2-2逻辑代数的基本定律和规则
逻辑代数的基本定律和规则

逻辑代数的基本定律和规则一、逻辑代数的基本公式(一)、逻辑常量运算公式(二)、逻辑变量、常量运算公式变量A的取值只能为0或为1,分别代入验证。
二、逻辑代数的基本定律逻辑代数的基本定律是分析、设计逻辑电路,化简和变换逻辑函数式的重要工具。
这些定律和普通代数相似,有其独特性。
(一)、与普通代数相似的定律交换律、结合律、分配律(二)、吸收律与学生一同验证以上四式。
第④式的推广:由表4可知,利用吸收律化简逻辑函数时,某些项或因子在化简中被吸收掉,使逻辑函数式变得更简单。
(三)、摩根定律三、逻辑代数的三个重要规则(一)、代入规则对于任一个含有变量A的逻辑等式,可以将等式两边的所有变量A用同一个逻辑函数替代,替代后等式仍然成立。
这个规则称为代入规则。
代入规则的正确性是由逻辑变量和逻辑函数值的二值性保证的。
例题:(二)、(三)、若两函数相等,其对偶式也相等。
(可用于变换推导公式)。
讨论三个规则的正确性。
逻辑涵数的公式化简法一、化简的意义与标准1、化简逻辑函数的意义根据逻辑问题归纳出来的逻辑函数式往往不是最简逻辑函数式,对逻辑函数进行化简和变换,可以得到最简的逻辑函数式和所需要的形式,设计出最简洁的逻辑电路。
这对于节省元器件,优化生产工艺,降低成本和提高系统的可靠性,提高产品在市场的竞争力是非常重要的。
2、逻辑函数式的几种常见形式和变换3、逻辑函数的最简与-或式对与或式而言:最简:二、逻辑函数的代数化简法1、并项法三、代数化简法举例在实际化简逻辑函数时,需要灵活运用上述几种方法,才能得到最简与-或式.四、作业:。
逻辑代数的基本定律及规则2010.9.23

_ _ _
_
_ _
_
三变量最小项的编号
长春理工大学软件学院
最大项
最大项标准式是以“或与”形式出现的标准式。 最大项: 对于一个给定变量数目的逻辑函数, 所有变 量参加相“或”的项叫做最大项。 在一个最大项中, 每个 变量只能以原变量或反变量出现一次。 例如, 一个变量A有二个最大项: (2 ) A, A。
例题:化简函数
AB + AC + BC = AB + AC
F = ABC + AD + C D + BD
F = ABC + AD + C D + BD
= ABC + ( A + C ) D + BD
= AC ⋅ B + AC ⋅ D + BD
= AC ⋅ B + AC ⋅ D
= ABC + AD + C D
最小项
2 n 个最小项。最小项通 以此类推,n变量共有
常用 mi 表示。 最小项标准式:全是由最小项组成的“与或” 式,便是最小项标准式(不一定由全部最小项 组成)。 例如:
F ( ABC ) = A B C + BC + A C = A B C + ABC + A BC + AB C + AB C = ∑ m(0,3,4,6,7)
长春理工大学软件学院
逻辑代数的基本定律及规则
对合律: A = A
冗余律: AB + A C + BC = AB + A C
长春理工大学软件学院
逻辑代数的基本定律及规则
3 基本规则
代入规则:任何一个含有变量A的等式,如果将所有 出现A的位置都用同一个逻辑函数代替,则等式仍然 成立。这个规则称为代入规则。 反演规则:对于任何一个逻辑函数F,想要得到F的反 函数,只需要将F中的所有“·”换成“+”,“+”换 成“·”,“0”换成“1”,“1”换成“0”,原变量换成反 变量,反变量换成原变量。 长春理工大学软件学院
逻辑代数的基本定律

逻辑代数的基本定律逻辑代数的基本定律是指逻辑代数中的基础规则和定理,这些定理是逻辑代数中最基本的概念和方法。
逻辑代数是用数学方法来处理逻辑问题的一种方法,它将逻辑问题转化为数学问题,从而可以用数学方法来解决。
逻辑代数的基本定律主要包括以下几个方面:1. 同一律同一律是指一个逻辑表达式和它自身相与(或相或)的结果不变。
即A ∧ T = A,A ∨ F = A。
这个定律的意思是,当逻辑表达式与真值或假值相与(或相或)时,结果不变。
例如,如果有一个逻辑表达式A ∧ T,它与真值T 相与的结果仍然是A。
同样地,如果有一个逻辑表达式A ∨ F,它与假值 F 相或的结果仍然是 A。
2. 恒等律恒等律是指一个逻辑表达式与一个恒等式相与(或相或)的结果相等。
即A ∧ A = A,A ∨ A = A。
这个定律的意思是,当逻辑表达式与一个恒等式相与(或相或)时,结果相等。
例如,如果有一个逻辑表达式A ∧ A,它与恒等式 A 相与的结果仍然是A。
同样地,如果有一个逻辑表达式A ∨ A,它与恒等式 A 相或的结果仍然是 A。
3. 交换律交换律是指一个逻辑表达式中的两个变量相与(或相或)的顺序可以交换。
即A ∧ B = B ∧ A,A ∨ B = B ∨ A。
这个定律的意思是,当逻辑表达式中的两个变量相与(或相或)时,它们的顺序可以交换。
例如,如果有一个逻辑表达式A ∧ B,它与表达式B ∧ A 相与的结果是相等的。
同样地,如果有一个逻辑表达式A ∨ B,它与表达式B ∨ A 相或的结果是相等的。
4. 结合律结合律是指一个逻辑表达式中的多个变量相与(或相或)时,可以任意加括号,而结果不变。
即A ∧ (B ∧ C) = (A ∧ B) ∧ C,A ∨ (B ∨ C) = (A ∨ B) ∨ C。
这个定律的意思是,当逻辑表达式中有多个变量相与(或相或)时,可以任意加括号,而结果不变。
例如,如果有一个逻辑表达式A ∧ (B ∧ C),它与表达式(A ∧ B) ∧ C 相与的结果是相等的。
数字电子技术基础教程

第6页/共55页
2.2 逻辑代数的基本定律和规则
反演律 吸收律
A B AB
A AB A
A B A B A (A B) A
A B A B A
(A B)(A B) A
A AB A B
A(A B) AB
冗余律
AB AC BC AB AC
(A+B)(A+C)(B C) (A+B)(A+C)
F AB
2.或非逻辑
F AB
A
F
&
B
与非门
A
F
B
或非门
3. 与或非逻辑
&
F AB CD
第20页/共55页
异或逻辑与同或逻辑
4.异或逻辑
F A B AB AB
A
=1
F
B
5.同或逻辑 F=A ⊙ B= AB AB
A
=
F
B
AB F
00 0 01 1 10 1 11 0
AB F
00 1 01 0 10 0 11 1
② 任意两个i0最小项之积恒i为0A0B,C任·意AB两C个=最0大项之
和恒等于1 。
mi m j 0(i j)
Mi M j 1(i j)
③ n 变量的每一个最小(大)项有n 个相邻项
(相邻项是指两个最小项只有一个因子互为反变
量,其余因子均相同,又称为逻辑相邻项)。
第32页/共55页
2.6 逻辑代数的K诺图
ABC ABC ABC
最大项表达式:
F ( A B C)( A B C)( A B C)
第28页/共55页
最大项的Mi表示
n个变量可以构成2n个最大项。最大项用符号Mi表示。与 最小项恰好相反,对于任何一个最大项,只有一组变量 取值使它为0,而变量的其余取值均使它为1。
第2章逻辑代数基础

同时,函数F的值为“0”。
便于获得逻辑电路图
逻辑表达式的简写:
1.“非”运算符下可不加括号,如
,
等。
2.“与”运算符一般可省略,如A·B可写成AB。
3.在一个表达式中,如果既有“与”运算又有“或”运 算,则按先“与”后“或”的规则进行运算,可省去括号,如 (A·B)+(C·D)可写为AB+CD。
注意:(A+B)·(C+D)不能省略括号,即不能写成A+B·C+D!
A
FA
1
FA
F
(a)我国常用传统符号
(b)国际流行符号 非门的逻辑符号
(c)国家标准符号
2.1.3 逻辑代数的复合运算
“与”、“或”、“非”三种基本逻辑运算按不同的方 式组合,还可以构成“与非”、“或非”、“与或非”、 “同或”、“异或”等逻辑运算,构成复合逻辑运算。对应 的复合门电路有与非门、或非门、与或非门、异或门和同或 门电路。
能实现基本逻辑运算的电路称为门电路,用基本的门电 路可以构成复杂的逻辑电路,完成任何逻辑运算功能,这些 逻辑电路是构成计算机及其他数字系统的重要基础。
实现“与”运算关系的逻辑电路称为“与”门。
A
A
A
&
B
F B
F B
F
(a)我国常用传统符号
(b)国际流行符号 与门的逻辑符号
(c)国家标准符号
2.1.2 逻辑代数的基本运算
2.逻辑值0和1是用来表征矛盾的双方和判断事件真伪 的形式符号,无大小、正负之分。
2.1.1 逻辑代数的定义
逻辑代数L是一个封闭的代数系统,它由一个逻辑变量集 K,常量0和1以及“或”、“与”、“非”三种基本运算所 构成,记为L={K,+,·,-,0,1}。该系统应满足下列公理。
逻辑代数的运算法则

逻辑代数的运算法则逻辑代数又称布尔代数。
逻辑代数与普通代数有着不同概念,逻辑代数表示的不是数的大小之间的关系,而是逻辑的关系,它仅有0、1两种状态。
逻辑代数有哪些基本公式和常用公式呢?1.变量与常量的关系与运算公式 一、基本公式A·1=AA·0=0或运算公式A+0=A A+1=101律2.与普通代数相似的定律与运算公式A·B=B·A 或运算公式A+B=B+A交换律A·(B·C)=(A·B)·C A+(B+C)=(A+B)+C 结合律A·(B+C)=A·B+A·C A+(B·C)=(A+B)(A+C)分配律3.逻辑代数特有的定律与运算公式或运算公式互补律重叠律(同一律) 反演律(摩根定律)0=⋅A A 1=+A A BA B A +=⋅BA B A ⋅=+ 非非律(还原律)AA =A A A =⋅A A A =+真值表证明摩根定律0001101111111100结论:BA B A +=⋅ 以上定律的证明,最直接的办法就是通过真值表证明。
若等式两边逻辑函数的真值表相同,则等式成立。
【证明】公式1AB A AB =+B A AB +)(B B A += 互补律1⋅=A 01律A= 合并互为反变量的因子【证明】公式2AAB A =+AB A +)(B A +=1 01律A= 吸收多余项【证明】公式3BA B A A +=+B A A +BA AB A ++=B A A A )(++= 互补律BA += 消去含有另一项的反变量的因子【证明】CA AB BC C A AB +=++BC A A C A AB )(+++=BC C A AB ++ 分配律BC A ABC C A AB +++= 吸收多余项公式2互补律CA AB += 公式2逻辑代数的运算法则一、基本公式二、常用公式A·1=AA·0=0A+0=A A+1=1 1.变量与常量的关系01律2.与普通代数相似的定律交换律A·B=B·A A+B=B+A结合律 分配律3.逻辑代数特有的定律互补律A·A=A A+A=A 重叠律(同一律)反演律(摩根定律)0=⋅A A 1=+A A BA B A +=⋅BA B A ⋅=+非非律(还原律)AA =AB A AB =+.1AAB A =+.2BA B A A +=+.3CA AB BC C A AB +=++.4A·(B·C )=(A·B )·C A+(B+C )=(A+B )+C A·(B+C )=A·B+A·CA +(B·C )=(A+B )(A+C )谢谢!。
第二章 逻辑代数基础

A B A B
______
A (B C) A (B C) A B C
__________ _____
A ( B C ) A B C A B C
________
3.反演定理
对于任意一个逻辑式 Y ,若将其中所有的“•”换成 “+”, “+”换成“•”,0换成1,1换成0,原变量 __ 换成反变量,反变量换成原变量,则得到的结果就是 Y
2、非逻辑真值表 A 0 1 Y
3 、非逻辑函数式
Y=A 或: Y A
1
0
4、 非逻辑符号
A
1
Y
或: 5 、 非逻辑运算 0=1 1=0
四、 几种最常见的复合逻辑运算
1 、 与非 Y=A B A B & Y
A 0 0 1 1
B 0 1 0 1
Y 1 1 1 0
3 、 同或 Y= AB+A B =A⊙B A B Y
(还原律)
证明: A B A B A ( B B ) A 1 A
4.
A ( A B) A
(吸收律)
证明: A ( A B) A A A B A A B A (1 B) A 1 A
5. A B A C B C A B A C
c. 非非律: ( A) A
A+A=A
d. 吸收律:A + A B = A
A (A+B) = A
A AB A B
e. 摩根定律: ( AB) A B
A .B A B 反演律(摩根定律): A B A B
逻辑代数中的基本定律和公式

逻辑代数中的基本定律和公式
逻辑代数是一种用来研究逻辑的数学,它通过使用变元和逻辑公式来描述逻辑系统,它被用来解释和分析许多不同类型的逻辑结构。
它还可以帮助我们理解计算机语言、逻辑设计和许多其他类型的数学理论。
基本定律和公式是逻辑代数的基础,它们用来描述一个逻辑系统的行为。
以下是一些常见的定律和公式:* 交换律:如果A和B是同类元素,则A+B = B+A。
* 结合律:如果A、B和C是同类元素,则A+(B+C)=(A+B)+C。
* 分配率:如果A、B和C是同类元素,则A(B+C)= AB + AC。
* 吸收律:如果A和B是同类元素,则A+AB=A。
* 对立律:如果A是一个元素,则A+ A'=
1,其中A'是A的补充。
* 析取律:如果A和B是同类元素,则A+B'=A'B。
* 推理律:如果A和B是同类元素,则A→B = A'+B。
* 合取律:如果A和B是同类元素,则A+B = A'B'。
这些定律和公式提供了一种方法来描述逻辑系统的行为,这些定律和公式可以用来构建逻辑系统,并且可以用来解释和分析逻辑系统的行为。
它们也可以用来构建计算机语言,并用来解释和分析计算机语言的行为。
因此,我们可以看出,逻辑代数中的基本定律和公式是一种非常重要的工具,它们可以帮助我们理解和分析逻辑系统,也可以帮助我们理解和分析计算机语言的行为。
此外,它们还可以用来解释和分析许多不同类型的逻辑结构。
因此,逻辑代数中的基本定律和公式是一种非常重要的研究工具,它们可以帮助我们理解和探索逻辑系统的行为,从而有助于我们更好地理解和设计逻辑系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
逻辑代数基础
逻辑函数的有4种常用的表示方法:
真值表、逻辑函数式、卡诺图、逻辑图。
作业题: 2. 5 2.6
对偶规则:两个函数式相等,则它们的对偶式也相等。 变换时注意:(1) 变量不改变 (2) 不能改变原来的运算顺序 A + AB = A
A· (A + B) = A
应用对偶规则可将基本公式和定律扩展。
逻辑代数基础
小结
逻辑代数是分析和设计逻辑电路的重要工具。 逻辑代数的公式与定律中,除常量之间及常 量与变量之间的运算外,还有交换律、结合 率、分配律、吸收律、摩根定律等。 逻辑代数的规则有代入规则、反演规则和对偶 规则。
逻辑代数基础
(二) 逻辑代数的特殊定理
吸收律 A + AB = A
A + AB = A (1 + B) = A
逻辑代数基础
(二) 逻辑代数的特殊定理
吸收律 A + AB = A 推广公式:
摩根定律(又称反演律) 推广公式: A B A· B A+B A B A+B A · B 0 0 1 1 0 0 1 1 0 1 1 1 0=1 0,则 B 0 = C 吗? 思考:(1) 若已知 A + B A+C 1 0 1 1 1 0 0 0 (2) 若已知 AB = AC,则 B = C 吗? 1 1 0 0 1 1 0 0
变换时注意: (1) 不能改变原来的运算顺序。 (2) 反变量换成原变量只对单个变量有效,而长非 号保持不变。
原运算次序为 可见,求逻辑函数的反函数有两种方法: 利用反演规则或摩根定律。
逻辑代数基础
(三) 对偶规则
对任一个逻辑函数式 Y,将“· ”换成 “+”,“+”换成“· ”,“0”换成 “1”,“1”换成“0”,则得到原逻 辑函数式的对偶式 Y 。
逻辑变量与常量的运算公式
0–1律 0+A=A 1+A=1 1· A=A 0· A=0 重迭律 A+A=A A· A=A 互补律 还原律
逻辑代数基础
二、基本定律
(一) 与普通代数相似的定律
交换律 结合律 分配律 A+B=B+A (A + B) + C = A + (B + C) A (B + C) = AB + AC A· B=B· A (A · B) · C=A· (B · C) A + BC = (A + B) (A + C) 普通代数没有! 逻辑等式的 证明方法 利用真值表
利用基本公式和基本定律
逻辑代数基础
[例] 证明等式 A + BC = (A + B) (A + C) 解: 真值表法 A B C A + BC (A + B) (A + C) 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 公式法 右式 = (A + B) (A + C) 用分配律展开 = AA + AC + BA + BC = A + AC + AB + BC = A (1 + C + B) + BC =A· 1 +BC = A + BC
逻辑代数基础
三、重要规则
(一) 代入规则
A A A 将逻辑等式两边的某一变量均用同 一个逻辑函数替代,等式仍然成立。Leabharlann A均用 代替 A均用 代替
B均用C代替 利用代入规则能扩展基本定律的应用。
逻辑代数基础
(二) 反演规则
对任一个逻辑函数式 Y,将“· ”换成 “+”,“+”换成“· ”,“0”换成“1”, “1”换成“0”,原变量换成反变量,反变量 换成原变量,则得到原逻辑函数的反函数 Y 。
逻辑代数基础
第2章
逻辑代数基础
逻辑代数的基本定律和规则 小结
逻辑代数基础
2.2
逻辑代数的基本定律和规则
主要要求:
掌握逻辑代数的基本公式和基本定律。 了解逻辑代数的重要规则。
逻辑代数基础
一、基本公式
逻辑常量运算公式 0· 0=0 0· 1=0 1· 0=0 1· 1=1 0+0=0 0+1=1 1+0=1 1+1=1