第7章函数练习题(含答案)

合集下载

微观经济学第7章课后计算题答案

微观经济学第7章课后计算题答案

1、已知某完全竞争行业中的单个厂商的短期成本函数为STC=0.1Q 3-2Q 2+15Q+10。

试求:(1)当市场上产品的价格为P=55时,厂商的短期均衡产量和利润;(2)当市场价格下降为多少时,厂商必须停产?(3)厂商的短期供给函数。

解答:(1)因为STC=0.1Q 3-2Q 2+15Q+10所以SMC=dQdSTC =0.3Q 3-4Q+15 根据完全竞争厂商实现利润最大化原则P=SMC ,且已知P=55,于是有:0.3Q 2-4Q+15=55整理得:0.3Q 2-4Q-40=0解得利润最大化的产量Q *=20(负值舍去了)以Q *=20代入利润等式有:=TR-STC=PQ-STC=(55×20)-(0.1×203-2×202+15×20+10)=1100-310=790即厂商短期均衡的产量Q *=20,利润л=790(2)当市场价格下降为P 小于平均可变成本AVC 即P ≤AVC 时,厂商必须停产。

而此时的价格P 必定小于最小的可变平均成本AVC 。

根据题意,有: AVC=QQ Q Q Q TVC 1521.023+-==0.1Q 2-2Q+15 令即有,0=dQ dAVC :022.0=-=Q dQdAVC 解得 Q=10 且02.022 =dQAVC d 故Q=10时,AVC (Q )达最小值。

以Q=10代入AVC (Q )有:最小的可变平均成本AVC=0.1×102-2×10+15=5于是,当市场价格P5时,厂商必须停产。

(3)根据完全厂商短期实现利润最大化原则P=SMC ,有:0.3Q 2-4Q+15=p整理得 0.3Q 2-4Q+(15-P )=0 解得6.0)15(2.1164P Q --±= 根据利润最大化的二阶条件C M R M '' 的要求,取解为: Q=6.022.14-+P考虑到该厂商在短期只有在P 时5≥才生产,而P <5时必定会停产,所以,该厂商的短期供给函数Q=f (P )为: Q=6.022.14-+P ,P 5≥ Q=0 P <52、已知某完全竞争的成本不变行业中的单个厂商的长期总成本函数LTC=Q 3-12Q 2+40Q 。

李庆扬-数值分析第五版第7章习题答案(0824)汇编

李庆扬-数值分析第五版第7章习题答案(0824)汇编

第7章复习与思考题求f (X )= 0的零点就等价于求(x )的不动点,选择一个初始近似值X 0,将它代入X =「(X ) 的右端,可求得X 1 h%X °),如此反复迭代有 X k 1 二(X k ), k =0,1,2,..., (X)称为迭代函数,如果对任何X 。

• [a,b],由x k 卜h%x k ),k =0,1,2,...得到的序列〈X k 1有极限则称迭代方程收敛,且X* =®(x*)为®(X )的不动点 故称X k q 二(X k ), k =0,1,2,...为不动点迭代法。

5•什么是迭代法的收敛阶?如何衡量迭代法收敛的快慢?如何确定X k 1 二「(X k )(k =0,1,2,...)的收敛阶P219设迭代过程X k 1'h%X k )收敛于 (X)的根X*,如果当k > 时,迭代误差e k = x k - x *满足渐近关系式—t C,C =const 式 0 e/则称该迭代过程是 p 阶收敛的,特别点,当 p=1时称为线性收敛,P>1时称为超线性收敛, p=2时称为平方收敛。

以收敛阶的大小衡量收敛速度的快慢。

6•什么是求解f(x)=0的牛顿法?它是否总是收敛的?若 f(X*) =0,X*是单根,f 是光 滑,证明牛顿法是局部二阶收敛的。

牛顿法:当| f (X k )卜J 时收敛。

7•什么是弦截法?试从收敛阶及每步迭代计算量与牛顿法比较其差别。

在牛顿法的基础上使用 2点的的斜率代替一点的倒数求法。

就是弦截法。

收敛阶弦截法1.618小于牛顿法2 计算量弦截法 <牛顿法(减少了倒数的计算量)8•什么是解方程的抛物线法?在求多项式全部零点中是否优于牛顿法? P229X-mX k 1 =X kf (X k ) f (X k )设已知方程f (x) = 0的三个近似根,X k,X k^,X k^2,以这三点为节点构造二次插值多项式p(x),并适当选取p2(x)的一个零点X k卅作为新近似根,这样确定的迭代过程称为抛物线法。

【中小学资料】九年级数学下册 第7章 锐角三角函数 7.5 解直角三角形 7.5.2 构造直角三角形解题同步练习2

【中小学资料】九年级数学下册 第7章 锐角三角函数 7.5 解直角三角形 7.5.2 构造直角三角形解题同步练习2

[7.5 第2课时 解直角三角形的应用]一、选择题1.在Rt △ABC 中,∠C =90°,∠B =35°,AB =7,则BC 的长为( ) A .7sin35° B.7cos35°C .7cos35°D .7tan35°2.如图K -31-1,点A (3,t )在第一象限,OA 与x 轴所夹的锐角为α,tan α=32,则t 等于( )图K -31-1A .0.5B .1.5C .4.5D .23.等腰三角形的顶角为120°,腰长为2 cm ,则它的底边长为链接听课例2归纳总结( )A. 3 cmB.4 33cmC .2 cmD .2 3 cm 4.如图K -31-2,⊙O 的直径AB =2,弦AC =1,点D 在⊙O 上,则∠D 的度数为( )图K-31-2A.30° B.45° C.60° D.75°5.如图K-31-3,在△ABC中,∠BAC=90°,AB=AC,D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为( )图K-31-3A.13B.2-1 C.2- 3 D.14二、填空题6.如图K-31-4,在平面直角坐标系xOy中,O为坐标原点,点P的坐标为(5,12),那么OP与x轴正半轴所夹的锐角为________.(精确到0.1°)图K-31-47.如图K-31-5,在菱形ABCD中,AC=6,BD=8,则sin∠ABC=________.图K-31-58.如图K-31-6,在△ABC中,∠A=30°,∠B=45°,AC=2 3,则AB的长为________.图K-31-69.2018·安徽四模如图K-31-7,在△ABC中,AB=AC,AH⊥BC,垂足为H,如果AH =BC,那么tan∠BAH的值是________.图K -31-710.2017·黑龙江在△ABC 中,AB =12,AC =39,∠B =30°,则△ABC 的面积是________. 三、解答题11.2018·淮南模拟如图K -31-8,在△ABC 中,∠A =30°,cos B =45,AC =6 3.求AB 的长.链接听课例2归纳总结图K -31-812.如图K -31-9,在平面直角坐标系内,O 为原点,点A 的坐标为(10,0),点B 在第一象限内,BO =5,sin ∠BOA =35.求:(1)点B 的坐标; (2)cos ∠BAO 的值.图K -31-913.2018·广安改编如图K -31-10,已知AB 是⊙O 的直径,P 是BA 延长线上一点,PC 切⊙O 于点C ,连接AC ,CG 是⊙O 的弦,CG ⊥AB ,垂足为D .(1)求证:∠PCA =∠ABC ;(2)过点A 作AE ∥PC 交⊙O 于点E ,连接BE .若cos P =45,PC =10,求BE 的长.图K -31-10阅读理解在锐角三角形ABC 中,∠A ,∠B ,∠ACB 的对边分别是a ,b ,c .如图K -31-11所示,过点C 作CD ⊥AB 于点D ,则cos A =AD b,即AD =b cos A ,图K -31-11∴BD =c -AD =c -b cos A .在Rt △ADC 和Rt △BDC 中,有CD 2=AC 2-AD 2=BC 2-BD 2, ∴b 2-b 2cos 2A =a 2-(c -b cos A )2,整理,得a 2=b 2+c 2-2bc cos A ,(1)同理可得b 2=a 2+c 2-2ac cos B ,(2) c 2=a 2+b 2-2ab cos ∠ACB . (3)这个结论就是著名的余弦定理,在以上三个等式中有六个元素a ,b ,c ,∠A ,∠B ,∠ACB ,若已知其中的任意三个元素,可求出其余的另外三个元素.如:在锐角三角形ABC 中,∠A ,∠B ,∠C 的对边分别是a ,b ,c ,已知∠A =60°,b =3,c =6,则由(1)式可得a 2=32+62-2×3×6cos60°=27, ∴a =3 3,则∠B ,∠C 可由式子(2),(3)分别求出,在此略. 根据以上阅读理解,请你试着解决如下问题:已知锐角三角形ABC 的三边a ,b ,c (a ,b ,c 分别是∠A ,∠B ,∠C 的对边)分别是7,8,9,求∠A ,∠B ,∠C 的度数.(结果精确到1°)详解详析[课堂达标]1.[解析] C 在Rt △ABC 中,cos B =BCAB ,所以BC =AB ·cos B =7cos 35°.故选C .2.[解析] C 如图,过点A 作AB ⊥x 轴于点B.∵点A(3,t)在第一象限, ∴AB =t ,OB =3. 又∵tan α=AB OB =t 3=32,∴t =4.5. 故选C .3.[解析] D 如图,过点A 作AD ⊥BC 于点D ,则∠BAD =∠CAD =60°,BD =DC.∵AD ⊥BC ,∴∠B =30°.∵AB =2 cm , ∴AD =1 cm ,BD = 3 cm , ∴BC =2 3 cm .故选D .4.[解析] C ∵AB 是⊙O 的直径,∴∠ACB =90°.∵AC =1,AB =2,∴sin ∠ABC =ACAB =12,∴∠ABC =30°,∠A =60°,∴∠D =60°,故选C . 5.[解析] A ∵在△ABC 中,∠BAC =90°,AB =AC , ∴∠ABC =∠C =45°,BC =2AC. 又∵D 为边AC 的中点, ∴AD =DC =12AC.∵DE ⊥BC 于点E , ∴∠CDE =∠C =45°, ∴DE =EC =22DC =24AC , ∴tan ∠DBC =DEBE =24AC 2AC -24AC =13. 故选A .6.[答案] 67.4°[解析] 如图,过点P 作PA ⊥x 轴,垂足为A.由勾股定理,得OP =122+52=13,∴cos ∠POA =513,∴∠POA ≈67.4°.7.[答案] 2425[解析] 过点A 作AE ⊥BC ,垂足为E ,由AC =6,BD =8,根据勾股定理得AB =32+42=5,菱形ABCD 的面积=12AC·BD=BC·AE,即12×6×8=5×AE ,得AE =245,所以sin ∠ABC=AE AB =2455=2425. 8.[答案] 3+ 3[解析] 如图,过点C 作CD ⊥AB 于点D ,则∠ADC =∠BDC =90°. ∵∠B =45°,∴∠BCD =∠B =45°, ∴CD =BD.∵∠A =30°,AC =2 3, ∴CD =3, ∴BD =CD = 3.由勾股定理,得AD =AC 2-CD 2=3, ∴AB =AD +BD =3+ 3.9.[答案] 12[解析] 设AH =BC =2x.∵AB =AC ,AH ⊥BC ,∴BH =CH =12BC =x ,∴tan ∠BAH =BH AH =x 2x =12.10.[答案] 21 3或15 3[解析] (1)当∠ACB 为锐角时,如图①,过点A 作AD ⊥BC ,垂足为D.在Rt △ABD 中,∵AB =12,∠B =30°, ∴AD =12AB =6,BD =AB·cos B =12×32=6 3.在Rt △ACD 中,CD =AC 2-AD 2=(39)2-62=3, ∴BC =BD +CD =6 3+3=7 3, 则S △ABC =12BC·AD=12×7 3×6=21 3;(2)当∠ACB 为钝角时,如图②,过点A 作AD ⊥BC ,交BC 的延长线于点D.由(1)知,AD =6,BD =6 3,CD =3,则BC =BD -CD =5 3,∴S △ABC =12BC·AD=12×5 3×6=15 3.故答案为21 3或15 3.11.解:如图,过点C 作CD ⊥AB 于点D.∵∠A =30°,∴CD =12AC =3 3,AD =AC ·cos A =9.∵cos B =45,∴设BD =4x ,则BC =5x.由勾股定理,得CD =3x.由题意,得3x =3 3,解得x =3, ∴BD =4 3,∴AB =AD +BD =9+4 3.12.解:(1)如图,过点B 作BH ⊥OA ,垂足为H.在Rt △OHB 中,∵BO =5,sin ∠BOA =35,∴BH =BO·sin ∠BOA =5×35=3,∴OH =BO 2-BH 2=4, ∴点B 的坐标为(4,3).(2)∵OA =10,OH =4,∴AH =6. 在Rt △AHB 中, ∵BH =3,AH =6, ∴AB =BH 2+AH 2=3 5, ∴cos ∠BAO =AH AB =2 55.13.解:(1)证明:连接OC.∵PC 与⊙O 相切于点C ,∴∠PCO =90°,∴∠PCA +∠OCA =90°. ∵AB 是⊙O 的直径,∴∠ACB =90°, ∴∠OCB +∠OCA =90°, ∴∠PCA =∠OCB.∵OC =OB ,∴∠OCB =∠ABC , ∴∠PCA =∠ABC.(2)∵cos P =PC OP =45,PC =10,∴OP =252,∴OC =OP 2-CP 2=152,∴AB =15.∵AE ∥PC ,∴∠BAE =∠P.∵AB 是⊙O 的直径,∴∠E =90°, ∴AE =AB·cos ∠BAE =15×45=12,∴BE =AB 2-AE 2=9. [素养提升][解析] 此题只要把三边长代入余弦定理公式即可求出三角的余弦值,从而求出三角.解:由(1)得72=82+92-2×8×9cos A , 则cos A =23,∠A ≈48°.由(2)得82=72+92-2×7×9cos B , 则cos B =1121,∠B ≈58°,∴∠C =180°-∠A -∠B ≈74°.。

自测题(1-7章附参考答案)-高等数学上册.

自测题(1-7章附参考答案)-高等数学上册.

第一章函数与极限一、选择题:1.函数的定义域是()(A; (B; (C;(D.2.函数的定义域是()(A;(B;(C;(D.3、函数是()(A偶函数; (B奇函数;(C非奇非偶函数;(D奇偶函数.4、函数的最小正周期是()(A2; (B; (C 4 ; (D .5、函数在定义域为()(A有上界无下界; (B有下界无上界;(C有界,且;(D有界,且.6、与等价的函数是()(A ; (B ; (C ; (D .7、当时,下列函数哪一个是其它三个的高阶无穷小()(A);(B);(C);(D).8、设则当()时有.(A; (B;(C; (D任意取 .9、设,则((A-1 ; (B1 ; (C0 ; (D不存在 .10、()(A1; (B-1;(C0; (D不存在.二、求下列函数的定义域:2、 .三、设(1)试确定的值使;(2)求的表达式 .四、求的反函数.五、求极限:1、;2、;3、;4、;5、当时,;6、 .六、设有函数试确定的值使在连续 .七、讨论函数的连续性,并判断其间断点的类型 .八、证明奇次多项式:至少存在一个实根 .第二章导数与微分一、选择题:1、函数在点的导数定义为()(A);(B);(C);(D);2、若函数在点处的导数,则曲线在点(处的法线()(A)与轴相平行;(B)与轴垂直;(C)与轴相垂直;(D)与轴即不平行也不垂直:3、若函数在点不连续,则在 ((A)必不可导;(B)必定可导;(C)不一定可导;(D)必无定义.4、如果=(),那么.(A ;(B ;(C ;(D .5、如果处处可导,那末()(A);(B);(C);(D).6、已知函数具有任意阶导数,且,则当为大于2的正整数时,的n阶导数是()(A);(B);(C);(D).7、若函数,对可导且,又的反函数存在且可导,则=()(A);(B);(C);(D).8、若函数为可微函数,则()(A)与无关;(B)为的线性函数;(C)当时为的高阶无穷小;(D)与为等价无穷小.9、设函数在点处可导,当自变量由增加到时,记为的增量,为的微分,等于()(A)-1;(B)0;(C)1;(D).10、设函数在点处可导,且,则等于().(A)0;(B)-1;(C)1;(D) .二、求下列函数的导数:1、;2、();3、;4、;5、设为的函数是由方程确定的;6、设,,求.三、证明,满足方程.四、已知其中有二阶连续导数,且,1、确定的值,使在点连续;2、求五、设求.六、计算的近似值 .七、一人走过一桥之速率为4公里/小时,同时一船在此人底下以8公里/小时之速率划过,此桥比船高200米,问3分钟后人与船相离之速率为多少?第三章微分中值定理一、选择题:1、一元函数微分学的三个中值定理的结论都有一个共同点,即()(A)它们都给出了ξ点的求法 .(B)它们都肯定了ξ点一定存在,且给出了求ξ的方法。

(陈慧南 第3版)算法设计与分析——第7章课后习题答案

(陈慧南 第3版)算法设计与分析——第7章课后习题答案

③ 其余元素
w[0][2] q[2] p[2] w[0][1] 15
k 1: c[0][0] c[1][2] c[0][2] min k 2 : c[0][1] c[2][2] w[0][2] 22 r[0][2] 2



17000
s[0][2]

0
m[1][3]

min
k k
1: m[1][1] m[2][3] 2 : m[1][2] m[3][3]
p1 p2 p4 p1 p3 p4


10000
s[1][3]

2
m[1][3]

min

k k

0 : m[0][0] m[1][3] 1: m[0][1] m[2][3]
第七章课后习题
姓名:赵文浩 学号:16111204082 班级:2016 级计算机科学与技术 7-1 写出对图 7-19 所示的多段图采用向后递推动态规划算法求解时的计算过程。
3
1
3
1
6
5
0
2
6
6
3
4
4 6
5
2
7
8
3
2
8
5
2
7
解析:
V 5 cost(5,8) 0 d (5,8) 8
V4
cos t(4, 6) minc(6,8) cos t(5,8) 7 cos t(4, 7) minc(7,8) cos t(5,8) 3
k 1: c[0][0] c[1][3] c[0][3] min k 2 : c[0][1] c[2][3] w[0][3] 25

python核心编程第二版第7章习题答案

python核心编程第二版第7章习题答案

7-1.字典方法。

哪个字典方法可以用来把两个字典合并到一起。

答案:dict.update(dict2)将字典dict2的键-值对添加到字典dict中7-2.字典的键。

我们知道字典的值可以是任意的Python对象,那字典的键又如何呢?请试着将除数字和字符串意外的其他不同类型的对象作为字典的键,看看哪些类型可以,哪些不行。

对那些不能作为字典的键的对象类型,你认为是什么原因呢?答案:键必须是可哈希的。

所有不可变的类型都是可哈希的,因此他们都可以作为字典的键。

一个要说明的问题是:值相等的数字表示相同的键。

换句话说,整型数字1和浮点型1.0的哈希值是相同的,即它们是相同的键。

同时,也有一些可变对象(很少)是可哈希的,它们可以作为字典的键,但很少见。

用元组做有效的键,必须要加限制:元组中只包括像数字和字符串这样的不可变参数,才可以作为字典中有效的键。

内建函数hash()可以判断某个对象是否可以做一个字典的键,如果非可哈希类型作为参数传递给hash()方法,会产生TypeError错误,否则会产生hash值,整数。

>>> hash(1)1>>> hash('a')-468864544>>> hash([1,2])Traceback (most recent call last):File "<pyshell#2>", line 1, in <module>hash([1,2])TypeError: unhashable type: 'list'>>> hash({1:2,})Traceback (most recent call last):File "<pyshell#3>", line 1, in <module>hash({1:2,})TypeError: unhashable type: 'dict'>>> hash(set('abc'))Traceback (most recent call last):File "<pyshell#4>", line 1, in <module>hash(set('abc'))TypeError: unhashable type: 'set'>>> hash(('abc'))-1600925533>>> hash(1.0)1>>> hash(frozenset('abc'))-114069471>>> hash(((1,3,9)))1140186820>>> hash(((1,3,9),(1,2)))340745663>>> hash(((1,3,'9'),(1,2)))1944127872>>> hash(((1,3,'9'),[1,2],(1,2)))Traceback (most recent call last):File "<pyshell#11>", line 1, in <module>hash(((1,3,'9'),[1,2],(1,2)))TypeError: unhashable type: 'list'>>>7-3.字典和列表的方法。

离散数学-第7章习题

离散数学-第7章习题

第7章习题:1.设A={0,1},试给出半群<A A,︒>的运算表,其中︒为函数的复合运算。

2.S={a,b,c},*是S上的二元运算,且∀x,y∈S, x *y = x(1) 证明S关于*运算构成半群;(2) 试通过增加最少的元素使得S扩张成一个独异点。

3.给定代数结构〈R,∗〉,其中R是实数集合,对R中任意元a和b,∗定义如下:a∗b=a+b+ab试证:〈R,∗〉是独异点。

4.给定半群〈S,∗〉,a∈S,对于S中的任意元x和y,定义二元运算如下:x⊕y=x∗a∗y试证:〈R,⊕〉是半群。

5.指出下述各代数系统哪些是半群,并说明理由。

(1)[Z;−]。

(2)[C;×]。

(3)[M m,n(Q);+]。

(4)[Z n;⊕],⊕为同余类的加法运算。

6.设V=<{a,b},*>是半群,且a*a=b,证明:(1) a*b=b*a(2) b*b=b7.S={a,b,c},∗是S上的二元运算,且∀x ,y∈S,x∗y=x.(1)证明S关于∗运算构成半群。

(2)试通过增加最少的元素使得S扩张成一个独异点。

8.设Z为整数集合,在Z上定义二元运算︒如下:∀x,y∈Z,x︒y=x+y-2问Z关于︒运算能否构成群?为什么?9.设A={x|x∈R∧x≠0,1} ,在A上定义6个函数如下:f1(x)=x; f2(x)=x-1; f3(x)=1-x;f4(x)=(1-x)-1; f5(x)=(x-1)x-1; f6(x)=x(x-1)-1令F为这6个函数构成的集合,︒运算为函数的复合运算,(1) 给出︒运算的运算表(2) 验证<F, ︒>是一个群10.判断下列集合关于指定的运算是否构成半群,独异点和群。

(1)a是正实数,G={a n|n∈Z},运算是普通乘法。

(2)Q+为正有理数,运算是普通乘法。

(3)Q+为正有理数,运算是普通加法。

(4)一元实系数多项式的集合关于多项式的乘法。

高等代数(北大版)第7章习题参考答案

高等代数(北大版)第7章习题参考答案

第七章线性变换1.判别下面所定义的变换那些是线性的,那些不是:1)在线性空间V中,A,其中V是一固定的向量;2)在线性空间V中,A其中V是一固定的向量;3)在P 322 中,A(,,)(,,)x1xxxxxx;2312334)在P 3中,A(,,)(2,,)x1xxxxxxx2312231;5)在P[x]中,A f(x)f(x1);6)在P[x]中,A()(),fxfx其中0 x P是一固定的数;07)把复数域上看作复数域上的线性空间,A。

nn中,A X=BXC其中B,CP 8)在P解1)当0时,是;当0时,不是。

nn是两个固定的矩阵.2)当0时,是;当0时,不是。

3)不是.例如当(1,0,0),k2时,k A()(2,0,0),A(k)(4,0,0), A(k)k A()。

4)是.因取(x1,x2,x3),(y1,y2,y3),有A()=A(x1y1,x2y2,x3y3)=(2x12y1x2y2,x2y2x3y3,x1y1)=(2x1x2,x2x3,x1)(2y1y2,y2y3,y1)=A+A,A(k)A(kx1,kx2,kx3)(2kx1 k x2,k x2k x,3k x)1(2kx1 k x2,k x2k x,3k x)1=k A(),3故A是P上的线性变换。

5)是.因任取f(x)P[x],g(x)P[x],并令u(x)f(x)g(x)则A(f(x)g(x))=A u(x)=u(x1)=f(x1)g(x1)=A f(x)+A(g(x)),再令v(x)kf(x)则A(kf(x))A(v(x))v(x1)kf(x1)k A(f(x)),故A为P[x]上的线性变换。

6)是.因任取f(x)P[x],g(x)P[x]则.A(f(x)g(x))=f(x0)g(x0)A(f(x))A(g(x)),A(kf(x))kf(x0)k A(f(x))。

7)不是,例如取a=1,k=I,则A(ka)=-i,k(A a)=i,A(ka)k A(a)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第7章函数练习题(含答案)
函数练习题
1、在C语言中,正确的说法是( A )
A.函数内部和外部定义的变量同名是合法的
B.只要形参和实参都是变量,那么形实结合一定是地址传递
C.变量的定义和声明(也称说明)功能是相同的
D.没有return 的函数就失去了返回功能
2. 若程序中定义了以下函数
double myadd(double a,double B) { return (a+B) ;}
并将其放在调用语句之后,则在调用之前应该对该函数进行说明,以下选项中错误的说明是( A )
A) double myadd(double a,B); B) double
myadd(double,double);
C) double myadd(double b,double A); D) double
myadd(double x,double y); 3. 有以下程序
void f(int v , int w) { int t;
t=v;v=w;w=t; }
int main( )
{ int x=1,y=3,z=2; if(x>y) f(x,y); else if(y>z) f(y,z); else f(x,z);
printf(“%d,%d,%d\\n”,x,y,z); return 0; }
执行后输出结果是( C ) A) 1,2,3 B) 3,1,2 C)
1,3,2 D) 2,3,1
4. 以下叙述正确的是( C )
A) c程序由主函数构成 B) c程序由函数和过程构成 C)
c程序由函数构成
D) 在c程序中,无论是整形值还是实型值,只要在允许的范
围内,都能准确无误的表示
5. 构成c语言程序的基本结构单位是( A )
A)函数 B)过程 C)复合语句
D)语句
6. C语言规定:在一个源程序中,main函数的位置( C )。

A)必须在最开始 B)必须在系统调用的库函数的后面 C)可以
任意 D)必须在最后
7.在C语言中,下列函数经常与getchar()组合起来使用的
函数是( D )
A)scanf() B)strcpy() C)puts() D)putchar() 8.C语言自定义函数的返回值的类型是由( B )决定的。

A)return语句中的表达式类型 B)定义函数时,指定函
数值类型 C)调用函数时临时确定的 D)无法确定
9.函数的实参为数组名时,形参与实参结合的传递方式为
地址传递。

10.int func(int n) {
if (n= =0)return 0;
else if (n= =1) return 1;
else return n*n+func(n-2); }
int main() {
printf(\ return 0; }
以下程序的输出结果是: 20 35
11.以下程序的输出结果是( 6 )
int add(int a, int b) { return (a+b);} int main()
{ int x=1,y=2,z=3,s; s=add(add(x,y),z);
printf(“%d”,s); return 0; }
12. 以下程序中,主函数调用了LineMax函数,实现在N行M 列的二维数组中,找出每一行上的最大值。

请填空。

#define N 3 #define M 4
void LineMax(int x[N][M]) { int i,j,p;
for ( i=0;i<N; i++ ) { p=0;
for ( j=1;j<M; j++ )
if(x[i][p]<x[i][j]) 【1】 p=j ;
printf(″The max value in line is %d\\n″, 【2】
x[i][p] ); } } main()
{ int x[N][M]={1,5,7,4,2,6,4,3,8,2,3,1}; 【3】 LineMax(x) ; return 0; }
13. 若用数组名作为函数调用时的实参,则实际上传递给形参的是。

( A )
A) 数组首地址 B) 数组的第一个元素值 C) 数组中全部元素的值 D) 数组元素的个数
14.在C语言中,函数的数据类型是指 A 。

A) 函数返回值的数据类型 B) 函数形参的数据类型 C) 调用该函数时的实参的数据类型 D) 任意指定的数据类型
15.定义一个函数实现交换x和y的值,并将结果正确返回。

能够实现此功能的是____。

C
A) swapa(int x, int y) B) swapb(int *x, int *y) { int temp;
{ int temp;
temp=x;x=y;y=temp;
temp=x;x=y;y=temp; } }
C) swapc(int *x, int *y) D) swapd(int *x, int *y) { int temp;
{ int *temp;
temp=*x;*x=*y;*y=temp;
temp=x;x=y;y=temp; } }
16.一个函数内有数据类型说明语句如下: double x, y, z(10);
关于此语句的解释,下面说法正确的是____。

D A) z是一个数组,它有10个元素。

B) z是一个函数,小括号内的10是它的实参的值。

C) z是一个变量,小括号内的10是它的初值。

D) 语句中有错误。

17.已知函数定义如下: float fun1(int x, int y)
{ float z;
z=(float)x/y; return(z); }
主调函数中有int a=1,b=0;可以正确调用此函数的语句是____。

D
A) printf(\;
B) printf(\; C) printf(\;
D) 调用时发生错误
18.下面函数的功能是____。

B a(s1,s2)
char s1[ ],s2[ ];
{ while(s2++=s1++) ; }
A) 字符串比较 B) 字符串复制 C) 字符串连接 D) 字符串反向
19.已知:int a, *y=&a;则下列函数调用中错误的是
( D )。

A) scanf(\; B) scanf(\; C) printf(\; D) printf(\;
20.下面程序的输出结果是____。

B #include int f(char *s) { char *p=s; while(*p!='\\0') p++;
return(p-s); }
int main()
{ printf(\; return 0; }
A) 3 B) 6 C) 8 D) 0
21.下面程序的输出结果是____。

C #include int
func(int a, int b) { int c; c=a+b; return(c); } int main()
{ int x=6,y=7,z=8,r;
r=func((x--,y++,x+y),z--); printf(\; return 0; }
A) 11 B) 20 C) 21 D) 31
22.下面程序的输出结果是____。

#include int k=1; int main( ) { int i=4; fun(i);
printf (\,%d\,i,k);/* ① */ return 0; }
int fun(int m) { m+=k;k+=m; { char k='B';
printf(\,k-'A');/* ② */ }
printf(\,%d\,m,k);/* ③ */ }
① A) 4,1 B) 5,6 C) 4,6 D) A,B,C参考答案都不对② A) 1 B) -59 C) -64 D) A,B,C参考答案都不对③ A) 5,66 B) 1,66 C) 5,6 D) A,B,C参考答案都不对
23.下面程序的输出结果是____。

C #include void
fun(int n, int *s) { int f1, f2; if(n==1||n==2) *s=1;else
{ fun(n-1, &f1); fun(n-2, &f2); *s=f1+f2; } }
int main( ) { int x;
fun(6, &x);
printf(\; return 0; }
A) 6 B) 7 C) 8 D) 9
24.下面程序的输出结果是____。

B int w=3; int main() { int w=10;
printf(\;
( C ) ( A ) ( C )。

相关文档
最新文档