新北师大版八年级上册数学 一次函数的定义及解析式

合集下载

北师大版八年级数学上册 第四章 一次函数 知识点总结及练习

北师大版八年级数学上册 第四章 一次函数 知识点总结及练习

四、一次函数与一元一次方程
由于任何一元一次方程都可以转化为 ax+b=0(a,b 为常数,a≠0)•的形式,所以解一元一次方程可 以转化为:当某个一次函数的值 y=0 时,•求相应的自变量 x 的值,从图象上看,这相当于已知直线 y=ax+b,确定它与 x•轴交点的横坐标的值.
7.解析式与图像上点相互求解的题型 ○1 求解析式:解析式未知,但知道直线上两个点坐标,将点坐标看作 x、y 值代入解析式组成含有 k、 b 两个未知数的方程组,求出 k、b 的值在带回解析式中就求出解析式了。 ○2 求直线上点坐标:解析式已知,但点坐标只知道横纵坐标中得一个,将其代入解析式求出令一个坐 标值即可。
2.一次函数 y=kx+b 的图象是一条直线,我们称它为直线 y=kx+b,它可以看作由直线 y=kx 平移│b│ 个单位长度而得到(当 b>0 时,向上平移;当 b<0 时,向下平移).
3.系数 k 的意义:k 表征直线的倾斜程度,k 值相同的直线相互平行,k 不同的直线相交。 系数 b 的意义:b 是直线与 y 轴交点的纵坐标。
k>0,撇 b>0,与 y 轴交点在 x 轴上方 一二三象限 从左到右上升 Y 随 x 的增大而增大
k>0,撇 b<0,与 y 轴交点在 x 轴下方 一三四象限 从左到右上升 Y 随 x 的增大而增大
K<0,捺 b>0,与 y 轴交点在 x 轴上方 一二四象限 从左到右下降 Y 随 x 的增大而减小
y 都有唯一确定的值与其对应,那么我们就说 x 是自变量,y 是 x 的函数,y 的值称为函 数值. 4.函数的三种表示法:(1)表达式法(解析式法);(2)列表法;(3)图象法. a、用数学式子表示函数的方法叫做表达式法(解析式法)。 b、由一个函数的表达式,列出函数对应值表格来表示函数的方法叫做列表法。 c、把这些对应值(有序的)看成点坐标,在坐标平面内描点,进而画出函数的图象来表示函数的 方法叫做图像法。 5.求函数的自变量取值范围的方法. (1)要使函数的表达式有意义:a、整式(多项式和单项式)时为全体实数;b、分式时,让分母≠0;

北师大版八年级数学上册第4章 一次函数 一次函数的图象和性质

北师大版八年级数学上册第4章 一次函数 一次函数的图象和性质
①列表 ②描点 ③连线 那么你能用同样的方法画出一
次函数的图象吗?
例1 画出一次函数 y = -2x+1 的图象
x y = –2x+1
–2
–1
5
3
y = –2x+1
0
1
1 –1 y
5
01 23 4 5
4
2 列表
–3
一次函数的图 象是什么?
01 23 4 5 01 23 4 5
01 23 4 5 01 23 4 5
思考:观察它们的图象有什么特点?
y y=x+2
.
.
..
.O.
.
.
.
y
.
2
=
x
-
2
x
探究归纳
观察三个函数图象的平移情况:
y y=x+2 y=x
2●
y=x-2
O2
x

把一次函数y = x+2,y = x-2的图象与y = x比较,发现: 1. 这三个函数的图象形状都是 直线 ,并且倾斜程度
_相__同___. 2. 函数 y = x 的图象经过原点,函数 y = x + 2 的图象与
y 随 x 的增大而增大. ① b>0 时,直线经过第一、二、三象限;
② b<0 时,直线经过第一、三、四象限. 当 k<0 时,直线 y = kx+b 从左到右逐渐下降,
y 随 x 的增大而减小. ① b>0 时,直线经过第一、二、四象限;
② b<0 时,直线经过第二、三、四象限.
练一练 两个一次函数 y1 = ax+b 与 y2 = bx+a,它们在
要点归纳
思考:与 x 轴的 交点坐标是什么?
b k

北师大版八年级上册数学第四章复习要点:一次函数

北师大版八年级上册数学第四章复习要点:一次函数

北师大版八年级上册数学第四章复习要点:一次函数知识点对冤家们的学习十分重要,大家一定要仔细掌握,查字典数学网为大家整理了北师大版八年级上册数学第四章温习要点:一次函数,让我们一同窗习,一同提高吧!一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b那么此时称y是x的一次函数。

特别地,当b=0时,y是x的正比例函数。

即:y=kx (k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k 即:y=kx+b (k 为恣意不为零的实数b取任何实数)2.当x=0时,b为函数在y轴上的截距。

三、一次函数的图像及性质:1.作法与图形:经过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。

因此,作一次函数的图像只需知道2点,并连成直线即可。

(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的恣意一点P(x,y),都满足等式:y=kx+b。

(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

3.k,b与函数图像所在象限:当k0时,直线必经过一、三象限,y随x的增大而增大;当k0时,直线必经过二、四象限,y随x的增大而减小。

当b0时,直线必经过一、二象限;当b=0时,直线经过原点当b0时,直线必经过三、四象限。

特别地,当b=O时,直线经过原点O(0,0)表示的是正比例函数的图像。

这时,当k0时,直线只经过一、三象限;当k0时,直线只经过二、四象限。

四、确定一次函数的表达式:点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。

(1)设一次函数的表达式(也叫解析式)为y=kx+b。

(2)由于在一次函数上的恣意一点P(x,y),都满足等式y=kx+b。

所以可以列出2个方程:y1=kx1+b …… ①和y2=kx2+b …… ②(3)解这个二元一次方程,失掉k,b的值。

北师大版八年级数学上册 第四章 一次函数 4.1函数

北师大版八年级数学上册 第四章 一次函数 4.1函数

第四章:一次函数4.1函数1.函数的概念一般地,在一个变化过程中有两个变量x 和y ,如果给定一个x 值,相应地就确定了一个y 值,那么我们称y 是x 的函数.其中x 是自变量,当自变量取一个值时,另一个变量就有唯一确定的值与它对应,这也是我们判断两个变量是否构成函数关系的依据. 自变量与另一个变量的对应关系若y 是x 的函数,当x 取不同的值时,y 的值不一定不同.如:y =x 2中,当x =2,或x =-2时,y 的值都是4. 函数的定义中包括三个要素 ① 自变量的取值范围;② 两个变量之间的对应关系;③ 后一个变量被唯一确定而形成的变化范围. 注意:①自变量可以用任意字母表示;②两个变量之间的关系必须是“唯一确定”的; ③函数不是数,而是一种特殊的对应关系.规律方法:判断两个变量是否存在函数关系,关键是看两个变量之间是否是一一对应,即给一个变量一个数值,另一个变量是否有唯一确定的值与之对应.【例1】下列图像给出了变量x 与y 之间的对应关系,其中y 不是x 的函数的是( )【例2】 下列关于变量x ,y 的关系式:①x -3y =1;②y =|x |;③2x -y 2=9.其中y 是x 的函数的是( ).A .①②③B .①②C .②③D .①②【例3】 已知y =2x 2+4,(1)求x 取12和-12时的函数值;(2)求y 取10时x 的值..函数中变量的对应关系当自变量取一个值时,另一个变量就会有唯一的值与之相对应;当另一个变量取某一数值,则自变量并不一定有唯一的值与之相对应,所以另一个变量与自变量并不是一一对应的关系.2.函数关系式用来表示函数关系的等式叫做函数关系式,也称为函数解析式或关系表达式. 函数关系式中的学问①函数关系式是等式.②函数关系式中指明了哪个是自变量,哪个是函数.通常等式右边的代数式中的变量是自变量,等式左边的一个字母表示函数.③函数的解析式在书写时有顺序性.例如,y =x +1是表示y 是x 的函数.若写成x =y -1就表示x 是y 的函数.也就是说:求y 与x 的函数关系式,必须是用只含变量x 的代数式表示y ,即得到的等式(解析式)左边只含一个变量y ,右边是含x 的代数式.【例4】 已知等腰三角形的周长为36,腰长为x ,底边上的高为6,若把面积y 看做腰长x 的函数,试写出它们的函数关系式.3.自变量的取值范围使函数有意义的自变量的全体取值叫做自变量的取值范围. 自变量的取值必须使含自变量的代数式都有意义。

北师大版八年级数学上册第四章一次函数知识点汇总

北师大版八年级数学上册第四章一次函数知识点汇总

1881-4-1(一次函数知识梳理)一.函数的定义1.变量;常量。

2.函数的定义:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们称x是自变量,y是x的函数。

3.函数的表示方法及优缺点;描点法画函数图象的步骤;函数值。

3.自变量的取值范围::关系式为整式时,自变量取全体实数;关系式含分式时,分母不为0;关系式含二次根式时,被开方数大于等于0;关系式含指数为0的式子时,底数不等于0.5.函数关系式与函数图象的关系:(1)满足函数解析式的有序实数对为坐标的点一定在函数图象上;(2)函数图象上的点的坐标满足函数解析式。

6.验证一个点是否在函数图象上的方法是:代入法二.一次函数的定义图象及性质:1.一般地,若两个变量x,y的关系可以表示为y=kx+b(k≠0,k,b是常数)的形式,那么y叫做x的一次函数。

特别地,当b=0时,y是x的正比例函数。

即:y=kx(k为常数,k≠0)2. k值决定了直线的 b值决定了直线与的交点位置。

3.k>0时,y随x的增大而;k<0时,y随x的增大而。

4.两点确定一条直线,画一次函数图象常取点(0,b)(kb-,0)两点。

画正比例函数图象取(0,0)(1,k)5.在同一平面内,不重合的两条直线)0()0(222111≠+=≠+=kbxkykbxky与的位置关系:当k1=k2,b1≠b2时,两直线平行。

当k1≠k2,b1=b2时,两直线交于y轴上同一点。

6.特殊的直线方程:x轴是直线 ; y轴是直线;与x轴平行的直线是;与y轴平行的直线是;一三象限夹角的平分线是直线;二四象限夹角的平分线是直线7.直线y=kx+b的图象可以看作是y=kx的图象平移得到(b>0向上平移;b<0向下平移)三.求一次函数的关系式1.求一次函数关系式的方法:(1)找规律法(2)找相等关系列方程法(3)待定系数法2.用待定系数法求一次函数的关系式方法:(1)依据两个独立的条件确定k,b的值(2)设一次函数关系式为y=kx+b(3)把条件代入关系式构造方程(组)(4)解方程(组),求k,b(5)确定函数关系式四.一次函数与二元一次方程组的关系1.二元一次方程与一次函数的关系:2.一次函数图象交点坐标就是二元一次方程组的五.建立一次函数模型解决实际问题①借助函数图象理解题意:通过看轴,点,线,把函数图象描绘的变化过程和文字对照起来;②建立一次函数模型解决问题:根据关键点确定一次函数表达式,把所求数据转化为图象信息,然后借助一次函数表达式进行求解;③结合实际意义进行验证.六.函数图象共存问题:选定一个函数图象,根据图象性质判断k,b符号,验证另一个函数图象存在的合理性。

北师大版数学八年级上册复习课件:第四章一次函数

北师大版数学八年级上册复习课件:第四章一次函数

o
x
y
k<0,b<0
o
x
练习:
如图,在同一坐标系中,关于x的一次函数 y = x+ b与 y = b x+1的图象只可能是( C )
(A)
y
(B)
y
ox
ox
y (C)
ox
(D)
y
ox
• 图象辨析
1.已知一次函数y=kx+b,y随着x的增大而减小,且kb<0,则
在直角坐标系内它的大致图象是( A )
• 函数图像的移动规律: 若把一次函数解析式 写成y=k(x+0)+b,则用下面的口诀“左 右平移在括号,上下平移在末稍,左负右正须 牢记,上正下负错不了”。
1、求下列函数中自变量x的取值范围 (1)y= x(x+3); (2)y= 3
4x 8
(3)y= 2x 1 (4)y= x 1 1 x
7.某商场文具部的某种笔售价25元,练习本每本售价5元。该商 场为了促销制定了两种优惠方案供顾客选择。甲:买一支笔赠送 一本练习本。乙:按购买金额打九折付款。某校欲购这种笔10支, 练习本x(x ≥10)本,如何选择方案购买呢? 解:甲、乙两种方案的实际金额y元与练习本x本之间的关系式是:
y甲=(x-10)××5+25×10=5x+200 (x ≥10)
例:画出Y=3x+3的图象
解:列表得:
y
x 0 -1 y30
.3
描点,连线如图:
.o
x
-1
4.一次函数的性质
函数 解析式
自变 量的 取值 范围
正比 例 y=kx 全体
函数 (k≠0) 实数

北师大版八年级上册数学第4章一次函数 第1节函数

北师大版八年级上册数学第4章一次函数 第1节函数
第四章
一次函数
4.1
函数
学习目标
1 课时讲解 函数的定义
函数的三种表示方法
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
感悟新知
知识点 1 函数的定义
知1-讲
1.函数的定义 一般地,如果在一个变化过程中有两个变量 x 和 y,并且对于变量 x 的每一个值,变量 y 都有唯一的值 与它对应,那么我们称 y 是 x 的函数,其中 x 是自变量 .
x/h 2 4 8 12 16 18 20 22 y/℃ 35.5 36 37 36.5 37 37.5 37 36.5
感悟新知
(3) y 是 x 的函数吗? 解:y 是 x 的函数 .
知2-练
课堂小结
函数
列表法
自变量的取值范围
关系式法 函 数
图象法
函数值
课后作业
作业1 必做: 请完成教材课后作业 作业2 补充: 请完成对应习题
表法
函数值
变化规律
感悟新知
关系式法 图象法
用数学式子表 示函数关系的 方法叫做关系 式法. 其中的 等式叫做函数 关系式
能准确地反映 整个变化过程 中自变量与函
数值的对应关 系
用图象表示两 个变量间的函 数关系的方法 叫做图象法
直观、形象地 反映出函数关 系变化的趋势 和某些性质
知2-讲
从函数关系式 很难直观看出 函数的变化规 律,而且有些函 数不能用关系 式法表示出来
感悟新知Biblioteka 知识点 2 函数的三种表示方法
知2-讲
1.函数的三种表示方法
表示方法 列表法
定义
优点
缺点
通过列出自变 一目了然 ,对 列出的对应值

北师大版八年级上册数学第18讲《一次函数全章》知识点梳理

北师大版八年级上册数学第18讲《一次函数全章》知识点梳理

北师大版八年级上册数学第 18 讲《一次函数全章》知识点梳理【学习目标】1.了解常量、变量和函数的概念,了解函数的三种表示方法(列表法、解析式法和图象法),能利用图象数形结合地分析简单的函数关系.2.理解正比例函数和一次函数的概念,会画它们的图象,能结合图象讨论这些函数的基本性质,能利用这些函数分析和解决简单实际问题.3.通过讨论一次函数与方程(组)及不等式的关系,从运动变化的角度,用函数的观点加深对已经学习过的方程(组)及不等式等内容的再认识.4.通过讨论选择最佳方案的问题,提高综合运用所学函数知识分析和解决实际问题的能力.【知识网络】选择方案要点一、函数的相关概念一般地,在一个变化过程中. 如果有两个变量x 与y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说x 是自变量,y 是x 的函数.y 是x 的函数,如果当x =a 时y =b ,那么b 叫做当自变量为a 时的函数值.函数的表示方法有三种:解析式法,列表法,图象法.要点二、一次函数的相关概念一次函数的一般形式为y =kx +b ,其中k 、b 是常数,k ≠0.特别地,当b =0 时,一次函数y =kx +b 即y =kx (k ≠0),是正比例函数.要点三、一次函数的图象及性质1、函数的图象如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.要点诠释:直线y =kx +b 可以看作由直线y =kx 平移| b |个单位长度而得到(当b >0 时,向上平移;当b <0 时,向下平移).说明通过平移,函数y =kx +b 与函数y =kx 的图象之间可以相互转化.2、一次函数性质及图象特征掌握一次函数的图象及性质(对比正比例函数的图象和性质)要点诠释:理解k 、b 对一次函数y =kx +b 的图象和性质的影响:(1)k 决定直线y =kx +b 从左向右的趋势(及倾斜角α的大小——倾斜程度),b 决定它与y轴交点的位置,k 、b 一起决定直线y =kx +b 经过的象限.(2) 两条直线l 1 : y = k 1 x + b 1 和l 2 : y = k 2 x + b 2 的位置关系可由其系数确定: k 1 ≠ k 2 ⇔ l 1 与l 2 相交;k 1 = k 2 ,且b 1 ≠ b 2 ⇔ l 1 与l 2 平行; k 1 = k 2 ,且b 1 = b 2 ⇔ l 1 与l 2 重合; (3) 直线与一次函数图象的联系与区别一次函数的图象是一条直线;特殊的直线 x = a 、直线 y = b 不是一次函数的图象. 要点四、用函数的观点看方程、方程组、不等式【典型例题】 类型一、函数的概念1、下列说法正确的是:( )A.变量 x , y 满足2x + y = 3 ,则 y 是 x 的函数; B.变量 x , y 满足| y |= x ,则 y 是 x 的函数; C.变量 x , D.变量 x , 【答案】A ;y 满足 y 2 = x ,则 y 是 x 的函数; y 满足 y 2 - x 2 = 1,则 y 是 x 的函数. 【解析】B 、C 、D 三个选项,对于一个确定的 x 的值,都有两个 y 值和它对应,不满足单值对应的条2x - 3 x ⎩⎩ 件,所以不是函数.【总结升华】理解函数的概念,关键是函数与自变量之间是单值对应关系,自变量的值确定后,函数值是唯一确定的. 举一反三:【变式】如图的四个图象中,不表示某一函数图象的是( )【答案】B ;2、求函数 的自变量的取值范围.【思路点拨】要使函数有意义,需 或 解这个不等式组即可.【答案与解析】 解:要使函数 有意义,则 x 要符合: 即:或2x -1 ≥ 0x -1解方程组得自变量取值是或.【总结升华】自变量的取值范围是使函数有意义的 x 的集合. 举一反三:【变式】求出下列函数中自变量 x 的取值范围(1) y = x +1 【答案】(2) y =x3x + 2|x -2| (3) y = +⎧x ≠ 0 解:(1)要使 y = x +1 有意义,需⎨x +1 ≠ 0 ,解得 x ≠0 且 x ≠-1;(2)要使 y = 3x + 2有意义,需⎧3x + 2 ≥ 0 ,解得 x ≥ - 2 且x ≠ 2 ;|x -2|⎨x - 2 ≠ 03 3 - 2x(3)要使y = +有意义,需⎧2x - 3 ≥ 0 ,解得x =3 .2x - 33 - 2x ⎨⎩3 - 2x ≥ 0 2类型二、一次函数的解析式3、已知y 与x - 2 成正比例关系,且其图象过点(3,3),试确定y 与x 的函数关系,并画出其图象.【思路点拨】y 与x - 2 成正比例关系,即y =k (x - 2) ,将点(3,3)代入求得函数关系式.【答案与解析】解:设y =k (x - 2) ,由于图象过点(3,3)知k = 3 ,故y = 3(x - 2) = 3x - 6 .其图象为过点(2,0)与(0,-6)的一条直线(如图所示).【总结升华】y 与x 成正比例满足关系式y =kx ,y 与x -2 成正比例满足关系式y =k (x - 2) ,注意区别.举一反三:【变式】直线y =kx +b 平行于直线y = 2x -1,且与x轴交于点(2,0),求这条直线的解析式. 【答案】解:∵直线y =kx +b 平行于直线y = 2x -1∴k = 2∵与x 轴交于点(2,0)∴①将k =2 代入①,得b =-4∴此直线解析式为y = 2x - 4 .类型三、一次函数的图象和性质4、已知正比例函数y =kx (k ≠0)的函数值y 随x 的增大而减小,则一次函数y =x +k 的图象大致是图中的().【答案】B;【解析】∵ y 随x 的增大而减小,∴k <0.∵y =x +k 中x 的系数为1>0,k <0,∴经过一、三、四象限,故选B.【总结升华】本题综合考查正比例函数和一次函数图象和性质,k >0 时,函数值随自变量x 的增大而增大.举一反三:【变式】已知正比例函数y =(2m -1)x 的图象上两点A( x1,y1), B( x2, y2),当x1<x2时, 有y 1 >y2, 那么m 的取值范围是( )A.m <1B.m >1C.m < 2D.m > 0 2 2【答案】A;提示:由题意y 随着x 的增大而减小,所以2m -1 < 0 ,选A 答案.类型四、一次函数与方程(组)、不等式5、如图,平面直角坐标系中画出了函数y =kx +b 的图象.(1)根据图象,求k 和b 的值.(2)在图中画出函数y =-2x + 2 的图象.(3)求x 的取值范围,使函数y =kx +b 的函数值大于函数y =-2x + 2 的函数值.【思路点拨】(3)画出函数图象后比较,要使函数y =kx +b 的函数值大于函数y =-2x + 2 的函数值,需y =kx +b 的图象在y =-2x + 2 图象的上方.【答案与解析】解:(1)∵直线y =kx +b 经过点(-2,0),(0,2).∴解得∴y =x + 2 .(2)y=-2x+2经过(0,2),(1,0),图象如图所示.(3)当y =kx +b 的函数值大于y =-2x + 2 的函数值时,也就是x + 2 >-2x + 2 ,解得x >0,即x 的取值范围为x >0.【总结升华】函数图象在上方函数值比函数图象在下方函数值大.举一反三:【变式】(2015•武汉校级模拟)已知一次函数y=kx+b 的图象经过点(3,5)与(﹣4,﹣9).(1)求这个一次函数的解析式;(2)求关于x 的不等式kx+b≤5 的解集.【答案】解:∵一次函数y=kx+b 的图象经过点点(3,5)与(﹣4,﹣9),∴,解得∴函数解析式为:y=2x﹣1;(2)∵k=2>0,∴y 随x 的增大而增大,把y=5 代入y=2x﹣1 解得,x=3,∴当x≤3 时,函数y≤5,故不等式kx+b≤5 的解集为x≤3.类型五、一次函数的应用6、(2015•黔西南州)某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过12 吨(含12 吨)时,每吨按政府补贴优惠价收费;每月超过12 吨,超过部分每吨按市场调节价收费,小黄家1 月份用水24 吨,交水费42 元.2 月份用水20 吨,交水费32 元.(1)求每吨水的政府补贴优惠价和市场调节价分别是多少元;(2)设每月用水量为x 吨,应交水费为y 元,写出y 与x 之间的函数关系式;(3)小黄家3 月份用水26 吨,他家应交水费多少元?【答案与解析】解:(1)设每吨水的政府补贴优惠价为a 元,市场调节价为b 元.根据题意得,解得:.答:每吨水的政府补贴优惠价为1 元,市场调节价为2.5 元.(2)∵当0≤x≤12 时,y=x;当x>12 时,y=12+(x﹣12)×2.5=2.5x﹣18,∴所求函数关系式为:y= .(3)∵x=26>12,∴把 x=26 代入 y=2.5x ﹣18,得:y=2.5×26﹣18=47(元).答:小英家三月份应交水费 47 元.【总结升华】本题考查了一次函数的应用,题目还考查了二元一次方程组的解法,特别是在求一次函数的解析式时,此函数是一个分段函数,同时应注意自变量的取值范围. 举一反三:【变式】一报刊销售亭从报社订购某晚报的价格是每份 0.7 元,销售价是每份 1 元,卖不掉的报纸还可以以 0.20 元的价格返回报社,在一个月内(以 30 天计算),有 20 天每天可卖出 100 份,其余 10 天,每天可卖出 60 份,但每天报亭从报社订购的份数必须相同,若以报亭每天从报社订购报纸的份数为 ,每月所获得的利润为 .(1) 写出 与 之间的函数关系式,并指出自变量 的取值范围;(2) 报亭应该每天从报社订购多少份报纸,才能使每月获得的利润最大?最大利润是多少?【答案】解:(1).类型六、一次函数综合7、如图所示,直线l 1 的解析表达式为 y = -3x + 3 ,且l 1 与 x 轴交于点 D ,直线l 2 经过 A 、B 两点, 直线l 1 、l 2 交于点 C .(1) 求点 D 的坐标; (2) 求直线l 2 的解析表达式; (3) 求△ADC 的面积;(4) 在直线l 2 上存在异于点 C 的另一点 P ,使得△ADP 与△ADC 的面积相等,请直接写出点 P 的坐标.⎨ ⎪ ⎨ ⎨ y = -3.【答案与解析】解: (1)由 y = -3x + 3 ,当 y =0,得-3x + 3 =0,得 x =l .∴ D(1,0).(2) 设直线l 2 的解析表达式为 y = kx + b ,由图象知, x = 4 , y = 0 ; x = 3 , y = - 3.2⎧4k + b = 0, 将这两组值代入,得方程组⎪33k + b = - . ⎩ 2⎧k = 3 ,解得⎪2⎪⎩b = -6. ∴ 直线l 2 的解析表达式为 y = 3x - 6 .2⎧y = -3x + 3, (3) ∵ 点 C 是直线l 与l 的交点,于是有⎪312⎨ y = ⎩ x - 6. 2解得⎧x = 2,⎩ ∴ C(2,-3). ∴ △ADC 的 AD 边上的高为 3. ∵ OD =1,OA =4, ∴ AD =3. ∴ S= 1 ⨯ 3⨯ | -3 |= 9. △ADC2 2(4)P(6,3).【总结升华】这是一道一次函数图象与性质的综合应用问题,求直线的函数解析式,一般运用待定系数法,但运用过程中,又要具体问题具体分析;求底边在坐标轴上三角形的面积的关键是探求该三角形的高.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数的定义及解析式
1、若两个变量间的关系式可以表示成的形式,则称是的一次函数.
(为自变量,为因变量).特别地,当称是的正比例函数.
2、会列函数关系式
方法:1.根据公式,生活常识找到x与y的关系
2.列出有关x和y的等式
3.将等式化成的形式
3. 学会运用待定系数法求解函数的解析式(表达式)
方法:1.设出一次函数的一般形式(y=kx+b)
2.将两个点坐标分别代入“y=kx+b”中,列出有关“k”和“b”的二元一次方程组
3.解出“k”和“b”的值
4.将解出的“k”和“b”的值代入“y=kx+b”中,即为所求的解析式
例1、写出下列各题中与之间的关系式,并判断:是否为的一次函数?是否为正比例函数?
(1)小红去商店买笔记本,每个笔记本2.5元,小红所付买本款y(元)与买本的个数x(个)之间的关系;
(2)等腰三角形的周长是18,若腰长为y,底边长为x,则y与x 之间的关系.并求出x的取值范围;
(3)有一个长为120米,宽为110米的矩形场地准备扩建,使长增加x米,宽增加y米,且使矩形的周长为500米,则y与x的
关系;
(4)据测试:拧不紧的水龙头每秒钟会滴下两滴水,每滴水约
0.05毫升.小明同学在洗手时,没有把水龙头拧紧,当小明
离开x小时后水龙头滴了y毫升水.y与x之间的关系.
求解析式方法:1,系数不为0.
2,次数为1(若是正比例,再加b=0)例2、 当为何值时,函数
⑴是一次函数? ⑵是正比例函数?
1-1变式训练
1、已知函数当为何值时,它是正比例函数?
2.已知函数是一次函数,则的取值范围是___________.
3、 试确定的值,使得函数是一次函数.
方法:求解析式,带点坐标;求点坐标,联立解析式例3、 已知是的一次函数,并且当时,当
⑴求一次函数的解析式;
⑵当求的值.
⑶当求的值.
3-1 变式训练(谁和谁成正比例,谁就等于K倍的谁)
1、已知与成正比例,当
⑴求与之间的函数关系式;
⑵当求的值;
⑶当时,求的值.
例4、 某电信局收取网费如下:163网费为每个小时3元;169网费为每个小时2元,但要收取每月底费15元.
⑴你能写出与的函数关系吗?
⑵如果一个网民每月上网19h,他应选择哪种?
⑶当每月网明等于多少时,两种收费一样多?
4-1 变式训练
1、某车间有20名工人,每人每天可加工甲种零件5个或乙种零件4个,在这20个工人中,派人加工甲种零件,其余的加工乙种零件,已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.
⑴写出此车间每天所获利润(元)与(人)之间的函数关系式.
⑵若要使车间每天获利1840元,需怎样安排这20名工人的工作?
2、.如图,在△ABC中,∠B与∠C的平分线交于点P,设∠A=x
°,∠BPC=y°,当∠A变化时,求y与x之间的函数关系式,并判断y是不是x 的一次函数,指出自变量的取值范围.
课堂小测
一、选择题
1.下列函数中,是一次函数但不是正比例函数的为()
A.y=-
B.y=-
C.y=-
D.y=
2.下列各关系中,符合正比例关系的是()
A.正方形的周长P和它的一边长a
B.距离s一定时,速度v和时间t
C.圆的面积S和圆的半径r
D.正方体的体积V和棱长a
3.若y=(m-1)x是正比例函数,则m的值为()
A.1
B.-1
C.1或-1
D.或-
4.若函数y=(3m-2)x2+(1-2m)x(m为常数)是正比例函数,则m的值为()
A.m>
B.m<
C.m=
D.m=
5.若5y+2与x-3成正比例,则y是x的()
A.正比例函数
B.一次函数
C.没有函数关系
D.以上答案均不正确
二、填空题
6.函数当_______时,为正比例函数.
7.若函数为一次函数,则=____,该函数关系式是_______________.
8.某油箱中有油20升,油从管道中均匀流出10分钟可流尽,则油箱
中剩油量G(升)与流出时间t(分)之间的函数关系式为______,自变量t的取值范围是______.。

相关文档
最新文档