第1课时 旋转的概念与性质(教案)
初中数学下册旋转教案

初中数学下册旋转教案一、教学目标1. 知识与技能目标:让学生掌握旋转的定义、性质和变换规律,能够运用旋转知识解决实际问题。
2. 过程与方法目标:通过观察、操作、交流、归纳等过程,培养学生的探究能力、动手能力、观察能力以及与他人合作交流的能力。
3. 情感态度与价值观目标:让学生感受数学与生活的紧密联系,培养学习数学的兴趣,激发学生热爱生活的情感。
二、教学内容1. 旋转的定义:在平面内,将一个图形绕着某一点转动一个角度的图形变换叫做旋转。
2. 旋转的性质:(1)旋转不改变图形的大小和形状,只改变图形的位置。
(2)旋转中心确定的旋转方向和旋转角度相同时,图形的变换效果相同。
(3)旋转前后,对应点与旋转中心连线的夹角等于旋转角度。
(4)旋转前后,对应线段的长度、对应角的大小保持不变。
3. 旋转的应用:解决实际问题,如设计图案、制作模型等。
三、教学过程1. 导入新课教师通过展示生活中常见的旋转现象,如风扇、车轮等,引导学生关注旋转现象,激发学生的学习兴趣。
提问:同学们,你们在生活中见到过哪些旋转现象?它们有什么特点?2. 探究旋转的性质(1)教师引导学生观察两个相同的图形,一个静止,一个绕某一点旋转,让学生观察旋转前后的变化。
提问:同学们,你们观察到旋转前后的图形有什么变化?有什么不变的地方?(2)学生动手操作,尝试画出两个相同图形旋转后的位置关系。
教师巡回指导,纠正学生的操作错误。
(3)教师引导学生归纳旋转的性质,学生汇报,教师点评并总结。
3. 应用旋转知识解决实际问题教师提出实际问题,如设计一个对称的图案,让学生运用旋转知识解决问题。
学生独立思考,动手操作,教师巡回指导。
最后,学生展示自己的设计成果,大家共同评价。
4. 课堂小结教师引导学生回顾本节课所学内容,提问:同学们,你们掌握了旋转的哪些知识?你们觉得旋转在实际生活中有哪些应用?四、课后作业1. 完成课后练习题,巩固所学知识。
2. 观察生活中的旋转现象,拍摄照片或绘制图案,下节课分享。
《旋转》数学教案设计

《旋转》數學教案設計《旋转》数学教案设计一、教学目标:1. 知识与技能:理解和掌握旋转的基本概念,能够正确识别和描述物体的旋转运动。
2. 过程与方法:通过观察、操作、讨论等活动,培养学生观察、分析问题的能力,以及抽象思维和空间想象能力。
3. 情感态度价值观:激发学生对数学的兴趣,培养学生的探索精神和团队合作意识。
二、教学重点和难点:重点:理解旋转的概念,掌握旋转的特点和性质。
难点:理解和掌握旋转中心、旋转方向和旋转角度这三个要素。
三、教学过程:1. 引入新课:教师可以通过实物展示(如风车、陀螺等)或者动画视频引入旋转这一主题,让学生直观感受并理解旋转现象。
2. 探索新知:(1) 旋转定义:引导学生通过观察和思考,归纳出旋转的定义——在平面内,一个图形绕着某一点转动一定的角度,这种图形的位置变化叫做旋转。
(2) 旋转要素:讲解旋转的三个要素——旋转中心、旋转方向和旋转角度,并通过实例进行解释说明。
(3) 旋转特点:引导学生通过实际操作,发现并总结旋转的特点,例如旋转后图形的形状和大小不变,只是位置发生了改变。
3. 巩固练习:设计一些简单的题目,让学生运用所学知识解决问题,进一步理解和掌握旋转的相关知识。
4. 小结与拓展:引导学生回顾本节课的学习内容,对旋转的定义、要素和特点进行总结。
然后,可以提出一些开放性的问题,比如“生活中有哪些旋转的现象?”、“你能设计一个利用旋转的装置吗?”等,引导学生进行更深入的思考和探究。
四、教学评价:通过对学生的课堂参与度、作业完成情况、小测验成绩等方面的综合评价,了解学生对旋转的理解和掌握程度,以便及时调整教学策略,提高教学效果。
五、教学反思:在教学过程中,要注重引导学生自主学习和探究,激发他们的学习兴趣和积极性。
同时,也要关注学生的个体差异,提供适当的帮助和支持,以满足他们不同的学习需求。
第1课时旋转的概念与性质(教案)

第二十三章旋转23.1图形的旋转第1课时旋转的概念与性质【知识与技能】通过观察具体实例理解旋转,探索它的基本性质.【过程与方法】在发现、探索的过程中完成对旋转这个图形变化从直观到抽象、从感性理解到理性理解的转变,发展学生直观想象水平,分析、归纳,抽象概括的思维水平.【情感态度】学生在实验探究、知识应用等数学活动中,能体验数学的具体、生动、灵活,增强数学应用意识,调动学生学习数学的主动性.【教学重点】归纳图形的旋转特征.【教学难点】旋转概念的形成过程及性质的探究过程.一、情境导入,初步理解问题 1 以前我们学过图形的平移、轴对称等变换,它们有哪些特征呢?想想看,并与同伴交流.问题2 请观察以下列图形的变化(教师展示实物或图片或用课件展示):(1)时钟针面上时针的转动(顺时针方向旋转和逆时针方向转动);(2)风车的转动;(3)电扇上扇叶的转动;(4)小朋友荡秋千;(5)汽车雨刷的转动;以上图形的转动有什么共同特点呢?你还能举出这样类似的生活中的情境吗?【教学说明】问题1的回顾,可让学生感受到现实生活中存有着平移,轴对称变换,结合问题2,可进一步感受生活中存有着旋转变换,增强探究欲望,进而导入新课.对于问题2,应鼓励学生通过观察、思考、讨论,用自己的语言来描绘这个现象的共同特征,初步感受到旋转的基本性质是绕某一固定点转动一定的角度.二、思考探究,获取新知探究1 如图,用一根细线一端拴住小球,另一端固定在支架上(教师事先准备好实物),当小球绕点O由A摆动至B,由B摆动至A的过程中,试问:小球绕着哪个点转动?它们转动方向如何?转动的角度是哪个角?探究2 如图,用一根较长细线系住木棒AB的两端,再将细线固定于支架上的点O(教师事先准备好实物),再将木棒提取使之自然摆动至A′B′位置.试问:在转动过程中,木棒AB绕着哪一点在转动?木棒AB的长度发生了变化吗?A和A′到点O的距离发生了变化吗?B和B′点呢?由此你能发现哪些重要结论?【教学说明】1.在演示探究2中,应将细线缠绕在支架上点O处,使之不能滑动.2.引导学生认真观察,独立思考过程中,教师可适时予以点拨,从而引出旋转的相关定义,并初步感受旋转的性质,最后师生共同总结.旋转:把一个平面图形绕着平面内某一个点(如点O)旋转一个角度,就叫做图形的旋转.点O称为旋转中心,转动的角度称为旋转角.(注意突出旋转的三个要素:旋转中心、旋转角和旋转方向)对应点:假设图形上的点P经过旋转变为P′,则这两个点叫做这个旋转的对应点.对应线段:假设图形上的线段AB经过旋转变为线段A′B′,则这两条线段称为对应线段,同样地,假设图形上的一个角∠A经过旋转后变为∠A′,则∠A和∠A′称为对应角.对应点和旋转中心之间的夹角称为旋转角.【教学说明】给出相关概念过程中,教师可结合图形让学生明确旋转中的对应点、对应角、对应线段、旋转中心等,即时巩固旋转及其相关概念,同时简要说出一些简单的旋转性质,为后面探索旋转的性质作铺垫.探究3 如图,在硬纸片上,挖一个三角形ABC,再挖一个小洞O作为旋转中心,硬纸板下面再放一张白纸,先在纸上描出这个挖掉的三角形(△ABC),然后围绕旋转中心O转动硬纸板,再描出这个挖掉的三角形(△DEF),移开硬纸板.试问:在旋转的过程中,线段OA与线段OD的大小关系如何?∠AOD与∠BOE及∠COF有什么关系?旋转前后三角形的形状和大小发生了改变吗?【归纳结论】旋转的性质:1.对应点到旋转中心的距离相等;2.对应点与旋转中心所连线段的夹角等于旋转角.3.旋转前后图形的形状、大小完全相同,即它们是全等的.三、使用新知,深化理解1.将图形绕点O旋转,且图形上点P、Q旋转后的对应点分别为P′、Q′,若∠POP′=80°,则∠QOQ′=____,若OQ=2.5cm,则OQ′=____。
人教版九年级上册数学精品教学课件 第二十三章 旋转 图形的旋转 第1课时 旋转的概念与性质

随堂训练 基础巩固
1.下列图案中能由一个图形通过旋转而构成的是_①__②___.(填序号)
2.(2020·大连)如图,△ABC中,∠ACB=90°,∠ABC=40°. 将△ABC绕点B逆时针旋转得到△A′BC′,使点C的对应点C′恰好落 在边AB上,则∠CAA′的度数是( D )
A.50° B.70° C.110° D.120°
点A、B、P的对应点分别为 C、B、P′ .
旋转中心就是在旋转过程中始终保持固定不变的那个点, 它可以在图形的外部或内部,还可以在图形上,即它可以是平 面内的任意一点.
旋转角:任意一对对应点与旋转中心的连线所成的角.
练习
①时钟的时针在不停地旋转,从上午6时到上午9时,时针 旋转的角度是多少?从上午9时到上午10时呢?
解:从上午6时到上午9时,时针旋转的角度为90°,从上 午9时到上午10时,时针旋转的角度是30°.
②如图,杠杆绕支点转动撬起重物,杠杆的旋转中心是 点 O ,旋转角是 ∠AOA′,点A的对应点是点 A′ .
知识点2 旋转的性质
在硬纸板上先挖一个三角形洞,再在三角形
洞外挖一个小洞O(作为旋转中心),把挖好洞 的硬纸板放在白纸上,在白纸上描出挖掉的三角
R·九年级上册
第二十三章 旋转
23.1 图形的旋转
第1课时 旋转的概念与性质
新课导入 导入课题
欣赏日常生活中一些物体的运动现象,观察运动的过程。
学习目标
(1)了解生活中广泛存在的旋转现象,知道旋转是继平移、 对称之后的又一种基本变换. (2)能结合图形指出什么是旋转中心、旋转角和对应点. (3)体会旋转的形成过程,并探究旋转的性质.
3.(教材P60例题变式)如图,四边形ABCD是正方形,△ADF按 顺时针方向旋转一定的角度得到△ABE,已知AF=4,AB=7.
《旋转》数学教案

《旋转》数学教案标题:《旋转》数学教案一、教学目标:1. 知识与技能:(1)理解旋转的概念,能够识别和描述图形的旋转现象。
(2)掌握旋转的性质,能通过操作活动探究并发现旋转的特点。
2. 过程与方法:(1)通过观察、比较、分析、归纳等活动,培养学生对旋转的理解能力。
(2)通过实际操作,让学生体验旋转的过程,提高学生的空间观念和动手能力。
3. 情感态度与价值观:(1)激发学生对几何学的兴趣,培养他们的探索精神和创新意识。
(2)培养学生的合作意识和团队协作能力。
二、教学重难点:重点:理解旋转的概念,掌握旋转的性质。
难点:通过实际操作,体验旋转的过程,提高学生的空间观念。
三、教学过程:1. 导入新课:教师可以展示一些生活中的旋转实例,如风扇的转动、摩天轮的转动等,引导学生观察这些现象,并提出问题:“这些物体的变化有什么共同之处?”引发学生思考,导入新课。
2. 讲授新课:(1)定义旋转:教师讲解旋转的定义,即在平面内,将一个图形绕着某个固定点按某个方向转动一定的角度,这样的运动称为旋转。
这个固定的点叫做旋转中心,转动的角度叫做旋转角。
(2)理解旋转的性质:教师可以通过演示或动画展示旋转的过程,让学生观察旋转前后图形的位置关系和形状大小是否改变,从而理解旋转的性质。
3. 实践操作:(1)设计实验:教师可以设计一些简单的实验,让学生亲自操作,如用纸片做一个简单的图形,然后围绕一点进行旋转,观察旋转前后的变化。
(2)小组讨论:让学生分组讨论自己在操作过程中观察到的现象,分享自己的理解和发现。
4. 总结回顾:教师引导学生总结本节课的学习内容,强调旋转的概念和性质,同时鼓励学生提出自己的疑问和困惑。
四、作业布置:设计一些相关的练习题,让学生巩固和应用所学知识,例如:找出生活中的一些旋转现象,并尝试描述它们的旋转特点。
五、教学反思:在教学过程中,要注重引导学生主动参与,通过观察、实践、讨论等方式,使他们真正理解和掌握旋转的概念和性质。
旋转的概念与性质教学设计

旋转的概念与性质教学设计一、教学目标1.知识与技能:●学生能够理解旋转的基本概念,包括旋转中心、旋转方向和旋转角度。
●学生能够掌握旋转的性质,如对应点到旋转中心的距离相等、对应点与旋转中心所连线段的夹角等于旋转角等。
1.过程与方法:●学生能够通过观察、实验和推理,探索旋转的性质。
●学生能够运用旋转的知识解决简单的实际问题。
2.情感态度与价值观:●激发学生对旋转现象的兴趣和好奇心,培养他们的探究精神。
●培养学生运用数学知识解决实际问题的意识和能力。
二、教学重点与难点1.教学重点:●旋转的基本概念和性质。
●旋转的应用。
3.教学难点:●理解旋转的性质,并能够灵活运用。
三、教学准备1.教具:旋转模型、多媒体课件等。
2.学具:学生自备笔记本、铅笔等。
四、教学过程1.导入新课●通过展示一些旋转现象的图片或视频,如钟表指针的转动、风车的转动等,引发学生的兴趣。
●提问学生是否见过这些现象,并让他们尝试描述这些现象的共同特点。
4.探究旋转的基本概念●通过多媒体课件展示旋转的动画,引导学生观察并总结旋转的定义。
●强调旋转中心、旋转方向和旋转角度的概念,并举例说明。
5.探究旋转的性质●引导学生通过观察和实验,探究旋转的性质。
●展示旋转模型,让学生观察对应点到旋转中心的距离是否相等,对应点与旋转中心所连线段的夹角是否等于旋转角。
●让学生分组讨论,并尝试用自己的话解释旋转的性质。
6.应用拓展●给出一些简单的实际问题,让学生尝试运用旋转的知识解决。
●鼓励学生分享自己的解题思路和方法,并进行评价和指导。
7.课堂小结●总结旋转的基本概念和性质,强调它们在日常生活和实际问题中的应用。
●鼓励学生继续观察和探索身边的旋转现象,培养他们的探究精神和实践能力。
五、作业布置1.完成相关练习题,巩固旋转的基本概念和性质。
2.收集身边的旋转现象,并尝试用数学语言描述它们的旋转过程。
六、教学评价1.观察学生在课堂上的表现和参与度,评价他们对旋转概念和性质的理解程度。
2024旋转北师大版数学初三上册教案

2024旋转北师大版数学初三上册教案一、教学目标1.知识与技能了解旋转的概念,掌握旋转的性质和定理。
能够运用旋转的性质解决实际问题。
2.过程与方法培养学生的观察能力、分析能力和解决问题的能力。
培养学生运用数学知识解决实际问题的意识。
3.情感态度与价值观增强学生对数学学习的兴趣,培养学生合作、探究的精神。
二、教学重点与难点1.重点:旋转的概念、性质和定理。
2.难点:运用旋转的性质解决实际问题。
三、教学过程第一课时:旋转的概念与性质1.导入新课通过生活中的实例,引导学生感受旋转现象,激发学生对旋转的兴趣。
2.学习旋转的概念结合实例,讲解旋转的定义,让学生理解旋转的基本要素。
3.学习旋转的性质通过观察图形的旋转,引导学生发现旋转的性质,如:旋转中心、旋转方向、旋转角度等。
4.练习让学生自主完成课本P15页习题,巩固旋转的概念和性质。
5.小结第二课时:旋转的定理与运用1.复习旋转的概念和性质通过提问方式,检查学生对旋转概念和性质的理解。
2.学习旋转的定理结合图形,讲解旋转的定理,如:旋转对称定理、旋转不变定理等。
3.运用旋转定理解决问题出示实际问题,让学生运用旋转的定理进行解答。
4.练习让学生自主完成课本P17页习题,巩固旋转的定理。
5.小结第三课时:旋转的实际应用1.复习旋转的概念、性质和定理通过提问方式,检查学生对旋转知识的掌握。
2.探究旋转的实际应用出示生活中的旋转现象,让学生思考如何运用旋转知识解决问题。
3.解决实际问题让学生分组讨论,运用旋转知识解决实际问题。
4.分享与交流每组选取一名代表,分享本组解决问题的过程和结果。
5.小结第四课时:课堂小结与测试1.复习本节课所学内容通过提问方式,检查学生对旋转知识的掌握。
2.课堂小结3.测试出具测试题,检查学生对旋转知识的掌握程度。
四、教学反思本节课通过生活中的实例引入旋转的概念,让学生感受数学与生活的联系。
在讲解旋转性质和定理时,注重引导学生观察、发现,培养学生的观察能力和分析能力。
《旋转》数学教案设计一千五百字

《旋转》數學教案設計一千五百字标题:《旋转》数学教案设计一、教学目标:1. 知识与技能:学生能够理解和掌握旋转的基本概念,理解旋转的性质,并能熟练运用到实际问题中。
2. 过程与方法:通过观察、操作和探究,让学生体验旋转的过程,培养学生的空间想象能力和抽象思维能力。
3. 情感态度价值观:培养学生对数学的兴趣和热爱,提高学生的创新意识和实践能力,养成良好的学习习惯。
二、教学内容:1. 旋转的概念2. 旋转的性质3. 旋转的应用三、教学过程:(一) 导入新课教师展示一些生活中常见的旋转现象,如风扇的转动,摩天轮的转动等,引导学生观察并思考这些现象有什么共同点。
然后引出今天的学习主题——旋转。
(二) 新课讲解1. 旋转的概念教师解释旋转的概念,即在平面内,将一个图形绕着某个固定点转动一定的角度,这样的运动叫做旋转。
并举例说明。
2. 旋转的性质(1) 旋转不改变图形的形状和大小。
(2) 图形上的每一点都围绕旋转中心转过了相同的角度。
(3) 绕不同的点旋转,得到的图形是不同的。
3. 旋转的应用教师给出几个实例,让学生应用旋转的知识来解决实际问题,如制作风车,设计图案等。
(三) 巩固练习教师设计一些习题,让学生进行练习,以巩固所学知识。
习题可以包括判断是否为旋转、找出旋转中心和旋转角度、画出旋转后的图形等。
(四) 总结反馈教师和学生一起回顾本节课的内容,总结旋转的概念和性质,强调旋转在生活中的广泛应用。
同时,教师收集学生的反馈,了解学生对本节课的理解程度,以便调整后续的教学计划。
四、教学评估:1. 课堂表现:观察学生在课堂上的参与度和反应,评价学生对旋转的理解程度。
2. 作业完成情况:检查学生的作业,看他们是否能够正确运用旋转的知识解决问题。
3. 测试成绩:通过定期的测试,了解学生对旋转知识的掌握程度。
五、教学反思:通过对教学过程的反思,发现教学中存在的问题,及时调整教学策略,提高教学质量。
例如,如果发现学生在旋转的实际应用方面存在问题,可以在以后的教学中增加更多的实例,让学生有更多的机会进行实践。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十三章旋转
23.1图形的旋转
第1课时旋转的概念与性质
【知识与技能】
通过观察具体实例认识旋转,探索它的基本性质.
【过程与方法】
在发现、探索的过程中完成对旋转这一图形变化从直观到抽象、从感性认识到理性认识的转变,发展学生直观想象能力,分析、归纳,抽象概括的思维能力.
【情感态度】
学生在实验探究、知识应用等数学活动中,能体验数学的具体、生动、灵活,增强数学应用意识,调动学生学习数学的主动性.
【教学重点】
归纳图形的旋转特征.
【教学难点】
旋转概念的形成过程及性质的探究过程.
一、情境导入,初步认识
问题 1 以前我们学过图形的平移、轴对称等变换,它们有哪些特征呢?想想看,并与同伴交流.
问题2 请观察下列图形的变化(教师展示实物或图片或用课件展示):
(1)时钟针面上时针的转动(顺时针方向旋转和逆时针方向转动);
(2)风车的转动;
(3)电扇上扇叶的转动;
(4)小朋友荡秋千;
(5)汽车雨刷的转动;
以上图形的转动有什么共同特点呢?你还能举出这样类似的生活中的情境吗?
【教学说明】问题1的回顾,可让学生感受到现实生活中存在着平移,轴对称变换,结合问题2,可进一步感受生活中存在着旋转变换,增强探究欲望,进而导入新课.对于问题2,应鼓励学生通过观察、思考、讨论,用自己的语言来描述这个现象的共同特征,初步感受到旋转的基本性质是绕某一固定点转动一定的角度.
二、思考探究,获取新知
探究1 如图,用一根细线一端拴住小球,另一端固定在支架上(教师事先准备好实物),当小球绕点O由A摆动至B,由B摆动至A的过程中,试问:小球绕着哪个点转动?它们转动方向如何?转动的角度是哪个角?
探究2 如图,用一根较长细线系住木棒AB的两端,再将细线固定于支架上的点O(教师事先准备好实物),再将木棒提取使之自然摆动至A′B′位置.试问:在转动过程中,木棒AB绕着哪一点在转动?木棒AB的长度发生了变化吗?A和A′到点O的距离发生了变化吗?B和B′点呢?由此你能发现哪些重要结论?
【教学说明】
1.在演示探究2中,应将细线缠绕在支架上点O处,使之不能滑动.
2.引导学生认真观察,独立思考过程中,教师可适时予以点拨,从而引出旋转的相关定义,并初步感受旋转的性质,最后师生共同总结.
旋转:把一个平面图形绕着平面内某一个点(如点O)旋转一个角度,就叫做图形的旋转.点O称为旋转中心,转动的角度称为旋转角.(注意突出旋转的三个要素:旋转中心、旋转角和旋转方向)
对应点:如果图形上的点P经过旋转变为P′,则这两个点叫做这个旋转的对应点.
对应线段:如果图形上的线段AB经过旋转变为线段A′B′,则这两条线段称为对应线段,同样地,如果图形上的一个角∠A经过旋转后变为∠A′,则∠A和∠A′称为对应角.
对应点和旋转中心之间的夹角称为旋转角.
【教学说明】给出相关概念过程中,教师可结合图形让学生明确旋转中的对应点、对应角、对应线段、旋转中心等,及时巩固旋转及其相关概念,同时简要说出一些简单的旋转性质,为后面探索旋转的性质作铺垫.
探究3 如图,在硬纸片上,挖一个三角形ABC,再挖一个小洞O作为旋转中心,硬纸板下面再放一张白纸,先在纸上描出这个挖掉的三角形(△ABC),然后围绕旋转中心O转动硬纸板,再描出这个挖掉的三角形(△DEF),移开硬纸板.
试问:在旋转的过程中,线段OA与线段OD的大小关系如何?∠AOD与∠BOE及∠COF有什么关系?旋转前后三角形的形状和大小发生了改变吗?
【归纳结论】
旋转的性质:
1.对应点到旋转中心的距离相等;
2.对应点与旋转中心所连线段的夹角等于旋转角.
3.旋转前后图形的形状、大小完全相同,即它们是全等的.
三、运用新知,深化理解
1.将图形绕点O旋转,且图形上点P、Q旋转后的对应点分别为P′、Q′,若∠POP′=80°,则∠QOQ′=____,若OQ=
2.5cm,则OQ′=____。
2.从3点到5点,钟表上时针转过的角度为____。
3.如图,将四边形AOBC绕点O按逆时针方向旋转45°至DOEF位置,在这个旋转过程中:
(1)旋转中心是什么?
(2)经过旋转,点A、B、C分别移动到什么位置?
(3)AO与DO,BO与EO的大小关系如何?
(4)若∠C=30°,则图中哪个角的度数也是30°?
(5)∠AOD与∠BOE的度数分别是多少?你能说明理由吗?
4.如图,E是正方形ABCD中CD边上任意一点,以A为中心,把△ADE 顺时针旋转90°,画出旋转后的图形.
【教学说明】让学生通过随堂演练,加深对知识的理解,教学时,应给予充裕时间让学生自主探究,独立思考,最后师生共同给出答案,让学生自己查漏补缺,完善认知.
【答案】
1.80°;
2.5cm
2.60°
3.(1)旋转中心是点O;
(2)点A、B、C经过旋转后移至D、E、F位置;
(3)OA=OD,OB=OE;
(4)∠F=30°;
(5)∠AOD=∠BOE=45°,因为它们都等于旋转角.
4.因为点A为旋转中心,所以它的对应点是它本身.正方形ABCD中,
AB=AD,∠DAB=90°,故旋转后点D与点B重合;又旋转后的图形与△ADE 全等,故∠ABE′=∠ADE,BE′=DE,即点E的对应点在CB的延长线上,且BE′=DE,则△ABE′为旋转后的图形,图略.
四、师生互动,课堂小结
通过这节课的学习,你有哪些收获和体会?
【教学说明】教师提出问题,让学生自主小结,并交流学习心得体会,加深对本节知识的理解,并反思学习过程中的方法,领会本节的数学思想.
1.布置作业:从教材“习题23.1”中选取.
2.完成练习册中本课时练习的“课时作业”部分.
1.积极创设情境,激发学生学习的好奇心和求知欲.以“丰富的生活中的旋转”作为情境引入,这一活动的设计,极大地吸引了学生的注意力,引发了学生的好奇心和求知欲,接着,让学生说出它们的共同点,再让学生举一些旋转的例子,激发学生主动参与探索新知的兴趣.
2.此外,本节课需要注意的地方:(1)教师在提问时需给学生充分思考的时间,帮助学生养成良好的思考、分析习惯.(2)如何将“创设情境”有机地与教学结合起来,更有效地为教学服务.问题情境的创设不能流于形式,而应更多的考虑学生的年龄特征、兴趣爱好,多从学生的角度来设计、创造.。