接收灵敏度和噪声系数ppt课件

合集下载

第2章 噪声系数和噪声温度

第2章 噪声系数和噪声温度

通常需要描述一个电路或系统内部噪声的大小,因此需要引入相应的物理量(噪声系数或噪声指数)来描述。

一.噪声系数的定义图 2-35 为一线性四端网络, 它的噪声系数定义为输入端的信号噪声功率比(S/N)i 与输出端的信号噪声功率比(S/N)o 的比值, 即 图 2-35 噪声系数的定义第四节 噪声系数和噪声温度线性电路K P N F S iN i S o N o信号功率噪声功率图中, K P 为电路的功率传输系数(或功率放大倍数),K P =So /S i。

用N a 表示线性电路内部附加噪声功率在输出端的输出, 考虑到K P =So /S i , 上式可以表示为:o o i i o i F N S N S N S N S N ==)()(1i p a a p p F i i N K N N K K N N N +==+o p o F i p iN K N N N K N ==噪声系数通常用dB 表示, 用dB 表示的噪声系数为o i F F NS N S Lg LgN dB N )()(1010)(==关于噪声系数,有以下几点需要说明:(1) 由于噪声功率是与带宽B相联系的,为了不使噪声系数依赖于 (1)指定的频宽,因此国际上式(2-6(2-611)定义中的噪声功率是指单位频带内的噪声功率,即是指输出、输入噪声功率谱密度。

此时的噪声系数将随指定的工作频率不同而不同,即表示点频的噪声系数。

(2) 由式(2-60)可以看出,输入、输出信号功率是成比例变化的, (2)即噪声系数与输入信号大小无关,但却与输入噪声功率Ni有关,因此,为了明确,在噪声系数的定义中,规定输入噪声功率Ni为信号源内阻Rs的热噪声最大输出功率(由前可知为kTB),并规定温度为290K。

(3) 在噪声系数的定义中,没有对网络的匹配情况提出要求,因而是普遍适用的。

实际上输出端的阻抗是否匹配并不影响噪声系数的大小。

因此噪声系数可以表示为输出端开路时两均方电压之比或输出端短路时两均方电流之比,即2222nionoF nio no F I I N UU N ==(4) 上述噪声系数的定义只适用于线性或准线性电路。

第4章 微波收发技术--噪声和接收机灵敏度(本)

第4章 微波收发技术--噪声和接收机灵敏度(本)

有耗二端口网络的噪声系数
• 我们将有耗二端口网络视为无源有耗器件,如衰减 器、有耗传输线等 • 用损耗因子L来表示,GA=1/L
T FL T0
• 室温下 F=L
级联系统中的噪声系数(1)
G1,F1,Bn G2,F2,Bn
• (F1,G1)为第一级放大器的噪声系数和增益 • (F2,G2)为第二级放大器的噪声系数和增益 • F0为级联后的系统噪声系数
3. 根据调制方式和传输速率确定等效噪声带宽
fb B fb (1 ) log 2 M
4. 根据灵敏度的计算公式即可确定在某噪声系数下 的收信门限电平
计算收信门限电平的例题(1)
• 某通信系统的调制方式为64QAM调制,经相 干解调,BER与归一化信噪比的关系为
BER64 QAM 1Eb 7 erfc 24 7 N0
F0 3.94dB(2.48)
F0 2.04dB(1.67)
• 应合理地分配各级电路的噪声系数和增益 • 在一定条件下,系统的噪声系数只取决于系 统的第1级电路的噪声系数
计算接收机的总噪声系数
IL=2dB
G=20dB NF=2dB
CL=7dB
G=30dB NF=6dB
主要内容
基本知识:微波工程常用单位 和表示方法 无线系统体系构架 系统的非线性和补偿措施 系统的噪声和噪声系数 系统的灵敏度和动态范围 微波收发系统的实现 微波收发系统中的频率源技术 设计实例
• 意义: 信号通过二端口网络(放大器)后,由于器件本 身产生噪声,使信噪比变坏,使信噪比下降的 倍数就是该器件的噪声系数。
噪声系数的定义2
• 输出端的噪声可分为两部分 – 由进入系统的外部噪声造成的 NinGa – 系统的内部附加噪声 Na – Pn=Na+NinGa

WIFI基础知识培训课件

WIFI基础知识培训课件
传输速率:WLAN设备能够支持的所有速率 一般WLAN设备支持自动选择传输速率
Power(功率)
WLAN设备的发射功率,单位mW或dBm dBm为分贝毫瓦,是以1mW相比的对数值
dBm = 10 log (Power / 1mW) 1mW = 0dBm, 10mW = 10dBm 100mW=20dBm 每下降3dB,功率减少一半 负的dBm表示功率小于1mW
无线站点接入3步走
Probe Request Probe Response AUTH AUTH
Association Request Association Response
Data
1.扫描:获取周围AP的信息(SSID, 加密, 速率),主动/被动扫描 2.认证:Open或Shared认证
3.关联:成为AP关联的站点
WLAN基础
WLAN标准 Channel(信道) Rate(速率) Power(功率) EVM(矢量误差) Sensitivity(接收信号灵敏度)
SSID 无线安全
WPS
WLAN电路
Transceiver(收发器)
Balun/Filter/DC block TX EPA、IPA
可使用万用表测试三处是否对地短路
晶体、晶振(Crystal、Oscillate)
晶体、晶振(Crystal、Oscillate)
我司的WiFi 产品通常都有20M/40M压控晶 体,提供无线模块运行时钟,同时通过 PLL升频到2.4G的频率,WiFi 2.4G与输 入信号保持一个固定的关系。
crystal的介绍
无线安全:WPA / WPA2
WiFi组织基于IEEE802.11i标准提出使用WPA与WEP加密进行

信噪比和噪声系数-PPT课件

信噪比和噪声系数-PPT课件

之和,即 P ,所以噪声系数可以表示为 GP P n o p Hn i a n o
P s i GP P P P P p Hn i a n o n i n o a n o N 1 F P P G P G P G s o n i p H n i p H n i p H P n o
将额定输入噪声功率式代入可得
P P n o a n o N 1 F k T B G k T B G p H p H
8.3.2
二、多级放大电路的噪声
假如,有两个四端网络级联,如图8.3.3所示。它们
的噪声系数、额定功率增益、噪声带宽分别为
N
F 1
G pH 2 , G pH 1 , 、 N F2、 。 B1、 B 2 ,并且 B 1 B 2 B
8.3
8.3.1 信噪比
信噪比和噪声系数
信噪比:衡量一个信号质量优劣的指标。它是在指定 频带内,同一端口信号功率 P 和噪声功率 P 的比值,即
s n
Ps S/N Pn
当用分贝表示信噪比时,有
P S/ N(d B ) 1 0lg s P n
信噪比越大,信号质量越好。
8.3
8.3.2 噪声系数
网络,必须使放大器的输入电阻 R i 与信号源内阻 R s 相匹
配,也即应使 Ri R s 。
V s2 因而额定输入信号功率为 P si 4Rs
4 k T RB s 额定输入噪声功率 P k T B n i 4 R 4 R s s
2 n
8.3.2
由上两式知,不管信号源内阻如何,它产生的额定 噪声功率是相同的,其大小只与电阻所处的环境温度T和
N
F
越大。 (3)线性网络的功率增益 G p 越大,噪声系数

噪声系数和灵敏度

噪声系数和灵敏度

噪声系数和灵敏度噪声系数和灵敏度都是衡量接收机对微弱信号接收能力的两种表示方法,它们是可以相互换算的。

1.定义(1)噪声系数N f是指接收机输出端测得的噪声功率与把信号源内阻作为系统中唯一的噪声源而在输出端产生的热噪声功率之比。

(两者应在同样温度下测得)。

噪声系数常用的定义是:接收机输入端信噪比与其输出端信噪比之比。

即:N f=(Pc入/Pn入)÷(Pc出/Pn出)噪声系数也可用dB表示:N f(dB)=10lgN f(2)灵敏度是指:用标准测试音调制时,在接收机输出端得到规定的信纳比(S+N+D/N+D)或信噪比(S+N+D/N)且输出不小于音频功率的50%情况下,接收机输入端所需要的最小信号电平(一般情况下,信纳比取12dB,而信噪比取20dB)。

这个最小信号电平可以用电压Umin(μv或dBμv)表示,也可以用功率P(mw)或P(dBm)表示。

需要注意的是:(A)用电压Umin表示灵敏度时,通常是指电动势(即开路电压),而不是接收机两端的电压。

在匹配时,Ur=Umin/2见下图:∴Ur=(dBμv)=Umin(dBμv)-6读数指示是否是开路电压,可在测完灵敏度后,把接收机断开(即信号源开路),看信号源读数是否改变,若不变就是开路电压(电动势),若变大了近一倍就是端电压。

(B)用功率表示灵敏度时,却是接收机(负载Rr)所得到的功率,所以Pmin=U2r/R r=U2min/4R r∴Pmin(dBm)=Ur(dBμv)-107=Umin(dBμv)-6-107=Umin(dBμv)-113即用dBm表示的灵敏度等于用dBμv表示的灵敏度减去113分贝。

∴Pmin(dBw)=Umin(dBμv)-143例:已知某接收机灵敏度为0.5μv,阻抗为50Ω。

求:用功率表示灵敏度应为多少?Pmin=(0.5×10-6)2/(4×50)=0.125×10-14(W)Pmin(dBm)=-149dBw=-119dBm又∵0.5μv用分贝表示为20lg0.5=-6dBμv∴Pmin(dBm)=-6-113=-119(dBm)=-149dBw2.灵敏度与噪声系数的相互换算按定义,结合实际测量,得输入电动势表示的灵敏度为:Umin=e={ 4KTBR·N f·C/N }式中,R为接收机输入阻抗(50Ω),N f为接收机噪声系数:B为噪声带宽,它近似等于接收机中频带宽(对于超高频话机B=16KHz);C/N为限幅器输入端门限载噪比(其典型值为12dB);K为波尔兹曼常数(1.37×10-23J/K);T为信号源的绝对温度(K),对于常温接收机,T=290°K。

雷达原理3-雷达接收机新ppt课件.ppt

雷达原理3-雷达接收机新ppt课件.ppt

S i
m in
k T0 Bn F0
So No
m in
(3.2.36)
通常,我们把(So/No)min称为“识别系数”, 并用M表示, 所以灵敏 度又可以写成
S i
m in
kT0Bn F0M
(3.2.37)
第3章雷达接收机
为了提高接收机的灵敏度, 即减少最小可检测信号功率Si min, 应做到:
F 1 N
k T0 BnGa
ΔN2=(F2-1)kT0BnG2
于是式(3.2.24)可进一步写成
(3.2.25)
No=kT0BnG1G2F0=kT0BnG1G2F1+(F2-1)kT0BnG2
化简后可得两级级联电路的总噪声系数
F0
F1
F2 1 G1
(3.2.26)
第3章雷达接收机 三级级联推导
之比, 叫做动态范围。
第3章雷达接收机 4. 中频的选择和滤波特性
接收机中频的选择和滤波特性是接收机的重要质量指标之 一。
在中频的选择可以从30 MHz到4GHz之间。 如何选择接收机的中频? 短波接收机为什么选在465KHz?
在白噪声(即接收机热噪声)背景下应该选择何种滤波方式?
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
第3章雷达接收机
雷达接收机的任务是通过适当的滤波将天线上收到的微弱高频信号从伴随的 噪声和干扰中选择出来,同时处理后送到终端设备。 主要组成部分是:

通信电子电路课件第2章

通信电子电路课件第2章

North China Electric Power University
通信电子电路 第2章无线收发机系统
例: 超外差收音机的中频频率fI=465KHz, 接收电台信号频率fs=931 KHz, 则相应的本振频率fL=fs+fI=1396KHz, 混频器非线性器件产生的组合频率中, 当 p= -1,q=2时,得组合频率-fL+2 fs =466KHz=fn,与fI相差1KHz,中频滤波 器难以滤除 在检波器中形成差拍检波,听到1KHz的 啸叫声。
2.1.1 单次变频超外差接收机
f S : 0 .5 M 3 0 M
fS
f I f L fS 455k (465k )
fL
图2-1-1 单次变频超外差式接收机方框图
超外差的含义: 本振频率始终高出接收频率一个中频,且中频固定
North China Electric Power University
通信电子电路 第2章无线收发机系统
2、镜像干扰 取 p 1 、q 1 得
fn fS 2 fI
fI
fI
fS
fL
f
fn
镜像干扰频率关系
干扰信号频率 f 与有用信号频率 f 相对于本振频率 f 恰好形成镜像对称关系
n S
L
North China Electric Power University
North China Electric Power University
通信电子电路 第2章无线收发机系统
一、啸叫干扰(干扰哨声) 原因:由接近中频的组合频率产生, 当某些组合频率分量满足表达式 ±pfL±qfs≈fI,则混频器输出端的选频 电路就无法剔除这些频率分量的信号 现象:收听到正常信号的同时,伴随 有啸叫声

接收机噪声系数对接收灵敏度影响

接收机噪声系数对接收灵敏度影响

接收机噪声系数对接收灵敏度影响作者:金瑾蔡宁霞薛红来源:《商品与质量·房地产研究》2015年第02期摘要:接收机是由天线、滤波器、放大器和A/D转换器组成的电路系统,在微波通讯系统中,接收机要处理很微弱的信号,一般来说,若无噪声干扰,只要经充分放大,即便是十分微弱的信号也会被检测出来,但实际中,系统各个部分不可避免地存在着附加噪声,微弱的信号往往被淹没在这些噪声中,从而影响到接收机检测信号的灵敏度。

关键词:接收机;噪声系数;接收灵敏度引言接收机的主要任务是将天线收到的微弱回波信号从噪声中选择出来,经过放大和解调之后传输给信号处理等设备。

如果没有噪声,那么无论信号如何微弱,只要充分加以放大,信号总是可以被检测出来的。

但在实际应用中不可避免的会存在噪声,它与我们所需的信号一起被放大或衰减,妨碍对信号的辨别,这些噪声信号严重影响雷达接收机的灵敏度。

根据方程可知,提高接收机灵敏度是提高雷达作用距离的一个重要途径。

所以对接收机的噪声进行研究分析,了解噪声的来源、种类和特性,有助于我们找出降低接收机噪声,提高其灵敏度的方法,从而提高雷达的探测距离。

一、接收机的噪声接收机的噪声来源是多方面的,主要可以分为两种,即内部噪声和外部噪声。

内部噪声主要由接收机中的馈线、电路中的电阻元器件、放大器、混频器等产生;外部噪声是通过天线引入的,有各种人为干扰、天线热噪声、天电干扰、宇宙干扰和工业干扰等。

这些干扰噪声的频谱各不相同,它对接收机的影响与雷达所采用的频率密切相关,其中以天线的热噪声影响最大。

所以,在一般情况下,接收机噪声的主要来源于电阻热噪声、天线热噪声和接收系统的噪声。

(一)电阻热噪声电阻热噪声是由于导体中自由电子做无规则热运动形成的。

一个有一定电阻的导体,只要它的温度不是热力学绝对零度,那么有效噪声功率为Pn=kTB (1)可以看出热噪声功率只与电阻温度和接收机的带宽有关。

(二)天线噪声天线噪声是接收机外部进来的噪声,它包括的天线的热噪声和宇宙噪声。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精选ppt
9
带宽
由前述灵敏度公式可知,其灵敏度与带宽有关,带宽越 宽,其灵敏度就越差。WCDMA 的带宽为5 MHz, GSM 的带宽为200 KHz,因此理论上,WCDMA的灵 敏度会较差,但实际上在量测时会发现,WCDMA 的 灵敏度普遍都比GSM 来得好,而对于WCDMA 灵敏度 的规范,也比GSM 的-102 dBm 来的严格。
精选ppt
5
接收机整体的噪声系数

可知,越前面的阶级,对 于噪声系数的影响就越大
精选ppt
6

从天线到LNA,包含ASM、SAW Filter、以及接收路径走 线,这三者的Loss总和,对于接收机整体的Noise Figure, 有 最 大 影 响 , 若 这 边 的 Loss 多 1 dB , 则 接 收 机 整 体 的 Noise Figure,就是直接增加1 dB,因此挑选ASM时,要 尽量挑选Insertion Loss 较小的。
其中K是波尔兹曼常数,K=1.38 10-23J/K;T0为标准 噪声温度,T0=290K。
第一项是所谓的热噪声,灵敏度会与温度有关,174dBm/Hz 是指在常温25摄氏度时的热噪声。高温 时热噪声会加大,导致灵敏度变差。反之,低温时m) = NT0(dBm) +10log(BW)+ NF(dB) + Eb/Nt_req
这主要与WCDMA 的展频机制有关,WCDMA 为了使讯 号不易被干扰与撷取,因此采用了展频技术。
精选ppt
10
由Shannon theorem 得知
当带宽拓展后,其信道容量也提升了,连带提高 了Data Rate。另外,由于原始数据的Chip Rate, 会在展频后大大提升,使得讯号会额外获得增益, 进 而 再 提 高 SNR , 该 增 益 称 为 处 理 增 益 , Processing Gain,GP。
精选ppt
8
在Layout 时,其接收路径走线尽 可能短,线宽尽可能宽,这样才能 将其Insertion Loss 降低,甚至 必要时,可以将走线下层的GND 挖空,如此便可以在阻抗不变的情 况下,进一步拓展线宽,使其 Insertion Loss 更为降低
LNA 输入端的Loss,除了Insertion Loss,也包含了 Mismatch Loss,因此之所以做接收路径的匹配,主要 也是为了降低Mismatch Loss,以便进一步降低Noise Figure,达到提升灵敏度之效。
Eb/Nt_req是有用信号平均比特能量与噪声和干扰 功率谱密度的比值,又称为解调门限,是衡量数字 调制和编码方式品质因素的标准。 Eb/Nt_req的值 取决于该系统的调制方式和解调算法。
有以上可知道,NF越低,带宽越窄,解调门限越低, 其灵敏度就越好。
精选ppt
4
噪声系数
噪声系数衡量的是当一个讯号进入一个系统时, 其输出讯号的SNR 下降多寡,也就是说其噪声对 系统的危害程度,示意图与定义如下 :
第三项NF是接收机系统的噪声系数,BW是系统的 信道带宽。
接收机解调门限的定义
在一定的误码率BER前提下,接收机接收到的信 号应不低于接收机解调门限,接收机才能正确解 调接收到的信号。接收机解调门限表示为Eb/Nt, 是指每比特能量与噪声功率谱密度之比。
精选ppt
3
S(dBm) = NT0(dBm) +10log(BW)+ NF(dB) + Eb/Nt_req
接受灵敏度
接受灵敏度,指的是在SNR 能接受的情况下,其接收 机能接收到的最小讯号。
S(dBm) = NT0(dBm) +10log(BW)+ NF(dB) + Eb/Nt_req
NT0 :噪声基底 BW:接收信号带宽 NF:接收机噪声系数 Eb/Nt_req:接收机的解调门限
精选ppt
1
S(dBm) = NT0(dBm) +10log(BW)+ NF(dB) + Eb/Nt_req 接收机的热噪声基底为:
精选ppt
11
R 是原始资料的Chip Rate,RC 是展频后的Chip Rate,R 与RC 分别为12.2Kbps 与3.84Mcps,带入上式
精选ppt
12
由上图可知,当WCDMA 的接收信号展频后,会额外 再获得25dB 的Gain,提高SNR,进而提高灵敏度, 因此虽然WCDMA 的带宽较宽,但实际上在量测时, 其灵敏度普遍都比GSM得好。
精选ppt
14
按照GPS系统设计指标,L1频段的C/A码信号的发射为 P=26.8dBw,大气层衰减为A=2.0dB,则GPS 系统L1 频 段C/A 码信号到达地面的强度为:
PC/A=P-F-A =26.8-182.4-2.0
=-157.6dBw
GPS ICD(Interface Control Document,接口控 制文档)中给出的GPS 系统L1 频段C/A 码信号强度 最小值为-160dBw,和上述结果一致。在实际场景中, 由于卫星仰角的不同、以及受树木、建筑物等的遮挡, L1 频段C/A 信号到达地面的强度可能会低于160dBw。
精选ppt
7
SAW Filter 可以抑制带外噪声,因 此 原 则 上 须 在 LNA 输 入 端 , 添 加 SAW Filter,避免带外噪声劣化接 收机整体性能。
假 设 SAW Filter 的 Insertion Loss 为1 dB,LNA 的Gain 为 10 dB,若将SAW Filter 摆放在LNA 之 前 , 则 接 收 机 整 体 的 Noise Figure,便是直接增加1 dB,但若 放在LNA 之后,则接收机整体的 Noise Figure , 只 增 加 了 1/10 = 0.1 dB
精选ppt
13
GPS接受灵敏度的计算
GPS 信号是从距地面 20000km 的LEO (Low Earth Orbit,低轨道卫星)卫星上发送到地面 上来的,其L1 频段(fL1=1575.42MHz)自由 空间衰减为:
F = 20Log (λ/4πR) = 20Log (0.19/4π*2*107) = -182.4 dB
相关文档
最新文档