旋转的概念及性质讲义

合集下载

旋转的概念及性质讲课文档

旋转的概念及性质讲课文档

现在十七页,总共十八页。
【综合运用】 15.(16分)(2016·毕节)如图,已知△ABC中,AB=AC,把△ABC 绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F. (1)求证:△AEC≌△ADB; (2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF
的长.
现在十八页,总共十八页。
___O__B_′__.
现在六页,总共十八页。
Байду номын сангаас
旋转的性质 5 . (4 分 )(2016·长 春 ) 如 图 , 在 Rt△ABC 中 , ∠ BAC = 90° , 将 Rt△ABC绕点C按逆时针方向旋转48°得到Rt△A′B′C,点A在边 B′C上,则∠B′的大小为( A) A.42° B.48° C.52° D.58°
D.飞机起飞后冲向空中的过程
现在三页,总共十八页。
2.(4分)将如图所示的图案以圆心为中心,旋转180°后得 到的图案D是( )
A
B
C
D
现在四页,总共十八页。
3.(4分)如图,ABCD为正方形,O为对角线AC,BD的交点,则 △COD绕点O经过下列哪种旋转可以得到△DOA( C ) A.顺时针旋转90° B.顺时针旋转45° C.逆时针旋转90° D.逆时针旋转45°
△ADE,点C和点E是对应点,若∠CAE=90°,AB=1,则BD
=_2_______.
现在九页,总共十八页。
8.(12分)如图所示,把一个直角三角尺ACB绕着30°角的顶点B顺 时针旋转,使得点A与CB的延长线上的点E重合.
(1)三角尺旋转了多少度?
(2)连接CD,试判断△CDB的形状; (3)求∠BDC的度数.
现在七页,总共十八页。

第23章旋转第1课时 旋转的概念及性质-人教版九年级数学上册讲义(机构专用)

第23章旋转第1课时 旋转的概念及性质-人教版九年级数学上册讲义(机构专用)

人教版九年级数学上册讲义第二十三章旋转第1课时旋转的概念及性质知识要点旋转1、定义把一个图形绕某一点O转动一个角度的图形变换叫做旋转,其中O叫做旋转中心,转动的角叫做旋转角。

2、性质(1)对应点到旋转中心的距离相等。

(2)对应点与旋转中心所连线段的夹角等于旋转角。

旋转特殊角度旋转60°得等边三角形。

旋转90°得等腰直角三角形。

旋转任意角度得等腰三角形。

对应练习1.如图,ΔABC 是等腰三角形,∠BAC = 36°,D 是BC 上一点,ΔABD 经过旋转后到达ΔACE 的位置,(1) 旋转中心是哪一点?(2)旋转了多少度?(3) 如果M 是AB 的中点,那么经过上述旋转后,点M 转到了什么位置?2.如图,是ΔAOB 绕点O 按逆时针方向旋转45°所得的.点B 的对应点是点_____ 线段OB 的对应线段是线段______ 线段AB 的对应线段是线段______∠A 的对应角是______ ∠B 的对应角是______ 旋转中心是点______ 旋转的角度是______3.如图是由正方形ABCD 旋转而成.(1)旋转中心是__________(2)旋转的角度是_________ (3)若正方形的边长是1,则C ’D =_________4.ΔA'OB '是ΔAOB 绕点O按逆时针方向旋转得到的. 已知∠AOB =20°,∠A'OB =24°,AB =3,OA =5则A'B '=____,OA' =____,旋转角=______.5.如图,ΔABC绕A 逆时针旋转使得C 点落在BC 边上的F 处,则对于结论:①AC =AF;②∠FAB =∠EAB;③EF =BC;④∠EAB =∠FAC,其中正确的结论是______________6.如图E 是正方形ABCD 内一点,将ΔABE 绕点B 顺时针方向旋转到ΔCBF,其中EB =3cm,则BF =_____cm ,∠EBF =______.7.如图将RtΔABC 绕C 点逆时针旋转30°后,点B 落在B ′,点A落在A’点位置,若A’C ⊥ AB,求∠B ’A’C 的度数.8.如图,将△ABC绕点A顺时针旋转60°得到△AED,若线段AB=5,则BE的长度为.9.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A'B'C',连接AA′,若∠1=25°,则∠BAA'的度数是.课后作业1.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,此时点C恰好在线段DE上,若∠B=40°,∠CAE=60°,则∠DAC的度数为()• A.15° B.20° C.25° D.30°2.如图,在△ABD中,AD=BD,将△ABD绕点A逆时针旋转得到△ACE,使点C落在直线BD上.(1)求证:AE∥BC;(2)连接DE,判断四边形ABDE的形状,并说明理由.3.如图,在Rt△ABC中,∠ACB=90°,△DCE是△ABC绕着点C顺时针方向旋转得到的,此时B、C、E在同一直线上.(1)旋转角的大小;(2)若AB=10,AC=8,求BE的长.4.如图,点E是正方形ABCD内的一点,连接AE、BE、CE.若AE=1,BE=2,CE=3,则∠AEB= 度.5.如图,P是等边三角形ABC内一点将△ACP绕点A顺时针旋转60°得到△ABQ,连接BP,若PA=2,PB=4,PC=2√3,则四边形APBQ的面积为.6.如图所示,点D是等边△ABC内一点,DA=15,DB=19,DC=21,将△ABD绕点A逆时针旋转到△ACE的位置,当点E 在BD的延长线上时.求(1)∠BDA的度数;(2)△DEC的周长.7.如图,在Rt△ABC中,∠C=90°,将△ABC绕点C顺时针旋转90°得到△A′B′C,M、M′分别是AB、A′B′的中点,若AC=8,BC=6,则线段MM′的长为 .8.如图,在等边△ABC中,点D为△ABC内的一点,∠ADB=120°,∠ADC=90°,将△ABD绕点A逆时针旋转60°得△ACE,连接DE.(1)求证:AD=DE;(2)求∠DCE的度数;(3)若BD=1,求AD、CD的长.9.正方形ABCD与正方形DEFG按如图1放置,点A、D、G在同一条直线上,点E在CD边上,AD=3,DE= √2,连接AE、CG.(1)线段AE与CG的关系为;(2)将正方形DEFG绕点D顺时针旋转一个锐角后,如图2,请问(1)中的结论是否仍然成立?请说明理由.长.对应练习答案1.答案:(1)A;(2)36°;(3)AC 的中点.2.B’,OB’,A'B ',∠A’,∠B ',O,45°3.A,45°,4.3,5,44°5.①③④6.答案:3,90°.7.答案:60°.8.解答:解:∵△ABC绕点A顺时针旋转60°得到△AED,∴AB=AE,∠BAE=60°,∴△AEB是等边三角形,∴BE=AB,课后作业答案1.解答:解:由旋转的性质得:△ADE≌△ABC,∴∠D=∠B=40°,AE=AC,∵∠CAE=60°,∴△ACE是等边三角形,∴∠ACE=∠E=60°,∴∠DAE=180°-∠E-∠D=80DU=(180°-∠CAE)=(180°-60°)=80°,∴∠DAC=∠DAE-∠CAE=80°-60°=20°;故选:B.2.解答:证明:(1)由旋转性质得∠BAD=∠CAE,AB=AC,∵AD=BD,∴∠B=∠BAD,∵AB=AC,∴∠B=∠DCA;∴∠CAE=∠DCA,∴AE∥BC.(2)四边形ABDE是平行四边形,理由如下:由旋转性质得AD=AE,∵AD=BD,∴AE=BD,又∵AE∥BC,∴四边形ABDE是平行四边形.3.解答:解:(1)∵△DCE是△ABC绕着点C顺时针方向旋转得到的,此时点B、C、E在同一直线上,∴∠ACE=90°,即旋转角为90°,(2)在Rt△ABC中,∵AB=10,AC=8,∴BC==6,∵△ABC绕着点C旋转得到△DCE,∴CE=CA=8,∴BE=BC+CE=6+8=144.解答:解:连接EE′∵△ABE绕点B顺时针旋转90°到△CBE′∴∠EBE′是直角,∴△EBE′是直角三角形,∵△ABE与△CE′B全等∴BE=BE′=2,∠AEB=BE′C∴∠BEE′=∠BE′E=45°,∵EE′2=22+22=8,AE=CE′=1,EC=3,∴EC2=E′C2+EE′2,∴△EE′C是直角三角形,∴∠EE′C=90°,∴∠AEB=135°.故答案为:135.5.解答:解:如图,连接PQ.∵△ACP绕点A顺时针旋转60°得到△ABQ,∴AP=AQ=2,PC=BQ=2√3,∠PAQ=60°,∴△PAQ是等边三角形,∴PQ=PA=2,∵PB=4,∴PB2=BQ2+PQ2,∴∠PQB=90°,∴S四边形APBQ=S△PBQ+S△APQ=•PQ•QB+•PA2=×2×2√3+×4=3√3,故答案为3√3.6.解答:解:(1)∵△ABC为等边三角形,∴∠BAC=60°,AB=AC,∵△ABD绕点A逆时针旋转到△ACE的位置,点E在BD的延长线上,∴AD=AE,CE=DB=19,∠DAE=∠BAC=60°,∴△ADE为等边三角形,∴∠ADE=60°,DE=AD=15,∴∠BDA=120°;(2)△DEC的周长=DE+DC+CE=15+21+19=55.7.解答:连接CM,CM′,∵AC=8,BC=6,∴AB= =10,∵M是AB的中点,∴CM= AB=5,∵Rt△ABC绕点C顺时针旋转90°得到Rt△A′B′C,∴∠A′CM′=∠ACM∵∠ACM+∠MCB=90°,∴∠MCB+∠BCM′=90°,又∵CM=C′M′,∴△CMM′是等腰直角三角形,∴MM′=CM=5 ,故答案为:5 .8.解答:(1)证明:∵将△ABD绕点A逆时针旋转60°得△ACE∴△ABD≌△ACE,∠BAC=∠DAE,∴AD=AE,BD=CE,∠AEC=∠ADB=120°,∵△ABC为等边三角形∴∠BAC=60°∴∠DAE=60°∴△ADE为等边三角形,∴AD=DE,(2)∠ADC=90°,∠AEC=120°,∠DAE=60°∴∠DCE=360°﹣∠ADC﹣∠AEC﹣∠DAE=90°,(3)∵△ADE为等边三角形∴∠ADE=60°∴∠CDE=∠ADC﹣∠ADE=30°又∵∠DCE=90°∴DE=2CE=2BD=2,∴AD=DE=2在Rt△DCE中,.9.解答:解:(1)线段AE与CG的关系为:AE=CG,AE⊥CG,理由如下:如图1,延长AE交CG于点H,∵四边形ABCD和四边形DGFE是正方形,∴AD=CD,ED=GD,∠ADE=∠CDG=90°,∴△ADE≌△CDG(SAS),∴AE=CG,∠EAD=∠GCD,∵∠EAD+∠AED=90°,∠AED=∠CEH,∴∠GCD+∠CEH=90°,∴∠CHE=90°,即AE⊥CG,故答案为:AE=CG,AE⊥CG;(2)结论仍然成立,理由如下:如图2,设AE与CG交于点H,∵四边形ABCD和四边形DGFE是正方形,∴AD=CD,ED=GD,∠ADC=∠EDG=90°,∴∠ADC+∠CDE=∠EDG+∠CDE,即∠ADE=∠CDG,∴△ADE≌△CDG(SAS),∴AE=CG,∠EAD=∠GCD,∵∠EAD+∠APD=90°,∠APD=∠CPH,∴∠GCD+∠CPH=90°,∴∠CHP=90°,即AE⊥CG,∴AE=CG,AE⊥CG,∴①中的结论仍然成立;。

图形的旋转概念与性质

图形的旋转概念与性质
角速度和角加速度
在物理模拟中,描述物体旋转的参数包括角速度和角加速度。角速度表 示物体每秒钟转过的角度,角加速度则表示物体转动速度的变化率。
03
转动惯量
物理模拟中另一个重要的概念是转动惯量,它描述了物体转动时抵抗改
变其转动状态的能力。转动惯量的大小取决于物体的质量分布和转动轴
的位置。
04 旋转的数学原理
欧拉角
欧拉角是描述物体在三维空间中绕着 三个轴(通常为X、Y、Z轴)旋转的 角度。
欧拉角在表示旋转时存在万向节锁问 题,即当物体绕两个轴旋转时,第三 个轴的旋转角度可能会发生跳变。
欧拉角有三种类型:滚动角(绕X轴 旋转)、俯仰角(绕Y轴旋转)和偏 航角(绕Z轴旋转)。
轴角表示法
轴角表示法是通过指定旋转轴 和旋转角度来描述物体的旋转。
守恒定律
在没有外力矩作用的情况下,刚 体的角动量保持不变。
应用
解释了旋转运动的物体在没有外 力矩作用时,会保持其旋转状态。
旋转的能量守恒定律
旋转动能
刚体绕旋转轴转动的动能,与转动惯量和角速度平方成正比。
守恒定律
在没有外力做功的情况下,刚体的旋转动能保持不变。
应用
解释了旋转运动的物体在没有外力做功时,其旋转速度不会发生变 化。
在Unity中,可以使用Rotate 方法并传入负值来实现逆旋 转,即旋转相反的方向。
THANKS FOR WATCHING
感谢您的观看
相反的方向。
DirectX中的旋转
欧拉角与四元数
DirectX支持使用欧拉角或四元数来表示旋转。欧拉角是绕三个轴的旋转角度,而四元数 则是一种更稳定的表示方式,可以避免万向锁问题。
变换矩阵
通过指定变换中心和旋转角度,DirectX可以计算出对应的变换矩阵,用于更新顶点坐标 。

数学旋转的知识点

数学旋转的知识点

数学旋转的知识点数学中的旋转是一种基本的几何变换,它可以使我们更好地理解和解决各种问题。

在这篇文章中,我将为您介绍数学旋转的几个重要知识点,帮助您更好地理解和应用它们。

一、旋转的基本概念在数学中,旋转是指围绕一个中心点按照一定的角度将物体或坐标系转动。

旋转可以是顺时针或逆时针方向,角度可以是正数或负数。

二、旋转矩阵旋转可以用一个矩阵来表示,这个矩阵被称为旋转矩阵。

一个二维平面上的旋转矩阵可以写成如下形式:cosθ -sinθsinθ cosθ其中,θ表示旋转的角度。

对于三维空间中的旋转,旋转矩阵会稍有不同。

三、旋转的性质旋转具有一些重要的性质,这些性质有助于我们更好地理解和应用旋转。

1.旋转是保角的:旋转不改变物体之间的角度关系,两个物体的夹角在旋转前后保持不变。

2.旋转是保距的:旋转不改变物体上两点之间的距离,两点间的距离在旋转前后保持不变。

3.旋转是可逆的:旋转可以通过逆向旋转来恢复到原来的状态。

四、旋转的应用旋转在数学和其他科学领域有着广泛的应用。

1.几何学:旋转可以用来解决各种几何问题,如求解物体的位置和姿态,计算点、直线和曲线的旋转等。

2.物理学:旋转在物理学中也有着重要的应用,如刚体转动、天体运动等。

3.计算机图形学:旋转是计算机图形学中的基本操作之一,用于实现物体的旋转、变形和动画效果。

4.人工智能:旋转在人工智能领域也有着广泛的应用,如图像处理、模式识别和机器人导航等。

五、旋转的实例下面给出一个简单的旋转实例,以帮助读者更好地理解旋转的应用。

假设有一个平面上的点A(2, 3),我们要将这个点绕原点逆时针旋转60度。

根据旋转矩阵的公式,我们可以得到旋转后的坐标B(x, y),计算过程如下:x = 2 * cos60° - 3 * sin60° = 1y = 2 * sin60° + 3 * cos60° = 4.196所以,点A(2, 3)绕原点逆时针旋转60度后的坐标为B(1, 4.196)。

认识旋转知识点总结初中

认识旋转知识点总结初中

认识旋转知识点总结初中一、旋转的基本概念1. 旋转的定义旋转是物体围绕某一固定轴线或者某一固定点进行的运动。

在旋转运动中,物体的各个点围绕着轴线或者固定点进行圆周运动,同时保持相对位置不变。

2. 旋转的方向围绕轴线进行旋转运动的物体,其运动可以是顺时针方向或者逆时针方向。

在物理学中,通常将顺时针方向定为正向,逆时针方向定为负向。

3. 旋转的角度旋转运动可以用角度来描述。

一个完整的旋转是360度,也可以表示为2π弧度。

物体围绕轴线或者固定点所经过的角度称为旋转角。

二、旋转运动的基本定律1. 旋转惯量旋转惯量是描述物体围绕轴线旋转运动的一种物理量,它与物体的质量和几何形状有关。

物体的旋转惯量越大,其旋转运动越难以改变。

2. 角动量在旋转运动中,角动量是描述物体旋转运动的一种物理量,它等于物体的旋转惯量乘以物体围绕轴线旋转的角速度。

3. 旋转运动的动能物体进行旋转运动时,具有旋转动能。

其大小等于物体的旋转惯量乘以物体所具有的角速度的平方再除以2。

4. 角速度角速度是描述物体围绕轴线旋转运动的物理量,它等于物体围绕轴线旋转的角度变化量与时间的比值。

5. 动量定理在旋转运动中,动量定理也适用。

它可以描述物体围绕轴线旋转运动时所受到的力和物体的角加速度之间的关系。

三、旋转运动的应用1. 陀螺的原理陀螺是一种利用旋转运动原理制作的玩具。

它的工作原理是利用陀螺的高速旋转使得陀螺保持一定的平衡状态,从而能够在平滑的表面上保持稳定的旋转运动。

2. 自行车轮的稳定性自行车的骑行稳定性也与旋转运动有关。

自行车前轮的旋转运动可以使得自行车保持稳定的前进方向,而不会出现侧倾的情况。

3. 地球自转和公转运动地球自转和公转运动也是旋转运动的一种应用。

地球每天围绕自己的轴线旋转一圈,并且围绕太阳做公转运动,这些运动都是旋转运动的应用。

四、旋转运动的实验1. 旋转惯量实验通过测量不同物体的旋转惯量,可以观察到物体的形状和质量对旋转惯量的影响,从而了解旋转运动的基本定律。

旋转定义与性质课件

旋转定义与性质课件
x'=xcosθ-ysinθ, y'=xsinθ+ycosθ, z'=z。
线绕轴旋转
设直线L过原点,方向向量为 (m,n,0),则L绕z轴旋转θ角度后 ,新的方向向量为(m',n',0),其
中m'=mcosθ-nsinθ, n'=msinθ+ncosθ。
面绕轴旋转
设平面S法向量为(a,b,c),则S绕 z轴旋转θ角度后,新的法向量为 (a',b',c'),其中a'=acosθ-bsinθ,
旋转定义与性质课件
目录
CONTENTS
• 旋转基本概念 • 旋转图形绘制技巧 • 旋转对称性质探讨 • 相似变换与旋转变换关系揭示 • 三维空间中旋转变换拓展应用 • 课程总结与思考题布置
01
旋转基本概念
旋转定义及性质
旋转定义
把一个平面图形绕着平面内某一点转 动一个角度,叫做图形的旋转。
旋转性质
学生自我评价报告收集
学生自我评价
请学生对本节课所学内容进行自我评价,包 括知识点掌握情况、课堂参与度、问题解决 能力等方面。
报告收集与整理
收集学生的自我评价报告,进行整理和分析 ,以便更好地了解学生的学习情况和问题所
在。
下节课预告及预备工作提示
要点一
下节课预告
要点二
预备工作提示
介绍下一节课将要学习的内容、重点和难点,以便学生提 前预习和准备。
VS
调整绘制过程
如发现错误或不满意的结果,可调整旋转 中心、角度或使用其他工具进行重新绘制 。
03
旋转对称性质探讨
旋转对称图形特点分析
图形特点
旋转对称图形在平面内,绕着一个定点旋转一定角度后,仍能与原图形重合。

九年级旋转知识点

九年级旋转知识点

九年级旋转知识点一、旋转的定义。

1. 在平面内,把一个图形绕着一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。

这个定点叫做旋转中心,转动的角叫做旋转角。

- 例如,将三角形ABC绕点O顺时针旋转30°,点O就是旋转中心,30°就是旋转角。

2. 旋转三要素:旋转中心、旋转方向(顺时针或逆时针)、旋转角度。

二、旋转的性质。

1. 对应点到旋转中心的距离相等。

- 在图形旋转过程中,若点A旋转后得到点A',那么OA = OA',这里O为旋转中心。

2. 对应点与旋转中心所连线段的夹角等于旋转角。

- 假设图形绕点O旋转,点B的对应点是B',那么∠BOB'就是旋转角。

3. 旋转前后的图形全等。

- 即旋转不改变图形的形状和大小。

如果四边形ABCD绕点P旋转得到四边形A'B'C'D',那么四边形ABCD≌四边形A'B'C'D'。

三、旋转作图。

1. 确定旋转中心、旋转方向和旋转角度。

2. 找出原图形的关键点(如多边形的顶点)。

3. 连接关键点与旋转中心,按照旋转方向和旋转角度旋转这些线段。

- 例如,要将三角形ABC绕点O逆时针旋转60°,先连接OA、OB、OC,然后将OA绕点O逆时针旋转60°得到OA',同理得到OB'和OC',最后连接A'B'、B'C'、C'A'得到旋转后的三角形A'B'C'。

4. 顺次连接旋转后的关键点,得到旋转后的图形。

四、中心对称。

1. 定义。

- 把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心。

这两个图形中的对应点叫做关于中心的对称点。

- 例如,平行四边形ABCD中,点O是对角线AC与BD的交点,那么平行四边形ABCD绕点O旋转180°后能与自身重合,平行四边形ABCD就是中心对称图形,点O是对称中心。

旋转的定义与性质

旋转的定义与性质

02
03
2D图形旋转
在计算机图形学中,2D图 形可以通过旋转矩阵进行 旋转,以实现图形的转动 效果。
3D模型旋转
在3D图形中,模型可以通 过旋转轴心进行旋转,以 实现3D模型的动态展示和 交互。
动画中的旋转
在动画制作中,物体可以 通过连续旋转来创建动态 效果,如旋转的球体或飞 旋的车轮等。
04
CATALOGUE
旋翼机
01
旋翼机是一种利用旋转翼产生升力的飞行器,其旋翼的旋转使
机体升空。
陀螺仪
02
陀螺仪是航空航天领域中常用的惯性导航和姿态稳定设备,它
利用高速旋转的陀螺来保持方向和位置的稳定。
火箭发动机
03
火箭发动机中的燃料燃烧产生的高温高压气体通过喷嘴产生反
作用力,推动火箭旋转发射。
计算机图形学中的旋转
01
VS
详细描述
角动量是质量、速度和转动半径的函数, 表示物体绕某点旋转的动量。对于刚体, 其角动量等于刚体绕某点旋转的动量与该 点到旋转轴的距离的乘积。
旋转与万有引力的关系
总结词
万有引力是描述物体之间相互吸引的力,与物体的质量和距离有关。
详细描述
当两个物体之间存在万有引力时,它们可能会发生旋转运动。这种旋转运动受到万有引力的影响,特别是当物体 之间的距离较小时,万有引力可能导致它们发生相对旋转。
旋转的角度是连续变化的
当物体进行旋转时,其与旋转轴之间的角度会连续变化,而不是跳跃或突变。
旋转的速度是连续变化的
由于旋转的角度是连续变化的,因此旋转的速度也是连续变化的。这意味着在旋转过程 中,物体上的每一点的线速度和角速度都是连续变化的。
03
CATALOGUE
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

旋转的概念及性质
知识点1:旋转的概念
一个图形绕某点转动一个角度叫________.
(1)旋转的三要素:______,_______和______;
(2)旋转方向有:________,________;
(3)旋转角:对应边的夹角.
1.如图,△CDO经旋转后能与△ABO重合,则:
(1)旋转中心是________,旋转方向是_____________,旋转角度=________°;
(2)线段BO的对应线段是________,线段CD的对应线段是________;
(3)∠AOB的对应角是________,∠CDO的对应角是________.
2.如图,△ABC绕点O旋转65°得到△A′B′C′,则:
(1)旋转中心是________,旋转方向是______________ ,旋转角=∠______=∠______=∠______=______°;
(2)线段AB的对应线段是________,线段________的对应线段是A′C′,
(3)∠BAC的对应角是________,∠________的对应角是∠A′B′C′.
第1题第2题第3题第4题
知识点2:旋转的性质
(1)旋转前后的图形________;(2)旋转的对应边________,对应角________;
(3)同一个旋转,旋转角都________;(4)对应点到旋转中心的距离________.
3.如图,D是等边三角形ABC内一点,△ABD绕点A旋转得到△ACE.
(1)旋转中心是________;(2)旋转角=∠________=∠________=________°;
(3)连接DE,△ADE是________三角形.
4.如图,正方形ABCD中,△ABE绕点B旋转90°到△CBE′的位置,若AE=1,BE=2,CE=3,连接EE′.
(1)△BEE′是________三角形;(2)EE′=________;(3)判断△EE′C的形状并证明.5.如图,两个边长为2的正方形,上面的正方形不动,下面的正方形绕
上面正方形的中心O旋转.
求证:(1)△OEE′≌△ODD′;(2)两个正方形重叠部分面积始终为1.
1.下列现象中属于旋转的是( )
A.地下水位下降B.传送带的移动C.汽车的直线运动D.水龙头的转动2.如图,四边形ABCD绕点A旋转到AB′C′D′位置.
(1)旋转中心是________ ,旋转方向是____________,旋转角度=________;
(2)线段AB的对应线段是________,线段________的对应线段是B′C′;,
(3)∠C的对应角是________,________的对应角是∠AB′C′.
3.如图,将一个含30°角的三角板ABC绕C顺时针旋转得△EDC,点B,C,E共线. (1)旋转角=________°; (2)若AB=1,则DE=________,CE=________.
第2题第3题第4题
4.如图,等边三角形ABC在水平地面上绕C顺时针旋转得△DEC,则旋转角=________°. 5.(1)等边三角形绕旋转中心至少旋转__________°与自身重合;
(2)正方形绕旋转中心至少旋转__________°与自身重合;
(3)五角星绕旋转中心至少旋转__________°与自身重合;
(4)正n边形绕旋转中心至少旋转__________°与自身重合.
6.如图将一块含30°角的三角板ADC绕A点顺时针旋转60°得到△AEB,已知AC=2,连接ED,BD,则∠BAD的度数为及ED的长为.
7.如图,∠ACB=90°,∠A=40°,以点C为旋转中心,将△ABC旋转到三角形A′B′C 的位置,点B在斜边A′B′上,则旋转角等于( )
A.50° B.60° C.70° D.80°
第6题第7题第8题
8.如图,△ABC绕点A顺时针旋转45°得到三角形AB′C′,若∠BAC=90°,AB=AC
________.
9.如图,将等腰三角形ABC绕点B旋转α度到△A1BC1的位置,AB与A1C1交于D,AC 与A1C1,BC1分别交于E,F.
(1)求证:△BCF≌△BA1D;(2)若∠C=α,判定四边形A1BCE的形状并说明理由.。

相关文档
最新文档