EF CC ⊥,∵11//D D C C ,∴1EF DD ⊥,又CG BD ⊥,//EF CG ,BD ⊂平面1BDD ,1D D ⊂平面1BDD ,1BD D D D ⋂=, ∴EF ⊥平面1BDD ,又1BD ⊂平面1BDD ,∴1EF BD ⊥,∴EF 为1BD 与1CC 的公垂线,且1E CC ⊂,1F BD ⊂,∴异面直线1BD 与1CC 的距离为||2EF =. (2)在正四棱柱1111ABCD A BC D -中,连接1ED ,则11E DBD D DBE V V --=,由(1)知EF ⊥平面1BDD ,设1D 到平面BDE 的距离为d ,∵12AA =,1AB =,∴BD BE ED ===EF =1BD =∴1122DBD S ==212DBE S =⨯=从而1DBE DBD S d S EF ⨯=⨯,∴2223233d⨯==, 记直线1BD 与平面BDE 所成角为θ,则12323sin 6d BD θ===, ∴直线1BD 与平面BDE 所成角的正弦值为23.(3)由(2)知,1D 到平面BDE 的距离23d =,∵F 是1BD 的中点,且B ∈平面BDE ,∴F 到平面BDE 的距离为32d =. 【点睛】方法点睛:立体几何体中空间角的求法:(1)定义法:根据空间角(异面直线所成角、线面角、二面角)的定义,通过作辅助线,在几何体中作出空间角,再解对应三角形,即可得出结果;(2)空间向量的方法:建立适当的空间直角坐标系,求出直线的方向向量,平面的法向量,通过计算向量夹角(两直线的方法向量夹角、直线的方向向量与平面的法向量夹角、两平面的法向量夹角)的余弦值,来求空间角即可.26.(1)证明见解析;(23 【分析】(1)用分析法:要证平面NMC ⊥平面NCD ,只需证明CD ⊥平面NMC ,只需CM CD ⊥和NM CD ⊥;。
北京市必修二第二章《解析几何初步》检测卷(含答案解析)

一、选择题1.若圆C:222430x y x y ++-+=关于直线260ax by ++=对称,则由点(,)a b 向圆所作的切线长的最小值是( ) A .2B .4C .3D .62.由直线1y x =+上的点向圆()2231x y -+=作切线,则切线长的最小值为( )A .1B C .D .33.若直线y x b =+与曲线y =b 的取值范围为( )A .[]22-,B .2,⎡-⎣C .-⎡⎣D .(-4.已知点(3,2)P ,点M 是圆221:(1)1C x y -+=上的动点,点N 是222:(2)1C x y +-=上的动点,则||||PN PM -的最大值是( )A .5-B .5+C .2D .3-5.已知动点M 到()1,1A ,()3,3B -两点的距离相等,P 是圆()2235x y -+=上的动点,则PM 的最小值为( )A B .C .2D .26.已知直线l :20x y -+=,圆C :()2234x y -+=,若点P 是圆C 上所有到直线l 的距离中最短的点,则点P 的坐标是( )A .(3B .(3C .(3-D .(3+7.已知正方体1111ABCD A BC D -,点,E F 分别是棱11B C ,11A D 的中点,则异面直线BE ,DF 所成角的余弦值为( )A B .35C .45D 8.某几何体的三视图(单位:cm )如图所示,则该几何体的体积(单位:3cm )为( )A .43B .2C .4D .69.如图,圆锥的母线长为4,点M 为母线AB 的中点,从点M 处拉一条绳子,绕圆锥的侧面转一周达到B 点,这条绳子的长度最短值为25,则此圆锥的表面积为( )A .4πB .5πC .6πD .8π10.在正方体1111ABCD A BC D -中,三棱锥11A B CD -的表面积为43球的体积为( ) A .43πB 6πC .323πD .86π11.我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径意思是:球的体积V 乘16,除以9,再开立方,即为球的直径d ,由此我们可以推测当时球的表面积S 计算公式为( ) A .2278S d =B .2272S d =C .292S d =D .21114S d =12.在正方体1111ABCD A BC D -中,M 和N 分别为11AB ,和1BB 的中点.,那么直线AM 与CN 所成角的余弦值是( )A .25B .10 C .35D .3 二、填空题13.2020年是中国传统的农历“鼠年”,有人用3个圆构成“卡通鼠”的形象,如图:(0,3)Q -是圆Q 的圆心,圆Q 过坐标原点O ;点L 、S 均在x 轴上,圆L 与圆S 的半径都等于2,圆S 、圆L 均与圆Q 外切.已知直线l 过点O .若直线l 截圆L 、圆S 、圆Q 所得弦长均等于d ,则d =_____.14.当点P 在圆221x y +=上运动时,它与定点()30Q -,的连线PQ 的中点的轨迹方程是________________.15.经点()2,3P -,作圆2220x y +=的弦AB ,使得P 平分AB ,则弦AB 所在直线方程是______.16.关于x 29(3)4x k x -=-+有两个不同的实数解时,实数k 的取值范围是_______17.已知圆221:9C x y +=,圆222:4C x y +=,定点(1,0)M ,动点A ,B 分别在圆2C 和圆1C 上,满足90AMB ︒∠=,则线段AB 的取值范围_______.18.已知m R ∈,动直线1:20l x my +-=过定点A ,动直线2230l mx y m --+=:过定点B ,若1l 与2l 交于点P (异于点A B ,),则PA PB +的最大值为_________. 19.已知ABC 三个顶点都在球O 的表面上,且1AC BC ==,2AB =,S 是球面上异于A 、B 、C 的一点,且SA ⊥平面ABC ,若球O 的表面积为16π,则球心O 到平面ABC 的距离为____________.20.如图,平面四边形ABCD 中,1AB AD ==,2,3,BD CD BD CD ==⊥将其沿对角线BD 折成四面体A BCD '-,使平面A BD '⊥平面BCD ,则四面体A BCD '-的外接球的球心到平面ACD '的距离等于__________.21.如图,在三棱锥P ABC -中,PA ⊥平面ABC ,AB BC ⊥,2PA AB ==,22AC =M 是BC 的中点,则过点M 的平面截三棱锥P ABC -的外接球所得截面的面积最小值为___22.在三棱锥P ABC -中,P 在底面ABC 的射影为ABC 的重心,点M 为棱PA 的中点,记二面角P BC M --的平面角为α,则tan α的最大值为___________.23.如图,已知四棱锥S ABCD -的底面为等腰梯形,//AB CD ,1AD DC BC ===,2AB SA ==,且SA ⊥平面ABCD ,则四棱锥S ABCD -外接球的体积为______.24.棱长为a 的正四面体的外接球的表面积为______.三、解答题25.如图所示,四棱锥P ABCD -的底面ABCD 是平行四边形,90DBA ∠=︒,2BA BD ==,10,,PA PD E F ==分别是棱,AD PC 的中点.(1)证明://EF 平面PAB ;(2)若二面角P AD B --为60︒,求点B 到平面PAD 的距离. 26.已知下列几何体三视图如图.(1)求该几何体的表面积; (2)求该几何体外接球的体积.27.如图,在三棱锥M 中,M 为BC 的中点,3PA PB PC AB AC =====,26BC =.(1)求二面角P BC A --的大小; (2)求异面直线AM 与PB 所成角的余弦值.28.如图,已知在三棱锥P ABC -中,ABC 是边长为2的正三角形,PAC △是以AC 为斜边的等腰直角三角形,若直线PB 与平面ABC 所成的角为6π.(Ⅰ)若PB PC >,求证:平面PAC ⊥平面ABC ; (Ⅱ)若PB PC <,求直线AB 与平面PAC 所成角的正弦值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】试题分析:222430x y x y ++-+=即22(1)(2)2x y ++-=,由已知,直线260ax by ++=过圆心(1,2)C -,即2260,3a b b a -++==-,由平面几何知识知,为使由点(,)a b 向圆所作的切线长的最小,只需圆心(1,2)C -与直线30x y --=2123()242----=,故选B .考点:圆的几何性质,点到直线距离公式.2.B解析:B 【分析】先求圆心到直线的距离,此时切线长最小,由勾股定理不难求解切线长的最小值. 【详解】切线长的最小值是当直线1y x =+上的点与圆心距离最小时取得, 圆心(3,0)到直线的距离为222d =圆的半径为1,22817d r -=- 故选:B . 【点睛】本题考查圆的切线方程,点到直线的距离,是基础题.3.B解析:B 【分析】直线y x b =+与曲线24y x =-y x b =+与半圆()224,0x y y +=≥有交点,分析几何图形得出有交点的临界情况.【详解】 由24y x =-()224,0xy y +=≥,表示圆心 (0,0),2r =的半圆,当y x b =+经过(2,0)时,此时2b =-; 当y x b =+与此半圆相切时,222221(1)r b ==⇒=+-,作出半圆与直线的图象如下,由图象可知,要使直线y x b =+与曲线24y x =-则2,22b ⎡⎤∈-⎣⎦.故选:B 【点睛】 关键点点睛:由24y x =-y x b =+与其有公共点的临界情况,是解决问题的关键.4.A解析:A 【分析】由圆外的点和圆上的点的连线长度的最值关系,转化为求max minPN PM -.【详解】由条件可知||||PN PM -的最大值是max minPN PM-,()()222max 1302214PN PC =+=-+-=, ()()221min131201221PMPC =-=-+-=,所以||||PN PM -的最大值是()4221522-=- 故选:A 【点睛】结论点睛:本题第二问考查与圆的几何性质有关的最值,具体结论如下: (1)设O 为圆的圆心,半径为r ,圆外一点A 到圆上的距离的最小值为AO r -,最大值为AO r +;(2)过圆内一点的最长弦为圆的直径,最短弦是以该点为中点的弦;(3)记圆的半径为r ,圆心到直线的距离为d ,直线与圆相离,则圆上的点到直线的最大距离为d r +,最小值为d r -.5.A解析:A 【分析】易知M 轨迹为线段AB 的垂直平分线,由此可求得M 轨迹方程;利用点到直线距离公式求得圆心到直线距离,由d r -可求得结果. 【详解】M 到,A B 两点距离相等,M ∴点轨迹为线段AB 的垂直平分线,又311312-==---AB k ,AB 中点坐标为()1,2-, M ∴点的轨迹方程为:()221y x -=+,即240x y -+=.由圆的方程知:圆心为()3,0,半径r =∴圆心到直线240x y -+=的距离d ==minPMd r ∴=-==故选:A. 【点睛】结论点睛:直线与圆相离时,圆上的点到直线距离的最大值为d r +,最小值为d r -(d 为圆心到直线距离,r 为圆的半径).6.B解析:B 【分析】若点P 是圆C 上所有到直线l 的距离中最短的点,那么此点必过与直线l 垂直的直线上,求此直线与圆的交点,然后即可得到点P 的坐标. 【详解】圆C :()2234x y -+=的圆心坐标为(3,0),半径为2, 过圆心与直线l 垂直的直线方程为30x y +-=,与圆的方程联立得()223034x y x y +-=⎧⎪⎨-+=⎪⎩,解得113x y ⎧=+⎪⎨=⎪⎩223x y ⎧=-⎪⎨=⎪⎩所以它与圆的交点坐标为(3+和(3-, 由题,点P 是圆C 上所有到直线l 的距离中最短的点, 所以点P的坐标为(3-. 故选:B .【点睛】本题考查直线与圆的位置关系的应用,考查逻辑思维能力和运算求解能力,属于常考题.7.B解析:B 【分析】证明//BE AF ,得AFD ∠是异面直线BE ,DF 所成角或其补角,在三角形中求解即可. 【详解】连接,AF EF ,∵,E F 分别是棱11B C ,11A D 的中点,∴//EF AB ,EF AB =, ∴ABEF 是平行四边形,∴//BE AF ,∴AFD ∠是异面直线BE ,DF 所成角或其补角, 设正方体的棱长为2,则111A F D F ==,22215AF DF ==+=,2223cos 25255AF DF AD AFD AF DF +-∠===⋅⨯⨯,异面直线BE ,DF 所成角的余弦值为35. 故选:B .【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.8.B解析:B 【分析】根据三视图判断出几何体的结构,利用椎体体积公式计算出该几何体的体积. 【详解】根据三视图可知,该几何体为如图所示四棱锥,该棱锥满足底面是直角梯形,且侧棱ED ⊥平面ABCD , 所以其体积为11(12)22232V =⨯⨯+⨯⨯=, 故选:B. 【点睛】方法点睛:该题考查的是有关根据几何体三视图求几何体体积的问题,解题方法如下: (1)首先根据题中所给的几何体的三视图还原几何体;(2)结合三视图,分析几何体的结构特征,利用体积公式求得结果.9.B解析:B 【分析】根据圆锥侧面展开图是一个扇形,且线段25MB =. 【详解】设底面圆半径为r , 由母线长4l,可知侧面展开图扇形的圆心角为22r rl ππα==, 将圆锥侧面展开成一个扇形,从点M 拉一绳子围绕圆锥侧面转到点B ,最短距离为BM ; 如图,在ABM 中,25,2,4MB AM AB ===, 所以222AM AB MB +=, 所以2MAB π∠=,故22rππα==,解得1r =,所以圆锥的表面积为25S rl r πππ=+=, 故选:B 【点睛】关键点点睛:首先圆锥的侧面展开图为扇形,其圆心角为2rlπα=,其次从点M 拉一绳子围绕圆锥侧面转到点B ,绳子的最短距离即为展开图中线段MB 的长,解三角即可求解底面圆半径r ,利用圆锥表面积公式求解.10.B解析:B 【分析】根据三棱锥的表面积进一步求出正方体的棱长,最后求出正方体的外接球的半径,进一步求出结果. 【详解】解:设正方体的棱长为a ,则1111112B D AC AB AD B C D C a ======, 由于三棱锥11A B CD -的表面积为43 所以)1213344224AB CS S a==⨯=所以2a =()()()2222226++=, 所以正方体的外接球的体积为34663ππ⎛⎫= ⎪ ⎪⎝⎭故选:B . 【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.11.A解析:A 【分析】根据已知条件结合球的体积公式3432d π⎛⎫ ⎪⎝⎭求解出π的值,然后根据球的表面积公式242d π⎛⎫⎪⎝⎭求解出S 的表示,即可得到结果. 【详解】3169V d =,所以33941632d d V π⎛⎫== ⎪⎝⎭,所以278π=, 所以2222727442848d d S d π⎛⎫==⨯⨯= ⎪⎝⎭,故选:A. 【点睛】关键点点睛:解答本题的关键是根据球的体积公式得到π的表示,再将π带入到球的表面积公式即可完成求解.12.A解析:A【分析】作出异面直线AM 和CN 所成的角,然后解三角形求出两条异面直线所成角的余弦值. 【详解】设,E F 分别是1,AB CC 的中点,由于,M N 分别是111,A B BB 的中点,结合正方体的性质可知11//,//B E AM B F CN ,所以1EB F ∠是异面直线AM 和CN 所成的角或其补角, 设异面直线AM 和CN 所成的角为θ,设正方体的边长为2,2211125B E B F ==+=,2221216EF =++=,则1cos cos EB F θ=∠=55625255+-=⨯⨯.故选:A.【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.二、填空题13.【分析】圆L 与圆S 关于原点对称直线l 过原点求出圆L 与圆S 的圆心坐标设出直线l 方程由三个弦长相等得直线方程从而可得弦长d 【详解】由题意圆与圆关于原点对称设则即设方程为则三个圆心到该直线的距离分别为:则 解析:125【分析】圆L 与圆S 关于原点对称,直线l 过原点,求出圆L 与圆S 的圆心坐标,设出直线l 方程,由三个弦长相等得直线方程,从而可得弦长d . 【详解】由题意圆L 与圆S 关于原点对称,设(),0(0)S a a >23,4a =+=,即()()4,04,0S L ∴-,. 设方程为(0y kx k =≠),则三个圆心到该直线的距离分别为:1d =2d =,3d =,则()()()2222123444449d d d d =-=-=-,即有222449⎛⎫⎛⎫⎛⎫-=-=-,解得2421k =, 则24161442144425121d ⎛⎫⨯ ⎪=-= ⎪ ⎪+⎝⎭,即125d =. 故答案为: 125. 【点睛】本题考查直线与圆的位置关系,考查直线与圆相交弦长问题.求出圆心到直线的距离,用勾股定理求得弦长是求圆弦长的常用方法.14.【分析】设动点的中点由中点坐标公式可解出将点点的坐标代入已知圆的方程化简可得到所求中点的轨迹方程【详解】解:设动点的中点由题意可得:解得:又点在圆上运动化简得:即为所求的轨迹方程故答案为:【点睛】方 解析:()22+3124y x +=【分析】设动点00(,)P x y ,P ,Q 的中点(,)M x y ,由中点坐标公式可解出0x ,0y ,将点P 点的坐标代入已知圆的方程,化简可得到所求中点的轨迹方程. 【详解】解:设动点00(,)P x y ,P ,Q 的中点(,)M x y , 由题意可得:032x x -+=,02y y =, 解得:023x x =+,02y y =, 又点P 在圆221x y +=上运动,22(23)(2)1x y ∴++=,化简得:()22+3124y x +=,即为所求的轨迹方程. 故答案为:()22+3124y x +=.【点睛】方法点睛:求轨迹方程的基本步骤:①建立适当的平面直角坐标系,设(,)P x y 是轨迹上的任意一点;②寻找动点(,)P x y 所满足的条件;③用坐标(,)x y 表示条件,列出方程0(),f x y =;④化简方程0(),f x y =为最简形式;⑤证明所得方程即为所求的轨迹方程,注意验证.15.【分析】由题意知圆的圆心从而可求出由从而可求出弦所在直线的斜率是由直线的点斜式可写出弦所在直线方程【详解】解:设圆的圆心为则由是的中点知因为所以点在圆内且所以弦所在直线的斜率是则弦所在的直线方程是整解析:23130x y --=. 【分析】由题意知圆2220x y +=的圆心()0,0O ,从而可求出32OP k =-,由AB OP ⊥,从而可求出弦AB 所在直线的斜率是123AB OP k k =-=,由直线的点斜式,可写出弦AB 所在直线方程. 【详解】解:设圆2220x y +=的圆心为O ,则()0,0O .由P 是AB 的中点,知AB OP ⊥.因为()22231320+-=<,所以点P 在圆O 内,且303202OP k --==--. 所以弦AB 所在直线的斜率是123AB OP k k =-=,则弦AB 所在的直线方程是23(2)3y x +=-, 整理可得,23130x y --=. 故答案为:23130x y --=. 【点睛】本题考查了直线的点斜式方程,考查了两直线垂直的应用.本题的关键是分析出AB OP ⊥,进而求出弦所在直线的斜率.16.【分析】方程左边是圆心为原点半径为3的上半圆右边为恒过的直线当直线与半圆相切时求出的值直线过点时求得的值利用图象即可确定出实数的范围【详解】设图象如图所示当直线与半圆相切时圆心到直线的距离即解得:当解析:72,243⎛⎤⎥⎝⎦【分析】方程左边是圆心为原点,半径为3的上半圆,右边为恒过(3,4)的直线,当直线AB 与半圆相切时,求出k 的值,直线过点(3,0)-时,求得k 的值,利用图象即可确定出实数k 的范围. 【详解】设219y x =-,2(3)4y k x =-+,图象如图所示, 当直线与半圆相切时,圆心O 到直线AB 的距离d r =,即231k =+,解得:724k =, 当直线过点(3,0)-时,可求得4023(3)3k -==--,则利用图象得:实数k 的范围为72(,]243,故答案为:72(,]243. 【点睛】此题考查了直线与圆相交的性质,利用了数形结合的思想,熟练掌握数形结合思想是解本题的关键.17.【分析】因为可得根据向量和可得即由分别在圆和圆上点设求得由可得即可得到设中点为求得的取值范围即可求得答案【详解】分别在圆和圆上点设则由可即整理可得:设中点为则即点的轨迹是以为圆心半径等于的圆的取值范 解析:[231,231]【分析】因为90AMB ︒∠=,可得MA MB ⊥,根据向量和可得AB MA MB =+,即2222||||||2||MA MB MA MB MA MB AB +=++⋅=,由A ,B 分别在圆2C 和圆1C 上点设()11,A x y ,()22,B x y ,求得()21212||132AB x x y y -+=,由MA MB ⊥,可得1212121x x y y x x +=+-,即可得到()212||152AB x x =-+,设AB 中点为()00,N x y ,求得0x 的取值范围,即可求得答案. 【详解】90AMB ︒∠=MA MB ∴⊥,2222||||||2||MA MB MA MB MA MB AB ∴+=++⋅=,A ,B 分别在圆2C 和圆1C 上点设()11,A x y ,()22,B x y ,∴2211222294x y x y ⎧+=⎨+=⎩ 则()()()22221211212||132AB x x y y x x y y =-+-=-+,由MA MB ⊥,可()()11221,1,0x y x y -⋅-=, 即()()1212110x x y y --+=, 整理可得:1212121x x y y x x +=+-,()()21212||1321152AB x x x x ∴=-+-=-+,设AB 中点为()00,N x y ,则20||154AB x =-,∴01201222x x x y y y =+⎧⎨=+⎩,()()()2200121212041321321114x y x x y y x x x ∴+=++=++-=+即2200132x y ⎛⎫-+= ⎪⎝⎭,点()00,N x y 的轨迹是以1,02⎛⎫⎪⎝⎭0x ∴的取值范围是1122⎡⎢⎣,20||154AB x ∴=-的范围为13⎡-+⎣,故:||AB的范围为11]故答案为:11]. 【点睛】本题主要考查了求同心圆上两点间距离的范围问题,解题关键是掌握向量加法原理和将两点间距离问题转化为中点轨迹问题,考查了分析能力和计算能力,属于中档题.18.【分析】根据观察两条直线的位置关系结合不等式可得结果【详解】由题可知:动直线过定点动直线过定点且可知所以且所以即当且仅当时取=所以的最大值为故答案为:【点睛】本题考查直线过定点问题还考查了基本不等式解析:【分析】根据观察两条直线的位置关系,结合不等式,可得结果. 【详解】 由题可知:动直线1:20l x my +-=过定点()2,0A动直线2230l mx y m --+=:过定点()2,3B 且()110m m ⨯+⨯-=,可知12l l ⊥,所以PA PB ⊥,且2229PA PB AB +==所以2229222PA PB PA PB ⎛+⎫≤+= ⎪⎝⎭即PA PB +≤ 当且仅当PA PB =时取“=”所以PA PB +的最大值为故答案为:【点睛】本题考查直线过定点问题,还考查了基本不等式应用,属中档题.19.【分析】根据题中的垂直关系确定球心再根据球的表面积公式计算再求点到平面的距离【详解】由并且平面平面且平面是直角三角形和的公共斜边取的中点根据直角三角形的性质可知所以点是三棱锥外接球的球心设则则三棱锥【分析】根据题中的垂直关系,确定球心O ,再根据球的表面积公式计算SA ,再求点O 到平面ABC 的距离.【详解】由222AC BC AB +=,AC BC ∴⊥,并且SA ⊥平面ABC ,BC ⊂平面ABC ,SA BC ∴⊥,且AC SA A ⋂=BC ∴⊥平面SAC ,BC SC ∴⊥,SB ∴是直角三角形SBC 和SAB 的公共斜边,取SB 的中点O ,根据直角三角形的性质可知OA OB OC OS ===, 所以点O 是三棱锥S ABC -外接球的球心, 设SA x =,则211222r SB x ==+, 则三棱锥S ABC -外接球的表面积2416S r ππ==,()21264x +=,解得:14x =, 点O 到平面ABC 的距离1142d SA ==.14【点睛】方法点睛:本题考查了球与几何体的综合问题,考查空间想象能力以及化归和计算能力,(1)当三棱锥的三条侧棱两两垂直时,并且侧棱长为,,a b c ,那么外接球的直径2222R a b c =++2)当有一条侧棱垂直于底面时,先找底面外接圆的圆心,过圆心做底面的垂线,球心在垂线上,根据垂直关系建立R 的方程.(3)而本题类型,是两个直角三角形的公共斜边的中点是外接球的球心.20.【分析】取的中点为可证明为四面体外接球的球心利用等体积可得答案【详解】取的中点为连接因为平面平面平面平面平面故平面因为平面故因为故故又故平面因为平面故而为的中点故又所以故为四面体外接球的球心设球心到 解析:12【分析】取BC 的中点为M ,可证明M 为四面体A BCD '-外接球的球心,利用等体积可得答案. 【详解】取BC 的中点为M ,连接,A M DM ',因为平面A BD '⊥平面BCD ,BD CD ⊥,平面A BD'平面BCD BD =,CD ⊂平面BCD ,故CD ⊥平面A BD ', 因为BA '⊂平面A BD ',故CD BA '⊥,因为1A B A D ''==,2BD =,故222BD A B A D ''=+,故''⊥BA A D ,又A D DC D '⋂=,故'⊥BA 平面ACD ',因为A C '⊂平面ACD ',故A D A C ''⊥,而M 为BC 的中点,故MA MB MC '==,又BD DC ⊥,所以MD MB =,故M 为四面体A BCD '-外接球的球心.设球心M 到平面ACD '的距离为h ,因为2B A CD M A CD V V ''--=,所以11233A CDA CD S AB S h '''=⨯,即12h =. 故答案为:12. 【点睛】本题考查四面体的外接球,此类问题一般是先确定球心的位置,再把球的半径放置在可解的平面图形中处理,如果球心的位置不易确定,则可以通过补体的方法来处理.21.【分析】将三棱锥补成长方体计算出三棱锥的外接球半径计算出球心到过点的截面的距离的最大值可求得截面圆半径的最小值利用圆的面积可求得结果【详解】平面将三棱锥补成长方体则三棱锥的外接球直径为所以设球心为点 解析:π【分析】将三棱锥P ABC -补成长方体ABCD PEFN -,计算出三棱锥P ABC -的外接球半径R ,计算出球心到过点M 的截面的距离d 的最大值,可求得截面圆半径的最小值,利用圆的面积可求得结果. 【详解】PA ⊥平面ABC ,AB BC ⊥,将三棱锥P ABC -补成长方体ABCD PEFN -,则三棱锥P ABC -的外接球直径为22222223R PC PA AB AD PA AC ==+++=,所以,3R =设球心为点O ,则O 为PC 的中点,连接OM ,O 、M 分别为PC 、BC 的中点,则//OM PB ,且2211222OM PB PA AB ==+= 设过点M 的平面为α,设球心O 到平面α的距离为d . ①当OM α⊥时,2d OM ==②当OM 不与平面α垂直时,2d OM <=.综上,2d OM ≤=设过点M 的平面截三棱锥P ABC -的外接球所得截面圆的半径为r ,则221r R d =-,因此,所求截面圆的面积的最小值为2r ππ=. 故答案为:π. 【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.22.【分析】取中点为过分别作底面的垂线根据题中条件得到;过分别作的垂线连接由二面角的定义结合线面垂直的判定定理及性质得到为二面角的平面角;为二面角的平面角得出令进而可求出最值【详解】取中点为过分别作底面解析:34【分析】取BC 中点为E ,过P 、M 分别作底面的垂线PO 、MN ,根据题中条件,得到AN NO OE ==,2PO MN =;过O 、N 分别作BC 的垂线OG 、NH ,连接MH ,PG ,由二面角的定义,结合线面垂直的判定定理及性质,得到MHN ∠为二面角MBC A--的平面角;PGO ∠为二面角A BC P --的平面角,得出tan 4tan PGO MHN ∠=∠,()23tan tan tan 14tan MHNPGO MHN MHNα∠=∠-∠=+∠,令tan 0x MHN =∠>,进而可求出最值. 【详解】取BC 中点为E ,过P 、M 分别作底面的垂线PO 、MN , 则O 为ABC 的重心,MN ⊥平面ABC ;PO ⊥平面ABC ; 由于点M 为棱PA 的中点,所以有AN NO OE ==,2PO MN =; 过O 、N 分别作BC 的垂线OG 、NH ,连接MH ,PG , 因为BC ⊂平面ABC ,所以MN BC ⊥,同理PO BC ⊥; 又MN NH N ⋂=,MN ⊂平面MNH ,NH ⊂平面MNH , 所以BC ⊥平面MNH ;因为MH ⊂平面MNH ,所以BC MH ⊥, 所以MHN ∠为二面角MBC A --的平面角;同理BC PG ⊥,所以PGO ∠为二面角A BC P --的平面角, 所以tan PO PGO OG ∠=,tan MNMHN HN∠=, 因为NO OE =,//OG NH ,所以12OG NH =; 因此2tan 4tan 12PO MNPGO MHNOG HN∠===∠,所以()2tan tan 3tan tan tan 1tan tan 14tan PGO MHN MHNPGO MHN PGO MHN MHNα∠-∠∠=∠-∠==+∠⋅∠+∠,令tan 0x MHN =∠>,则2333tan 1444x x x x α=≤=+, 当且仅当214x =,即12x =时,等号成立. 故答案为:34. 【点睛】 关键点点睛:求解本题的关键在于确定二面角MBC A --、A BC P --以及P BC M --三者之间的关系,由题中条件得出二面角A BC P --是二面角MBC A --的4倍,进而可求得结果.23.【分析】取AB 中点连接根据平行四边形性质可得为等腰梯形ABCD 的外心取SB 中点O 连接则可得O 是四棱锥的外接球球心在中求得r=OA 即可求得体积【详解】取AB 中点连接则所以四边形为平行四边形所以同理所以 解析:823π【分析】取AB 中点1O ,连接11,OC O D ,根据平行四边形性质,可得1O 为等腰梯形ABCD 的外心,取SB 中点O ,连接1,,,OA OC OD OO ,则可得O 是四棱锥S ABCD -的外接球球心,在Rt SAB 中,求得r=OA ,即可求得体积. 【详解】取AB 中点1O ,连接11,OC O D ,则1//CD O A , 所以四边形1ADCO 为平行四边形, 所以1=1CO ,同理1=1O D ,所以1111=O A O B OC O D ==,即1O 为等腰梯形ABCD 的外心, 取SB 中点O ,连接1,,,OA OC OD OO ,则1//OO SA ,因为SA ⊥平面ABCD ,所以1OO ⊥平面ABCD ,又2AB SA ==, 所以=OA OB OC OD ==,又SA AB ⊥,所以OA OS =,即O 是四棱锥S ABCD -的外接球球心, 在Rt SAB 中,2AB SA ==,所以12OA SB ==所以3433V π=⨯=,故答案为:3.【点睛】解决外接球的问题时,难点在于找到球心,可求得两个相交平面的外接圆圆心,自圆心做面的垂线,垂线交点即为球心,考查空间想象,数学运算的能力,属中档题.24.【分析】由正四面体性质可知球心在棱锥高线上利用勾股定理可求出半径R 即可求出球的面积【详解】正四面体的棱长为:底面三角形的高:棱锥的高为:设外接球半径为R 解得所以外接球的表面积为:;故答案为:【点睛】 解析:232a π 【分析】由正四面体性质可知,球心在棱锥高线上,利用勾股定理可求出半径R ,即可求出球的面积. 【详解】正四面体的棱长为:a ,a =,=, 设外接球半径为R ,222()()33R R a =-+,解得4R a =,所以外接球的表面积为:22342a a ππ⎫⨯=⎪⎪⎝⎭;故答案为:232a π. 【点睛】本题考查球的表面积的求法,解题的关键是根据球心的位置,在正四面体中求出球的半径.三、解答题25.(1)证明见解析;(2)2【分析】(1)取PB 中点M ,连接,MF AM ,证出四边形AMFE 为平行四边形,利用线面平行的判定定理即可证明.(2)连接,PE BE ,可得PEB ∠为二面角P AD B --的平面角,求出PE =用余弦定理可得PB ,再利用面面垂直的判定定理证明平面PBE ⊥平面PDA ,点B 作BO PE ⊥交PE 于点O ,在PEB △中即可求解.【详解】解:(1)证明:取PB 中点M ,连接,MF AM , 由F 为PC 中点,则//MF BC 且12MF BC =. 由已知有//,BC AD BC AD =,又由于E 为AD 中点,从而//,MF AE MF AE =, 故四边形AMFE 为平行四边形,所以//EF AM .又AM ⊂平面PAB ,而EF ⊂/平面PAB ,则//EF 平面PAB . (2)证明:连接,PE BE .由,PA PD BA BD ==,而E 为AD 中点, 所以,PE AD BE AD ⊥⊥,所以PEB ∠为二面角P AD B --的平面角,60PEB ∴∠=︒.又2,90,BA BD DBA AD ==∠=︒∴=∴在PAD △中,由PA PD AD ===,可解得PE =在Rt ABD △中,由AD E =为AD 的中点,可得12BE AD == ∴在PEB △中,2222cos PB PE EB PE EB PEB =+-⋅∠,2182262PB ∴=+-⨯=,222,PB PB EB PE PB EB ∴=∴+=∴⊥.又,,,PE AD BE AD PE BE E AD ⊥⊥⋂=∴⊥平面PBE ,AD ⊂平面PAD ,∴平面PBE ⊥平面PDA .过点B 作BO PE ⊥交PE 于点,O OB ∴⊥平面PDA .∴在PEB △中,OB PE PB EB ⋅=⋅,从而PB EB OB PE ⋅===∴点B 到平面PAD【点睛】关键点点睛:本题考查了面面垂直的判定定理,求点到面的距离,解题的关键是求出6PB=,证出平面PBE⊥平面PDA,作出点到面的距离,考查了计算能力.26.(1)474+;(2)646 27π.【分析】(1)先根据三视图还原直观图,为一个正四棱锥,然后求出侧面积和底面积,就得到表面积;(2)找到外接球的球心,计算出半径26r=,可得求的体积.【详解】解:(1)由三视图知,该几何体是正四棱锥的直观图,如图.底面为正方形,边长为2,其面积为224⨯=,72,其面积为47∴该几何体的表面积为474.。
北师大版高一数学必修2解析几何初步试题及答案

《解析几何初步》检测试题一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0 C.2x+y-2=0 D.x+2y-1=0 2.若直线210ay -=与直线(31)10a x y -+-=平行,则实数a 等于( )A 、12B 、12- C 、13D 、13-3.若直线32:1+=x y l ,直线2l 与1l 关于直线x y -=对称,则直线2l 的斜率为 ( )A .21B .21- C .2 D .2- 4.在等腰三角形AOB 中,AO =AB ,点O(0,0),A(1,3),点B 在x 轴的正半轴上,则直线AB 的方程为( ) A .y -1=3(x -3) B .y -1=-3(x -3) C .y -3=3(x -1) D .y -3=-3(x -1)5.直线02032=+-=+-y x y x 关于直线对称的直线方程是 ( ) A .032=+-y xB .032=--y xC .210x y ++=D .210x y +-=6.若直线()1:4l y k x =-与直线2l 关于点)1,2(对称,则直线2l 恒过定点( )A .0,4B .0,2C .2,4D .4,27.已知直线mx+ny+1=0平行于直线4x+3y+5=0,且在y 轴上的截距为31,则m ,n 的值分别为A.4和3B.-4和3C.- 4和-3D.4和-3 8.直线x-y+1=0与圆(x+1)2+y 2=1的位置关系是( ) A 相切 B 直线过圆心 C .直线不过圆心但与圆相交 D .相离 9.圆x 2+y 2-2y -1=0关于直线x -2y -3=0对称的圆方程是( )A.(x -2)2+(y+3)2=12 B.(x -2)2+(y+3)2=2C.(x +2)2+(y -3)2=12 D.(x +2)2+(y -3)2=210.已知点(,)P x y 在直线23x y +=上移动,当24x y +取得最小值时,过点(,)P x y 引圆22111()()242x y -++=的切线,则此切线段的长度为( )A .2B .32C .12D .211.经过点(2,3)P -作圆22(1)25x y ++=的弦AB ,使点P 为弦AB 的中点,则弦AB 所在直线方程为( ) A .50x y --= B .50x y -+= C .50x y ++=D .50x y +-=12.直线3y kx =+与圆()()22324x y -+-=相交于M,N 两点,若MN≥k的取值范围是()A.34⎡⎤-⎢⎥⎣⎦,B.[]34⎡⎤-∞-+∞⎢⎥⎣⎦,,C.⎡⎢⎣⎦ D.23⎡⎤-⎢⎥⎣⎦,二填空题:(本大题共4小题,每小题4分,共16分.)13.已知点()1,1A-,点()3,5B,点P是直线y x=上动点,当||||PA PB+的值最小时,点P的坐标是。
北师大版高中数学必修二第二章《解析几何初步》测试题(含答案解析)

一、选择题1.已知圆1C :22(1)(1)1x y -++=,圆2C :22(4)(5)9x y -+-=,点M 、N 分别是圆1C 、圆2C 上的动点,P 为x 轴上的动点,则||||PN PM -的最大值是( )A .2B .4C .7D .92.已知点()()2,0,2,0M N -,若圆()2226900x y x r r +-+-=>上存在点P (不同于,M N ),使得PM PN ⊥,则实数r 的取值范围是( )A .()1,5B .[]1,5C .()1,3D .[]1,33.已知圆221:2410C x y x y ++-+=,圆222:(3)(1)1C x y -++=,则这两个圆的公切线条数为( ) A .1条B .2条C .3条D .4条4.直线1y kx =+与圆()()22214x y -+-=相交于P 、Q 两点.若PQ ≥k 的取值范围是( )A .3,04⎡⎤-⎢⎥⎣⎦B .[]1,1-C .⎡⎢⎣⎦D .⎡⎣5.在圆M :224410x y x y +---=中,过点N (1,1)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为( )A .B .C .24D .66.在平面直角坐标系xOy 中,过x 轴上的点P 分别向圆221(1)(4)7:C x y -++=和圆222:(2)(5)9C x y -+-=引切线,记切线长分别为12,d d .则12d d +的最小值为( )A .B .C .D .7.某几何体的三视图如图所示(单位:cm ),则该几何体的外接球的表面积(单位:2cm )是( )A .36πB .54πC .72πD .90π8.如图,在长方体1111ABCD A BC D -中,1AB AD ==,12AA =,M 为棱1DD 上的一点.当1A M MC +取得最小值时,1B M 的长为( )A 3B 6C .23D .269.《九章算术》与《几何原本》并称现代数学的两大源泉.在《九章算术》卷五商功篇中介绍了羡除(此处是指三面为等腰梯形,其他两侧面为直角三角形的五面体)体积的求法.在如图所示的羡除中,平面ABDA '是铅垂面,下宽3m AA '=,上宽4m BD =,深3m ,平面BDEC 是水平面,末端宽5m CE =,无深,长6m (直线CE 到BD 的距离),则该羡除的体积为( )A .324mB .330mC .336mD .342m10.如图,正三棱柱111ABC A B C -的高为4,底面边长为43,D 是11B C 的中点,P 是线段1A D 上的动点,过BC 作截面AP α⊥于E ,则三棱锥P BCE -体积的最小值为( )A .3B .23C .43D .1211.某三棱锥的三视图如图所示,已知网格纸上小正方形的边长为1,则该三棱锥的体积为( )A .43B .83C .3D .412.已知直线a 、b 都不在平面α内,则下列命题错误的是( ) A .若//a b ,//a α,则//b α B .若//a b ,a α⊥,则b α⊥ C .若a b ⊥,//a α,则b α⊥D .若a b ⊥,a α⊥,则//b α二、填空题13.已知点(),P x y 是直线()300kx y k +-=≠上一动点,PA ,PB 是圆22:20C x y y +-=的两条切线,A ,B 是切点,若四边形PACB 的最小面积是1,则k 的值为__________.14.经点()2,3P -,作圆2220x y +=的弦AB ,使得P 平分AB ,则弦AB 所在直线方程是______.15.经过两直线11370x y +-=和12190x y +-=的交点,且与()3,2A -,()1,6B -等距离的直线的方程是______.16.直线y x b =+与曲线21x y =-b 的取值范围是______.17.过点1,12⎛⎫-⎪⎝⎭的直线l 满足原点到它的距离最大,则直线l 的一般式方程为___________.18.若点P 在直线1:30l x y ++=上,过点P 的直线2l 与曲线()22:54C x y -+=相切于点M ,则PM 的最小值为__________.19.已知直三棱柱111ABC A B C -,14AB BC AA ===,42AC =,若点P 是上底面111 A B C 所在平面内一动点,若三棱锥P ABC -的外接球表面积恰为41π,则此时点P 构成的图形面积为________.20.如图,点E 是正方体1111ABCD A BC D -的棱1DD 的中点,点M 在线段1BD 上运动,则下列结论正确的有__________. ①直线AD 与直线1C M 始终是异面直线 ②存在点M ,使得1B M AE ⊥ ③四面体EMAC 的体积为定值④当12D M MB =时,平面EAC ⊥平面MAC21.四棱锥V ABCD -中,底面ABCD 是正方形,各条棱长均为2.则异面直线VC 与AB 所成角的大小为______.22.已知H 是球O 的直径AB 上一点,:1:3AH HB =,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为__________.23.已知长方体1234ABCD A B C D -,底面是边长为4的正方形,高为2,点O 是底面ABCD 的中心,点P 在以O 为球心,半径为1的球面上,设二面角111P A B C --的平面角为θ,则tan θ的取值范围是________.24.已知A ,B ,C 三点都在球O 的表面上,球心O 到平面ABC 的距离是球半径的13,且22AB =AC BC ⊥,则球O 的表面积是______.三、解答题25.如图,AB 是O 的直径,PA 垂直于O 所在的平面,C 是圆周上不同于A ,B 的一动点.(1)证明:BC ⊥面PAC ;(2)若PA =AC =1,AB =2,求直线PB 与平面PAC 所成角的正切值.26.如图,在三棱锥P ABC -中,PA ⊥平面ABC ,底面ABC 是直角三角形,4PA AB BC ===,O 是棱AC 的中点,G 是AOB ∆的重心,D 是PA 的中点.(1)求证:BC ⊥平面PAB ; (2)求证:DG//平面PBC ;27.将棱长为2的正方体1111ABCD A BC D -沿平面11A BCD 截去一半(如图1所示)得到如图2所示的几何体,点E ,F 分别是BC ,DC 的中点.(Ⅰ)证明:EF ⊥平面1A AC ; (Ⅱ)求三棱锥1A D EF -的体积.28.如图,四棱锥E ABCD -中,底面ABCD 是边长为2的正方形,平面AEB ⊥平面ABCD ,4EBA π∠=,2EB =F 为CE 上的点,BF CE ⊥.(1)求证:BF ⊥平面ACE ; (2)求点D 到平面ACE 的距离.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】求出P 点到两圆心的距离,圆1C :22(1)(1)1x y -++=的圆心(11)E -,,圆2C :22(4)(5)9x y -+-=的圆心(45)F ,,由()PF R PE r +--为最大值.再求得E 关于x 轴的对应点E ',PF PE -=PF PE '-FE '≤,由此可得最大值.【详解】圆1C :22(1)(1)1x y -++=的圆心(11)E -,,半径为r =1, 圆2C :22(4)(5)9x y -+-=的圆心(45)F ,,半径是R =3, 要使||||PN PM -最大,需||PN 最大,且||PM 最小,||PN 最大值为3PF +,||PM 的最小值为1PE -,故||||PN PM -最大值是(3)(1)4PF PE PF PE +--=-+,(45)F ,关于x 轴的对称点(45)F '-,,22(41)(51)5PF PE PF PE EF -=-≤=-+-+'=',故4PF PE -+的最大值为549+=, 故选:D . 【点睛】结论点睛:设P 是圆C 外一点,圆C 半径为r ,则P 到圆上点的距离的最大值为PC r +,最小值为PC r -,直线PC 与圆的两个交点为最大值点和最小值点.2.A解析:A 【分析】由题意可得两圆相交,而以MN 为直径的圆的方程为x 2+y 2=4,圆心距为3,由两圆相交的性质可得|r ﹣2|<3<|r+2|,由此求得r 的范围. 【详解】根据直径对的圆周角为90°,结合题意可得以MN 为直径的圆和圆 (x ﹣3)2+y 2=r 2有交点,显然两圆相切时不满足条件,故两圆相交.而以AB 为直径的圆的方程为x 2+y 2=4,两个圆的圆心距为3, 故|r ﹣2|<3<|r+2|,求得1<r <5, 故选A . 【点睛】本题主要考查直线和圆的位置关系,两圆相交的性质,体现了转化的数学思想,属于中档题.3.D解析:D 【分析】根据题意,分析两圆的圆心与半径,进而分析两圆的位置关系,据此分析可得答案. 【详解】根据题意,圆221:2410C x y x y ++-+=,即22+1+24x y -=()()其圆心为12-(,),半径12r =, 圆222:(3)(1)1C x y -++=,其圆心为31-(,),半径21r =,则有12125C C r r ==>+,两圆外离,有4条公切线;故选D . 【点睛】本题考查圆与圆的位置关系以及两圆的公切线,关键是分析两圆的位置关系,属于基础题.4.B解析:B 【分析】由PQ ≥()2,1到直线1y kx =+的距离d ≤,利用点到直线距离公式,列不等式可得结果.【详解】若PQ ≥则圆心()2,1到直线1y kx =+的距离d ≤=≤解得[]1,1k ∈-,故选B. 【点睛】本题主要考查点到直线的距离公式、直线与圆的位置关系,属于中档题.解答直线与圆的位置关系的题型,常见思路有两个:一是考虑圆心到直线的距离与半径之间的大小关系(求弦长问题需要考虑点到直线距离、半径,弦长的一半之间的等量关系);二是直线方程与圆的方程联立,考虑运用韦达定理以及判别式来解答.5.A解析:A 【分析】先求得圆的圆心和半径,易知最长弦为直径,最短弦为过点()1,1与AC (直径)垂直的弦,再求得BD 的长,可得面积. 【详解】由224410x y x y +---=可得:22(2)(2)9x y -+-=, 故圆心为(2,2),半径为3r =,由N ()1,1为圆内点可知,过N (1,1)最长弦为直径,即AC =6 而最短弦为过()1,1与AC 垂直的弦, 圆心(2,2)到()1,1的距离:d ==所以BD== 所以四边形ABCD的面积:12S AC BD =⋅= 故选:A 【点睛】本题考查了直线与圆,圆的方程,圆的几何性质,面积的求法,属于中档题.6.D解析:D 【分析】利用两点间的距离公式,将切线长的和转化为到两圆心的距离和,利用三点共线距离最小即可求解. 【详解】221(1)(4)7:C x y -++=,圆心()1,4-,半径1r =222:(2)(5)9C x y -+-=,圆心()2,5,半径33r =设点P ()0,0x , 则()()()()2222120010472059d d x x +=-++-+-+--()()220019216x x =-++-+()()()()222200103204x x =-+++-+-,即()0,0x 到()1,3-与()2,4两点距离之和的最小值, 当()0,0x 、()1,3-、()2,4三点共线时,12d d +的和最小, 即12d d +的和最小值为()()2212345052-+--==.故选:D 【点睛】本题考查了两点间的距离公式,需熟记公式,属于基础题.7.A解析:A 【分析】由三视图知该几何体是底面为等腰直角三角形,且侧面垂直于底面的三棱锥,由题意画出图形,结合图形求出外接球的半径,再计算外接球的表面积. 【详解】解:由几何体的三视图知,该几何体是三棱锥P ABC -,底面为等腰ABC ∆, 且侧面PAB ⊥底面ABC ,如图所示;设D 为AB 的中点,又3DA DB DC DP ====,且PD ⊥平面ABC ,∴三棱锥P ABC -的外接球的球心O 在PD 上,设OP R =,则OA R =,3OD R =-,222(3)3R R ∴=-+,解得3R =,∴该几何体外接球的表面积是32436R cm ππ=.故选:A . 【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.8.A解析:A 【分析】本题首先可通过将侧面11CDD C 绕1DD 逆时针转90展开得出当1A 、M 、2C 共线时1A M MC +取得最小值,此时M 为1DD 的中点,然后根据11B A ⊥平面11A D DA 得出111B A A M ⊥,最后根据221111M A B B A M =+即可得出结果.【详解】如图,将侧面11CDD C 绕1DD 逆时针转90展开,与侧面11ADD A 共面,连接12AC ,易知当1A 、M 、2C 共线时,1A M MC +取得最小值, 因为1AB AD ==,12AA =,所以M 为1DD 的中点,12A M = 因为11B A ⊥平面11A D DA ,1A M ⊂平面11A D DA ,所以111B A A M ⊥, 则222211111(2)3M B A A M B =+=+=故选:A. 【点睛】关键点点睛:本题考查根据线面垂直判断线线垂直,能否根据题意得出当M 为1DD 的中点时1A M MC +取得最小值是解决本题的关键,考查计算能力,考查数形结合思想,是中档题.9.C解析:C 【分析】在BD ,CF 上分别取点B ',C ',使得3m BB CC ''==,连接A B '',A C '',B C '',把几何体分割成一个三棱柱和一个四棱锥,然后由棱柱、棱锥体积公式计算. 【详解】如图,在BD ,CF 上分别取点B ',C ',使得3m BB CC ''==,连接A B '',A C '',B C '',则三棱柱ABC A B C '''-是斜三棱柱,该羡除的体积V V=三棱柱ABC A B C '''-V+四棱锥A B DEC '''-()311123636336m 232+⎛⎫⎛⎫=⨯⨯⨯+⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭.故选:C .【点睛】思路点睛:本题考查求空间几何体的体积,解题思路是观察几何体的结构特征,合理分割,将不规则几何体体积的计算转化为锥体、柱体体积的计算.考查了空间想象能力、逻辑思维能力、运算求解能力.10.C解析:C 【分析】因为P BCE P ABC E ABC V V V ---=-则当E ABC V -取最大值时,三棱锥P BCE -体积有最小值,建立坐标系求得当点E 的高为3时,问题得解. 【详解】以点O 为原点,,,OA OD OB 分别为,,x y z 轴建立空间直角坐标系,如图所示:设点(),0,E x z ,依题意得()6,0,0A ,则()6,0,AE x z =- ,(),0,OE x z = 因为过BC 作截面AP α⊥于E ,所以AE OE ⊥则0AE OE ⋅=, 故()2600x x z -++= 所以()6z x x =-3x =时max 3z =又()143P BCE P ABC E ABC ABCV V V S z ---=-=-因为max 3z =所以三棱锥P BCE -体积的最小值()1114343643332P BCE ABC V S-=-=⋅⋅=故选:C 【点睛】关键点点晴:本题的解题关键是将问题转化为求E ABC V -的最大值,通过建系求得三棱锥E ABC -的高的最大值即可.11.A解析:A 【分析】首先由三视图还原几何体,然后由几何体的空间结构特征求解三棱锥的体积即可. 【详解】由三视图可知,在棱长为2的正方体中,其对应的几何体为棱锥P ABC -,该棱锥的体积:11142223323V Sh ⎛⎫==⨯⨯⨯⨯= ⎪⎝⎭. 故选:A. 【点睛】方法点睛:(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.12.C解析:C 【分析】利用线面平行的性质和判定定理可判断A 选项的正误;由线面垂直的定义可判断B 选项的正误;根据已知条件判断b 与α的位置关系,可判断C 选项的正误;根据已知条件判断b 与α的位置关系,可判断D 选项的正误. 【详解】由于直线a 、b 都不在平面α内.在A 中,若//a α,过直线a 的平面β与α的交线m 与a 平行, 因为//a b ,可得//b m ,b α⊄,m α⊂,所以,//b α,A 选项正确;在B 中,若a α⊥,则a 垂直于平面α内所有直线,//a b ,则b 垂直于平面α内所有直线,故b α⊥,B 选项正确;在C 中,若a b ⊥,//a α,则b 与α相交或平行,C 选项错误; 在D 中,若a b ⊥,a α⊥,则//b α或b α⊂,b α⊄,//b α∴,D 选项正确.故选:C. 【点睛】方法点睛:对于空间线面位置关系的组合判断题,解决的方法是“推理论证加反例推断”,即正确的结论需要根据空间线面位置关系的相关定理进行证明,错误的结论需要通过举出反例说明其错误,在解题中可以以常见的空间几何体(如正方体、正四面体等)为模型进行推理或者反驳.二、填空题13.【分析】先求圆的半径四边形的最小面积是1转化为三角形的面积是求出切线长再求的距离也就是圆心到直线的距离可解的值【详解】解:圆的圆心半径是由圆的性质知:四边形的最小面积是1是切线长)圆心到直线的距离就 解析:±1【分析】先求圆的半径,四边形PACB 的最小面积是1,转化为三角形PBC 的面积是12,求出切线长,再求PC 的距离也就是圆心到直线的距离,可解k 的值. 【详解】解:圆22:20C x y y +-=的圆心(0,1),半径是1r =,由圆的性质知:2PBC PACB S S ∆=四边形,四边形PACB 的最小面积是1, ()min 1122PBC rd S ∆==∴(d 是切线长) min 1d ∴=圆心到直线的距离就是PC 的最小值,2222111k+==+1k ∴=±故答案为:±1【点睛】本题考查直线和圆的方程的应用,点到直线的距离公式等知识,属于中档题.14.【分析】由题意知圆的圆心从而可求出由从而可求出弦所在直线的斜率是由直线的点斜式可写出弦所在直线方程【详解】解:设圆的圆心为则由是的中点知因为所以点在圆内且所以弦所在直线的斜率是则弦所在的直线方程是整解析:23130x y --=. 【分析】由题意知圆2220x y +=的圆心()0,0O ,从而可求出32OP k =-,由AB OP ⊥,从而可求出弦AB 所在直线的斜率是123AB OP k k =-=,由直线的点斜式,可写出弦AB 所在直线方程. 【详解】解:设圆2220x y +=的圆心为O ,则()0,0O .由P 是AB 的中点,知AB OP ⊥.因为()22231320+-=<,所以点P 在圆O 内,且303202OP k --==--. 所以弦AB 所在直线的斜率是123AB OP k k =-=,则弦AB 所在的直线方程是23(2)3y x +=-, 整理可得,23130x y --=. 故答案为:23130x y --=. 【点睛】本题考查了直线的点斜式方程,考查了两直线垂直的应用.本题的关键是分析出AB OP ⊥,进而求出弦所在直线的斜率.15.或【分析】直接求两直线的交点与等距离的直线一条过AB 的中点一条平行AB 【详解】两直线和的交点为的中点为因为所求直线过且与等距离故所求直线过的中点或与直线平行当直线过的中点时直线方程为即当直线与直线平解析:790x y +-=或210x y ++= 【分析】直接求两直线的交点,与(3,2),(1,6)A B --等距离的直线,一条过AB 的中点,一条平行AB . 【详解】两直线11370x y +-=和12190x y +-=的交点为(2,5)-,(3,2),(1,6)A B --的中点为(1,2),因为所求直线过(2,5)-且与()3,2A -,()1,6B -等距离, 故所求直线过AB 的中点或与直线AB 平行, 当直线过AB 的中点时,2(5)712k --==--, 直线方程为27(1)y x -=--,即790x y +-=, 当直线与直线AB 平行时,26823(1)4k ---===---,直线方程为52(2)y x +=--,即210x y ++=. 故答案为:790x y +-=或210x y ++= 【点睛】本题主要考查了直线交点,直线的平行,直线的斜率,直线方程,属于中档题.16.或【分析】把曲线方程整理后可知其图象为半圆进而画出图象来要使直线与曲线有且只有一个交点那么很容易从图上看出其三个极端情况分别是:直线在第四象限与曲线相切交曲线与和另一个点以及与曲线交于点分别求出则的解析:11b -<≤或2b =- 【分析】把曲线方程整理后可知其图象为半圆,进而画出图象来,要使直线与曲线有且只有一个交点,那么很容易从图上看出其三个极端情况,分别是:直线在第四象限与曲线相切,交曲线与()0,1-和另一个点,以及与曲线交于点()0,1,分别求出b ,则b 的范围可得. 【详解】解:由曲线21x y =-,可得()2210x y x +=≥,表示一个半圆.如下图可知,()0,1A ,()10B ,,()0,1C -, 当直线y x b =+经过点A 时,10b =+,求得1b =; 当直线y x b =+经过点B ,点C 时,01b =+,求得1b =-; 当直线y x b =+和半圆相切时,由圆心到直线的距离等于半径,可得12b =,求得2b =-或2b =(舍),故b 的取值范围为11b -<≤或2b =-.故答案为:11b -<≤或2b =-. 【点睛】本题主要考查了直线与圆相交的性质,点到直线的距离公式,体现了数形结合的思想方法,属于中档题.17.【分析】过作于连接可得直角三角形中从而得到当时原点到直线的距离最大利用垂直求出的斜率从而得到的方程【详解】设点过坐标系原点作于连接则为原点到直线的距离在直角三角形中为斜边所以有所以当时原点到直线的距 解析:2450x y --=【分析】过O 作OB l ⊥于B ,连接OA ,可得直角三角形AOB 中OB OA <,从而得到当OA l ⊥时,原点O 到直线l 的距离最大,利用垂直,求出l 的斜率,从而得到l 的方程. 【详解】 设点1,12A ⎛⎫-⎪⎝⎭,过坐标系原点O 作OB l ⊥于B ,连接OA , 则OB 为原点O 到直线l 的距离, 在直角三角形AOB 中,OA 为斜边, 所以有OB OA <,所以当OA l ⊥时,原点O 到直线l 的距离最大, 而1212OA k -==-,所以12l k =, 所以l 的直线方程为11122y x ⎛⎫+=- ⎪⎝⎭, 整理得:2450x y --=【点睛】本题考查根据点到直线的距离求斜率,点斜式写直线方程,属于简单题.18.【分析】求出圆心坐标圆的半径结合题意利用圆的到直线的距离半径满足勾股定理求出就是最小值【详解】解:因为的圆心半径为则圆心到直线的距离为:点在直线上过点的直线与曲线只有一个公共点则的最小值:故答案为: 解析:27【分析】求出圆心坐标,圆的半径,结合题意,利用圆的到直线的距离,半径,||PM 满足勾股定理,求出||PM 就是最小值. 【详解】解:因为()22:54C x y -+=的圆心(5,0),半径为2,则圆心到直线1:30l x y ++=的=P 在直线1:30l x y ++=上,过点P 的直线2l 与曲线()22:54C x y -+=只有一个公共点M ,则||PM故答案为:【点睛】本题考查点到直线的距离公式,直线与圆的位置关系,勾股定理的应用,考查计算能力,转化思想的应用,属于基础题.19.【分析】确定是等腰直角三角形的中点分别是和的外心由直棱柱性质得的外接球的球心在上外接球面与平面的交线是圆是以为圆心为半径的圆求出可得面积【详解】则设分别是的中点则分别是和的外心由直三棱柱的性质得平面 解析:4π【分析】确定ABC 是等腰直角三角形,11,AC AC 的中点1,D D 分别是ABC 和111A B C △的外心,由直棱柱性质得P ABC -的外接球的球心O 在1DD 上,外接球面与平面111A B C 的交线是圆,是以1D 为圆心,1D P 为半径的圆,求出1PD 可得面积. 【详解】4,AB BC AC ===90ABC ∠=︒,设1,D D 分别是11,AC AC 的中点,则1,D D 分别是ABC 和111A B C △的外心,由直三棱柱的性质得1DD ⊥平面ABC , 所以P ABC -的外接球的球心O 在1DD 上,如图,24()41OA ππ=,则OP OA ==,32OD ===, 所以11135422OD DD OD AA OD =-=-=-=,12PD ===, P ABC -的外接球面与平面111A B C 的交线是圆,是以1D 为圆心,1D P 为半径的圆,其面积为224S ππ=⨯=. 故答案为:4π.【点睛】关键点点睛:本题考查立体几何中动点轨迹问题的求解,重点考查了几何体的外接球的有关问题的求解,关键是根据外接球的性质确定球心位置,结合勾股定理得出动点所满足的具体条件,结论:三棱锥的外接球的球心在过各面外心且与此面垂直的直线上.20.②③④【分析】取点为线段的中点可判断①建立空间直角坐标系假设存在点使得利用解出的值即可判断②;连接交于点证明线段到平面的距离为定值可判断③;求出点的坐标然后计算平面和平面的法向量即可判断④【详解】对解析:②③④. 【分析】取点M 为线段1BD 的中点可判断①,建立空间直角坐标系假设存在点M ,使得1B M AE ⊥,利用()1110AE B M AE B B BD λ⋅=⋅+=解出λ的值即可判断②;连接AC 、BD 交于点1O ,证明11//EO BD ,线段1BD 到平面AEC 的距离为定值,可判断③;求出点M 的坐标,然后计算平面AEC 和平面MAC 的法向量,即可判断④. 【详解】对于①:连接1AC 交1BD 于点O ,当点M 在O 点时直线AD 与直线1C M 相交,故①不正确,以D 为坐标原点,建立如图所示的空间直角坐标系,设正方体的边长为2,则()0,0,0D ,()10,0,2D ,()2,0,0A ,()0,2,0C ,()0,0,1E ,()2,2,0B ,()12,2,2B ,对于②:()2,0,1AE =-,假设存在点M ,使得1B M AE ⊥,()()()1110,0,22,2,22,2,22B M B B BD λλλλλ=+=-+--=---,[]0,1λ∈, 所以14220AE B M λλ⋅=+-=,解得13λ=,所以当12D M MB =时1B M AE ⊥, 故②正确;对于③:连接AC 、BD 交于点1O ,因为点E 是棱1DD 的中点,此时11//EO BD ,故线段1BD 到平面AEC 的距离为定值,所以四面体EMAC 的体积为定值,故③正确; 对于④:当12D M MB =时,442,,333M ⎛⎫ ⎪⎝⎭,()2,0,1AE =-,()2,2,0AC =-,设平面AEC 的法向量为()111,,m x y z =,由111120220m AE x z m AC x y ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ 令12z =,可得11x =,11y =,可得()1,1,2m =,设平面MAC 的法向量为()222,,n x y z =,242,,333MA ⎛⎫=-- ⎪⎝⎭,由222222202420333n AC x y n MA x y z ⎧⋅=-+=⎪⎨⋅=--=⎪⎩解得:20y =,令 21x =可得22z =,所以1,1,1n ,因为1111120m n ⋅=⨯+⨯-⨯=,m n ⊥所以平面EAC ⊥平面MAC ,故④正确;故答案为:②③④.【点睛】方法点睛:证明面面垂直的方法(1)利用面面垂直的判定定理,先找到其中一个平面的一条垂线,再证明这条垂线在另外一个平面内或与另外一个平面内的一条直线平行即可;(2)利用性质://,αββγαγ⊥⇒⊥(客观题常用);(3)面面垂直的定义(不常用);(4)向量方法:证明两个平面的法向量垂直,即法向量数量积等于0.21.60°【分析】根据AB ∥CD 得到异面直线与所成角即为∠VCD 由△VCD 为等边三角形即可求解【详解】如图示因为是正方形所以AB ∥CD 所以异面直线与所成角即为∠VCD 又各条棱长均为2所以△VCD 为等边三解析:60°【分析】根据AB ∥CD ,得到异面直线VC 与AB 所成角即为∠VCD ,由△ VCD 为等边三角形,即可求解.【详解】如图示,因为ABCD 是正方形,所以AB ∥CD ,所以异面直线VC 与AB 所成角即为∠VCD.又各条棱长均为2,所以△ VCD 为等边三角形,所以∠VCD =60°,异面直线VC 与AB 所成角的大小为60°.故答案为:60°【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:(1)平移:平移异面直线中的一条或两条,作出异面直线所成的角;(2)认定:证明作出的角就是所求异面直线所成的角;(3)计算:求该角的值,常利用解三角形;(4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤ ⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角. 22.【分析】求出截面圆的半径设可得出从而可知球的半径为根据勾股定理求出的值可得出球的半径进而可求得球的表面积【详解】如下图所示设可得出则球的直径为球的半径为设截面圆的半径为可得由勾股定理可得即即所以球的 解析:163π 【分析】求出截面圆H 的半径,设AH x =,可得出3HB x =,从而可知,球O 的半径为2x ,根据勾股定理求出x 的值,可得出球O 的半径,进而可求得球O 的表面积.【详解】如下图所示,设AH x =,可得出3HB x =,则球O 的直径为4AB x =,球O 的半径为2x ,设截面圆H 的半径为r ,可得2r ππ=,1r ∴=,由勾股定理可得()2222OH r x +=,即()22214x AH x -+=,即2214x x +=,33x ∴=, 所以,球O 的半径为232x =O 的表面积为2231643S ππ=⨯=⎝⎭. 故答案为:163π. 【点睛】方法点睛:在求解有关球的截面圆的问题时,一般利用球的半径、截面圆的半径以及球心到截面圆的距离三者之间满足勾股定理来求解. 23.【分析】根据题意画出相应的图形结合题意找出什么情况下取最大值什么情况下取最小值利用和差角正切公式求得最值得到结果【详解】根据题意如图所示:取的中点过点作球的切线切点分别为可以判断为的最小值为的最大值 解析:4747-+⎣⎦【分析】根据题意,画出相应的图形,结合题意,找出什么情况下取最大值,什么情况下取最小值,利用和差角正切公式求得最值,得到结果.【详解】根据题意,如图所示:取11A B 的中点H ,过H 点作球O 的切线,切点分别为,M N ,可以判断1O HN ∠为θ的最小值,1O HM ∠为θ的最大值, 且1112tan 12OO O HO HO ∠===, 22,1OH OM ON ===,所以7HM HN ==tan tan 7NHO OHM ∠=∠=, 1117827477tan tan()1637117O HN O HO NHO ---∠=∠-∠====+, 11171827477tan tan()7117O HM O HO OHM ++++∠=∠+∠====-, 所以tan θ的取值范围是4747-+⎣⎦, 故答案为:4747-+⎣⎦. 【点睛】方法点睛:该题考查的是有关二面角的求解问题,解题方法如下:(1)先根据题意画图;(2)结合题意,找出在什么情况下取最大值和最小值;(3)结合图形求得相应角的正切值;(4)利用和差角正切公式求得结果.24.【分析】先在直角三角形中列关系求得再求球的表面积即可【详解】是直角三角形外接圆圆心为的中点因为三点都在球的表面上球心到平面的距离为是球半径的所以中即故解得所以球的表面积故答案为:【点睛】本题考查了球 解析:9π【分析】先在直角三角形中列关系,求得R ,再求球的表面积即可.【详解】 22AB =,AC BC ⊥,ABC ∆是直角三角形,外接圆圆心为AB 的中点M , 因为A ,B ,C 三点都在球O 的表面上,球心O 到平面ABC 的距离为OM ,是球半径的13, 所以OMB ∆中()()222OA OM MA =+,即2221132R R AB ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭ 故222112232R R ⎛⎫⎛⎫=+⨯ ⎪ ⎪⎝⎭⎝⎭,解得29=4R ,所以球O 的表面积29=4494S R πππ=⋅=. 故答案为:9π.【点睛】本题考查了球的表面积,属于中档题.三、解答题25.(1)证明见解析;(2)62. 【分析】(1)证明AC ⊥BC 和PA ⊥BC ,BC ⊥面PAC 即得证;(2)先证明∠BPC 为PB 与平面PAC 所成的角,再通过解三角形求出,BC PC 即得解.【详解】证明:(1) AB 为圆O 直径 ∴∠ACB =90°即AC ⊥BCPA ⊥面ABC ,∴PA ⊥BCAC PA =A∴BC ⊥面PAC.(2)BC ⊥面PAC , ∴∠BPC 为PB 与平面PAC 所成的角,在直角三角形ABC 中,22213BC =-=, 在直角三角形PAC 中,22112PC =+=,在直角三角形PBC 中,tan ∠BPC =3622=. 故直线PB 与平面PAC 所成角的正切值为6. 【点睛】 方法点睛:求线面角常用几何法求解,其步骤为:找→作→证(定义)→指→求(解三角形).26.(1)证明见解析;(2)证明见解析.【分析】(1)由线面垂直推出PA BC ⊥,由直角三角形推出AB BC ⊥,即可证明线面垂直;(2)连结OG 并延长交AB 于点E ,连结DO ,DE ,通过证明//DE 平面PBC 、//DO 平面PBC 证明平面DOE //平面PBC ,从而推出线面平行.【详解】(1)证明:PA ⊥平面ABC ,且BC ⊂平面ABC ,∴PA BC ⊥,底面ABC 是直角三角形且AB BC =,AB BC ∴⊥, 又PA ⊂平面PAB ,AB 平面PAB ,PA AB A =,∴BC ⊥平面PAB .(2)证明:连结OG 并延长交AB 于点E ,连结DO ,DE ,G 是AOB ∆的重心,∴ OE 为AB 边上的中线, ∴E 为AB 边上的中点,又有D 为PA 边上的中点, ∴//DE PB ,PB ⊂平面PBC ,//DE ∴平面PBC ,同理可得//DO 平面PBC ,又DE ⊂平面DOE ,DO ⊂平面DOE ,DE DO D ⋂=,∴平面DOE //平面PBC ,又有DG ⊂平面DOE , DG //∴平面PBC27.(Ⅰ)证明见解析;(Ⅱ)1.【分析】(Ⅰ)由BD AC ⊥和1A A BD ⊥,利用线面垂直的判定定理证得BD ⊥平面1A AC ,然后再由//BD EF 证明.(Ⅱ)由1D D ⊥平面ABCD ,则1D D 是三棱锥1D AEF -在平面AEF 上的高,然后利用等体积法11A D EF D AEF V V --=求解.【详解】(Ⅰ)如图所示:连接BD ,易知BD AC ⊥,因为1A A ⊥平面ABCD ,BD ⊂平面ABCD ,所以1A A BD ⊥,又1A AAC A =, 所以BD ⊥平面1A AC .在CBD 中,点E ,F 分别是BC ,DC 的中点,所以//BD EF .所以EF ⊥平面1A AC .(Ⅱ)∵1D D ⊥平面ABCD ,∴1D D 是三棱锥1D AEF -在平面AEF 上的高,且12D D =.∵点E ,F 分别是BC ,DC 的中点,∴1DF CF CE BE ====. ∴2111322222AEF S AD DF CF CE AB BE =-⋅⋅-⋅⋅-⋅⋅=△. ∴11111321332A D EF D AEF AEF V V S D D --==⋅⋅=⨯⨯=△. 【点睛】 方法点睛:(1)证明直线和平面垂直的常用方法:①线面垂直的定义;②判定定理;③垂直于平面的传递性(a ∥b ,a ⊥α⇒b ⊥α);④面面平行的性质(a ⊥α,α∥β⇒a ⊥β);⑤面面垂直的性质.(2)证明线面垂直的核心是证线线垂直,而证明线线垂直则需借助线面垂直的性质.因此,判定定理与性质定理的合理转化是证明线面垂直的基本思想.28.(1)证明见解析;(223 【分析】。
解析几何单元测试题及答案

解析几何单元测试题及答案一、选择题(每题3分,共15分)1. 椭圆的标准方程是哪一个?A. \((x-h)^2/a^2 + (y-k)^2/b^2 = 1\)B. \((x-h)^2/b^2 + (y-k)^2/a^2 = 1\)C. \((x-h)^2/a^2 + (y-k)^2/b^2 = 0\)D. \((x-h)^2/a^2 - (y-k)^2/b^2 = 1\)2. 点P(-1, 3)到直线3x - 4y + 5 = 0的距离是?A. 2B. 3C. 4D. 53. 抛物线 \(y^2 = 4x\) 的焦点坐标是?A. (1, 0)B. (0, 2)C. (1, 2)D. (2, 0)4. 直线 \(ax + by + c = 0\) 与 \(dx + ey + f = 0\) 平行的条件是?A. \(a/d = b/e\)B. \(a/d = b/e ≠ c/f\)C. \(a/d ≠ b/e\)D. \(a/d = b/e = c/f\)5. 圆心在原点,半径为5的圆的标准方程是?A. \(x^2 + y^2 = 25\)B. \((x-5)^2 + y^2 = 25\)C. \(x^2 + y^2 = 5\)D. \((x-5)^2 + y^2 = 5\)二、填空题(每题2分,共10分)6. 已知椭圆 \(\frac{x^2}{9} + \frac{y^2}{4} = 1\),其长轴的长度为________。
7. 点A(2, -1)关于直线 \(x-y-1=0\) 对称的点的坐标是________。
8. 直线 \(2x - 3y + 1 = 0\) 与 \(x + y - 2 = 0\) 的交点坐标是________。
9. 抛物线 \(x^2 = 6y\) 的准线方程是________。
10. 圆 \(x^2 + y^2 - 2x - 4y + 4 = 0\) 的圆心坐标是________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修解析几何初步单元检测题及答案
集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]
高一数学单元过关检测题
(必修2·解析几何初步) 命题人 郑革功
(满分100分,检测时间100分钟)
一. 选择题
1. 如果直线0=++C By Ax 的倾斜角为 45,则有关系式
A.B A = B.0=+B A C.1=AB D.以上均不可能 2. 直线
12
2=-b y a x 在y 轴上的截距是 A. b B. 2b C. 2b - D. b ± 3. 下列命题中正确的是
A .平行的两条直线的斜率一定相等 B.平行的两条直线的倾斜角一定相等
C .垂直的两直线的斜率之积为-1 D.斜率相等的两条直线一定平
行 4. 圆2)3()2(22
=++-y x 的圆心和半径分别是
A .)3,2(-,1
B .)3,2(-,3
C .)3,2(-,2
D .)3,2(-,
2
5. 如果直线l 上的一点A 沿x 轴负方向平移3个单位,再沿y 轴正方向平移1
个单位后,又回到直线l 上,则l 的斜率是
A .3
B .131
6. 建立空间直角坐标系O —xyz 原子所在位置的坐标是
A .(12,1
2
,1) B .(0,0,1)
C .(1,12,1)
D .(1,12,1
2
)
7. 已知直线mx+ny+1=0平行于直线4x+3y+5=0,且在y 轴上的截距为3
1
,则
m ,n 的值分别为
和3 和3 C.- 4和-3 和-3
8. 已知点P (0,-1),点Q 在直线x-y+1=0上,若直线PQ 垂直于直线x+2y-5=0,则点Q 的坐标是
A .(-2,1)
B .(2,1)
C .(2,3)
D .(-2,-1)
9. 已知三角形ABC 的顶点A (2,2,0),B (0,2,0),C(0,1,4),则三
角形ABC 是
A .直角三角形;
B .锐角三角形;
C .钝角三角形;
D .等腰三角形; 10. 平行于直线2x-y+1=0且与圆x 2+y 2=5相切的直线的方程是
A .2x -y+5=0
B .2x -y -5=0
C .2x +y+5=0或2x +y -5=0
D .2x -y+5=0或2x -y -5=0 二.填空题
11. 如图,直线12,l l 的斜率分别为k 1、k 2,则k 1、k 2
的大小关系是; .
12. 如果直线l 与直线x+y -1=0关于y 轴对称,则
直线l 的方程是 .
13. 已知两点A (1,-1)、B (3,3),点C (5,
a )在直线AB 上,则实数a 的值是 .
14. 直线02=+-b y x 与两坐标轴所围成的三角形的面积不大于1,那么b 的取
值范围是
.
15. 直线0323=-+y x 截圆422=+y x 所得的劣弧所对的圆心角为 . 16. 连接平面上两点111(,)P x y 、222(,)P x y 的线段12P P 的中点M 的坐标为
1212(,)22x x y y
++,那么,已知空间中两点1111(,,)P x y z 、2222(,,)P x y z ,线段12P P 的中点M 的坐标为 .
三.解答题
17. 已知一条直线经过两条直线0432:1=--y x l 和0113:2=-+y x l 的交点,并且
垂直于这个交点和原点的连线,求此直线方程。
18. 已知点A (1,4),B (6,2),试问在直线x-3y+3=0上是否存在点C ,使得
三角形ABC 的面积等于14若存在,求出C 点坐标;若不存在,说明理由。
19. 一个圆切直线0106:1=--y x l 于点)1,4(-P ,且圆心在直线035:2=-y x l 上,
求该圆的方程。
20. 氟利昂是一种重要的化工产品,它在空调制造业有着巨大的市场价值.已知
它的市场需求量y 1(吨)、市场供应量y 2(吨)与市场价格x (万元/吨)分别近似地满足下列关系:
y 1=-x+70, y 2=2x -20
当y 1=y 2时的市场价格称为市场平衡价格.此时的需求量称为平衡需求量. (1) 求平衡价格和平衡需求量;
(2) 科学研究表明,氟利昂是地球大气层产生臭氧空洞的罪魁祸首,
《京都议定书》要求缔约国逐年减少其使用量.某政府从宏观调控出发,决定对每吨征税3万元,求新的市场平衡价格和平衡需求量.
21. 已知圆C :x 2+y 2-2x+4y -4=0,是否存在斜率为1的直线m ,使以m 被圆C
截得的弦AB 为直径的圆过原点若存在,求出直线m 的方程;若不存在,说明理由。
参考答案
11.k 1>k 2 12.X -y+1=0 13.7.
14.[2,0)(0,2]-⋃
15.60°.
16.122212
(,,)222
x x y y z z +++
三.解答题
17.设交点为P ,由方程组23403110x y x y --=⎧⎨+-=⎩解得P (5,2).故2
5OP k =.设所求直
线的斜率为k ,由于它与直线OP 垂直,则15
2
OP k k =-
=-,所所求直线的方程为5
2(5)2
y x -=--,即52290x y +-=.
18.=,直线AB 的方程为
26
4216
y x --=--,即25220x y +-=,
假设在直线x-3y+3=0上是否存在点C ,使得三角形ABC 的面积等于14,设C 的坐标为(,)m n ,则一方面有m-3n+3=0①,另一方面点C 到直线AB 的距离为
d =
,由于三角形ABC 的面积等于14
,则
111422AB d ⋅⋅==,|2522|28m n +-=,即2550m n +=②或256m n +=-③.联立①②解得13511m =
,56
11n =;联立①③解得3m =-,0n =. 综上,在直线x-3y+3=0上存在点C 13556
(,)1111
或(3,0)-,使得三角形ABC 的面积
等于14.
19.过点)1,4(-P 且与直线0106:1=--y x l 垂直的直线的方程设为
60x y C ++=,点P 的坐标代入得23C =-,即6230x y +-=.
设所求圆的圆心为为(,)M a b ,由于所求圆切直线0106:1=--y x l 于点)1,4(-P ,则满足6230a b +-=①;又由题设圆心M 在直线035:2=-y x l 上,则530a b -=②.联立①②解得3a =,5b =.即圆心M (3,5),因此半径
r
=22(3)(5)37x y -+-=.
20.(1)由12y y =得70220x x -+=-,∴30x =,此时1240y y ==,平衡价格为30万元/吨,平衡需求量为40吨.
(2)设新的平衡价格为t 万元/吨,则170y t =-+,22(3)20226y t t =--=-,由12y y =得70226t t -+=-,∴32t =,此时12y y ==38,即新的平衡价格为32万元/吨,平衡需求量为38吨.
21.设这样的直线存在,其方程为y x b =+,它与圆C 的交点设为A 11(,)x y 、
B 22(,)x y ,则由222440
x y x y y x b ⎧+-+-=⎨=+⎩得2222(1)440
x b x b b ++++-=(*),
∴12212(1)442x x b b b x x +=-+⎧⎪⎨+-⋅=⎪⎩.∴1212()()y y x b x b =++=21212()x x b x x b +++. 由OA ⊥OB 得12120x x y y +=,∴212122()0x x b x x b +++=, 即2244(1)0b b b b b +--++=,2340b b +-=,∴1b =或4b =-.
容易验证1
b=-时方程(*)有实根.故存这样的直线,有两条,其方程b=或4
是
=-
y x
1
y x
=+或4。