人教版九年级数学下册《第27章相似》单元测试卷
人教版九年级下册数学第27章 相似 单元综合测试卷(Word版,含答案)

人教版九年级下册数学第27章相似单元综合测试卷一.选择题(共8小题,满分40分)1.若x﹣3y=0且y≠0,则的值为()A.11B.﹣C.D.﹣112.已知线段AB=2,点P是线段AB的黄金分割点(AP>BP),则线段AP的长为()A.+1B.﹣1C.D.3.下列图形一定是相似图形的是()A.任意两个菱形B.任意两个正三角形C.两个等腰三角形D.两个矩形4.如图,已知直线l1∥l2∥l3,直线m、n分别与直线l1、l2、l3分别交于点A、B、C、D、E、F,若DE=3,DF=8,则的值为()A.B.C.D.5.如图,下面图形及各个选项均是由边长为1的小方格组成的网格,三角形的顶点均在小方格的顶点上,下列四个选项中哪一个阴影部分的三角形与已知△ABC相似()A.B.C.D.6.如图,在△ABC中,D、E为边AB的三等分点,EF∥DG∥AC,点H为AF与DG的交点.若AC=9,则DH为()A.1B.2C.D.37.如图,CD是Rt△ABC斜边AB上的高,CD=6,BD=4,则AB的长为()A.10B.11C.12D.138.如图,△ABC中,A、B两个顶点在x轴的上方,点C的坐标是(1,0),以点C为位似中心,在x轴的下方作△ABC的位似图形△A'B'C,并把△ABC的边长放大到原来的2倍,设点B的横坐标是a,则点B的对应点B′的横坐标是()A.﹣2a+3B.﹣2a+1C.﹣2a+2D.﹣2a﹣2二.填空题(共8小题,满分40分)9.已知:=,则=.10.已知A、B两地的实际距离为100千米,地图上的比例尺为1:2000000,则A、B两地在地图上的距离是cm.11.在△OAB中,OA=OB,点C在直线AB上,BC=3AC,点E为OA边的中点,连接OC,射线BE交OC于点G,则的值为.12.如图,AB⊥BD,CD⊥BD,AB=6,CD=4,BD=14.点P在BD上移动,当以P,C,D为顶点的三角形与△ABP相似时,则PB的长为.13.如图,△ABC中,CE⊥AB,BF⊥AC,若∠A=60°,EF=2,则BC=.14.如图,Rt△ABC中,∠ABC=90°,∠ACB=60°,BC=4cm,D为BC的中点,若动点E以1cm/s的速度从点A出发,沿着A→C→A的方向运动,设点E的运动时间为秒(0≤t≤12),连接DE,当△CDE是直角三角形时,t的值为.15.△ABC中,∠ACB=90°,CD是高,点E在AB边上,∠BEC=2∠ABC,若AB=9,DE=1,则AD的长为.16.如图,线段CD两个端点的坐标分别为C(3,3),D(4,1),以原点O为位似中心,在第一象限内将线段CD扩大为原来的两倍,得到线段AB,则线段AB的中点E的坐标为.三.解答题(共6小题,满分40分)17.阅读理解:已知:a,b,c,d都是不为0的数,且=,求证:=.证明:∵=,∴+1=+1.∴=.根据以上方法,解答下列问题:(1)若=,求的值;(2)若=,且a≠b,c≠d,证明=.18.某校九年级数学兴趣小组在探究相似多边形问题时,他们提出了下面两个观点:观点一:将外面大三角形按图1的方式向内缩小,得到新三角形,它们对应的边间距都为1,则新三角形与原三角形相似.观点二:将邻边为6和10的矩形按图2的方式向内缩小,得到新的矩形,它们对应的边间距都为1,则新矩形与原矩形相似.请回答下列问题:(1)你认为上述两个观点是否正确?请说明理由.(2)如图3,已知△ABC,AC=6,BC=8,AB=10,将△ABC按图3的方式向外扩张,得到△DEF,它们对应的边间距都为1,DE=15,求△DEF的面积.19.如图,已知△ABC∽△DEC,∠D=45°,∠ACB=60°,AC=3cm,BC=4cm,CE=6cm.求:(1)∠B的度数;(2)AD的长.20.阅读与计算,请阅读以下材料,并完成相应的问题.角平分线分线段成比例定理,如图1,在△ABC中,AD平分∠BAC,则=.下面是这个定理的部分证明过程.证明:如图2,过C作CE∥DA.交BA的延长线于E.…任务:(1)请按照上面的证明思路,写出该证明的剩余部分;(2)填空:如图3,已知Rt△ABC中,AB=3,BC=4,∠ABC=90°,AD平分∠BAC,则△ABD的周长是.21.如图所示,以长为2的定线段AB为边作正方形ABCD,取AB的中点P,连接PD,在BA的延长线上取点F,使PF=PD,以AF为边作正方形AMEF,点M在AD上.(1)求AM,DM的长;(2)点M是AD的黄金分割点吗?为什么?22.如图,△ABC中,AB=8厘米,AC=16厘米,点P从A出发,以每秒2厘米的速度向B运动,点Q从C同时出发,以每秒3厘米的速度向A运动,其中一个动点到端点时,另一个动点也相应停止运动,那么,当以A、P、Q为顶点的三角形与△ABC相似时,运动时间是多少?参考答案一.选择题(共8小题,满分40分)1.解:∵x﹣3y=0且y≠0,∴x=3y,∴==.故选:C.2.解:∵点P是线段AB的黄金分割点,AP>BP,∴AP=×AB=×2=﹣1,故选:B.3.解:A、任意两个菱形,对应边成比例,对应角不一定相等,不符合相似的定义,故不符合题意;B、任意两个等边三角形,对应角相等,对应边一定成比例,符合相似的定义,故符合题意;C、两个两个等腰三角形,无法确定形状是否相等,故不符合题意;D、两个矩形,对应角相等,对应边不一定成比例,故不符合题意.故选:B.4.解:∵l1∥l2∥l3,∴,∵DE=3,DF=8,∴,即=,故选:B.5.解:根据题意得:AC==,AB==,BC=1,∴BC:AB:AC=1::,A、三边之比为1::,选项A符合题意;B、三边之比::3,选项B不符合题意;C、三边之比为2::,选项C不符合题意;D、三边之比为::4,选项D不符合题意.故选:A.6.解:∵D、E为边AB的三等分点,EF∥DG∥AC,∴BE=DE=AD,BF=GF=CG,AH=HF,∴AB=3BE,DH是△AEF的中位线,∴DH=EF,∵EF∥AC,∴△BEF∽△BAC,∴=,即=,解得:EF=3,∴DH=EF=×3=,故选:C.7.解:根据射影定理,CD2=AD•BD,∴AD=9,∴AB=AD+BD=13.故选:D.8.解:设点B′的横坐标为x,则B、C间的水平距离为a﹣1,B′、C间的水平距离为﹣x+1,∵△ABC放大到原来的2倍得到△A′B′C,∴2(a﹣1)=﹣x+1,解得:x=﹣2a+3,故选:A.二.填空题(共8小题,满分40分)9.解:∵=,∴=,设a=2k,b=3k,∴===﹣,故答案为:﹣.10.解:根据比例尺=图上距离:实际距离.100千米=10000000厘米得:A,B两地的图上距离为10000000÷2000000=5cm,故答案为:5.11.解:如图1,点C在线段AB上,过E作EF∥AB交OC于F,∵点E为OA边的中点,EF∥AB,∴OF=CF,∴EF=AC,∵BC=3AC,∴BC=6EF,∵EF∥AB,∴,∴CG=6FG,∴FC=OF=7FG,∴OG=OF+FG=8FG,∴==;如图2,点C在线段BA的延长线上,过E作ED∥BC交OC于D,∵点E为OA边的中点,ED∥BC,∴OD=CD,∴DE=AC,即AC=2DE,∵BC=3AC,∴BC=6DE,∵ED∥BC,∴,∴CG=6DG,∴CD=OD=5DG,∴OG=OD﹣DG=4DG,∴==;故答案为:或.12.解:设DP=x,则BP=BD﹣x=14﹣x,∵AB⊥BD于B,CD⊥BD于D,∴∠B=∠D=90°,∴当时,△ABP∽△CDP,即;解得x=,BP=14﹣=8.4;当时,△ABP∽△PDC,即;整理得x2﹣14x+24=0,解得x1=2,x2=12,BP=14﹣2=12,BP=14﹣12=2,∴当BP为8.4或2或12时,以C、D、P为顶点的三角形与以P、B、A为顶点的三角形相似.故答案为:8.4或2或12.13.解:∵CE⊥AB,BF⊥AC,∴∠AFB=∠AEC=90°,又∵∠A=∠A,∴△AFB∽△AEC,∴,即,又∵∠A=∠A,∴△AEF∽△ACB,∴,∵BF⊥AC,且∠A=60°,∴∠ABF=30°,∴AF=AB,∴BC=2EF=4.故答案为:4.14.解:在Rt△ABC中,∠ABC=90°,∠ACB=60°,BC=4cm,∴AC=2BC=8cm,∵D为BC中点,∴CD=2cm,∵0≤t≤12,∴E点的运动路线为从A到C,再从C到AC的中点,按运动时间分为0≤t≤8和8<t≤12两种情况,①当0≤t≤8时,AE=tcm,CE=BC﹣AE=(8﹣t)cm,当∠EDC=90°时,则有AB∥ED,∵D为BC中点,∴E为AC中点,此时AE=4cm,可得t=4;当∠DEC=90°时,∵∠DEC=∠B,∠C=∠C,∴△CED∽△BCA,∴,即,解得t=7;②当8<t≤12时,则此时E点又经过t=7秒时的位置,此时t=8+1=9;当t=12时,此时E点在AC的中点,DE∥AB,此时△CDE是直角三角形.综上可知t的值为4或7或9或12,故答案为:4或7或9或1215.解:以C为圆心,CE长为半径画弧,交AB于F,则CE=CF,∴∠CFE=∠BEC=2∠ABC,∵∠CFE=∠ABC+∠BCF,∴∠ABC=∠BCF,∴BF=CF,∵CD⊥AB,∴DF=DE=1,设BF=CF=x,∵AB=9,∴AD=8﹣x,∵∠ACB=∠ADC=∠BDC=90°,∴∠ACD+∠A=90°,∠ACD+∠BCD=90°,∴∠A=∠BCD,∴△ACD∽△CBD,∴CD2=AD•BD=x(8﹣x),又∵CD2=CF2﹣DF2=x2﹣12,∴x(8﹣x)=x2﹣12,解得:x1=﹣1(舍去),x2=,∴BF=,∴AD=AB﹣BF﹣DF=9﹣﹣1=.故答案为:.16.解:∵C(3,3),D(4,1),以原点O为位似中心,在第一象限内将线段CD扩大为原来的两倍,∴A(6,6),B(8,2),∵E是AB中点,∴E(7,4),故答案为:(7,4).三.解答题(共6小题,满分40分)17.解:(1)∵=,∴=+1=+1=.(2)∵=,∴﹣1=﹣1,∴=,∵=,∴÷=÷,∴=.18.解:(1)观点一正确;观点二不正确.理由:①如图(1)连接并延长DA,交FC的延长线于点O,∵△ABC和△DEF对应的边的距离都为1,∴AB∥DE,AC∥DF,∴∠FDO=∠CAO,∠ODE=∠OAB,∴∠FDO+∠ODE=∠CAO+∠OAB,即∠FDE=∠CAB,同理∠DEF=∠ABC,∴△ABC∽△DEF,∴观点一正确;②如图(2)由题意可知,原矩形的邻边为6和10,则新矩形邻边为4和8,∵=,=,∴,∴新矩形于原矩形不相似,∴观点二不正确;(2)如图(3),延长DA、EB交于点O,∵A到DE、DF的距离都为1,∴DA是∠FDE的角平分线,同理,EB是∠DEF的角平分线,∴点O是△ABC的内心,∵AC=6,BC=8,AB=10,∴△ABC是直角三角形,设△ABC的内切圆的半径为r,则6﹣r+8﹣r=10,解得r=2,过点O作OH⊥DE于点H,交AB于G,∵AB∥DE,∴OG⊥AB,∴OG=r=2,∴==,同理===,∴DF=9,EF=12,∴△DEF的面积为:×9×12=54.19.解:(1)∵△ABC∽△DEC,∴∠B=∠E,∠A=∠D=45°,∵∠ACB=60°,∴∠B=180°﹣60°﹣45°=75°;(2)∵△ABC∽△DEC,∴=,∵AC=3cm,BC=4cm,CE=6cm,∴=,∴DC=(cm),故AD=3+=(cm).20.(1)证明:如图2,过C作CE∥DA.交BA的延长线于E,∵CE∥AD,∴=,∠2=∠ACE,∠1=∠E,∵∠1=∠2,∴∠ACE=∠E,∴AE=AC,∴=;(2)解:如图3,∵AB=3,BC=4,∠ABC=90°,∴AC=5,∵AD平分∠BAC,∴=,即=,∴BD=BC=,∴AD===,∴△ABD的周长=+3+=.故答案为.21.解:(1)在Rt△APD中,AP=1,AD=2,由勾股定理知PD===,∴AM=AF=PF﹣AP=PD﹣AP=﹣1,DM=AD﹣AM=3﹣.故AM的长为﹣1,DM的长为3﹣;(2)点M是AD的黄金分割点.由于=,∴点M是AD的黄金分割点.22.解:设运动了ts,根据题意得:AP=2tcm,CQ=3tcm,则AQ=AC﹣CQ=16﹣3t(cm),当△APQ∽△ABC时,,即,解得:t=;当△APQ∽△ACB时,,即,解得:t=4;故当以A、P、Q为顶点的三角形与△ABC相似时,运动时间是:s或4s.。
人教版九年级下册数学《第27章相似》单元测试题(含答案解析)

春人教版九年级下册数学第27章相似单元测试题一.选择题(共10小题)1.已知x:y:z=1:2:3,且2x+y﹣3z=﹣15,则x的值为()A.﹣2B.2C.3D.﹣32.若a:b=3:2,且b是a、c的比例中项,则b:c等于()A.4:3B.3:4C.3:2D.2:33.下列命题中,其中正确的命题个数有()(1)在△ABC中,已知AB=6,AC=,∠B=45°,则∠C的度数为60°;(2)已知⊙O的半径为5,圆心O到弦AB的距离为3,则⊙O上到弦AB所在直线的距离为2的点有3个;(3)圆心角是180°的扇形是一个半圆;(4)已知点P是线段AB的黄金分割点,若AB=1,则AP=.A.1个B.2个C.3个D.4个4.如图,已知直线l1,l2,l3分别交直线l4于点A,B,C,交直线l5于点D,E,F,且l1∥l2∥l3,若AB=4,AC=6,DF=9,则DE=()A.5B.6C.7D.85.下列说法中正确的是()A.两个直角三角形一定相似B.两个等腰三角形一定相似C.两个等腰直角三角形一定相似D.两个矩形一定相似6.两个相似的六边形,如果一组对应边的长分别为3cm,4cm,且它们面积的差为28cm2,则较大的六边形的面积为()A.44.8 cm2B.45 cm2C.64 cm2D.54 cm27.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm,6cm和9cm,另一个三角形的最短边长为2.5cm,则它的最长边为()A.3cm B.4cm C.4.5cm D.5cm8.如图,△ABC中,P为AB上的一点,在下列四个条件中:①∠ACP=∠B;②∠APC=∠ACB;③AC2=AP•AB;④AB•CP=AP•CB,能满足△APC和△ACB相似的条件是()A.①②④B.①③④C.②③④D.①②③9.如图,在平行四边形ABCD中,E是DC上的点,DE:EC=3:2,连接AE交BD于点F,则△DEF与△BAF的面积之比为()A.2:5B.3:5C.9:25D.4:2510.在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为()A.10m B.12m C.15m D.40m二.填空题(共8小题)11.若=,则=.12.如图,直线l1∥l2∥l3,直线AC分别交l1、l2、l3于点A、B、C;过点B的直线DE分别交l1、l3于点D、E.若AB=2,BC=4,BD=1.5,则线段DE的长为.13.已知==,且a+b﹣2c=6,则a的值.14.如图,△ABC与△ADB中,∠ABC=∠ADB=90°,∠C=∠ABD,AC=5cm,AB=4cm,AD 的长为.15.如图,在△ABC中,DE∥BC,=,则=.16.已知△ABC和△DEF中.点A、B、C分别与点D、E、F相对应.且∠A=70°时,∠B=34°,∠D=70°,则当∠F=时,△ABC∽△DEF.17.如图,已知线段AB的两个端点在直角坐标系中的坐标分别是A(m,m),B(2n,n),以原点O为位似中心,相似比为,把线段AB缩小,则经过位似变换后A、B的对应点坐标分别是A′,B′;点A到原点O的距离是.18.如图,比例规是一种画图工具,使用它可以把线段按一定的比例伸长或缩短,它是由长度相等的两脚AD和BC交叉构成的,如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OD,OB=3OC),然后张开两脚,使A、B两个尖端分别在线段l的两端上,若CD =2,则AB的长是.三.解答题(共8小题)19.已知,(1)求的值;(2)若x﹣2y+4z=24,求x+y+z的值.20.如图,四边形ABCD与四边形ABFE都是矩形,AB=3,AD=6.5,BF=2.(1)求下列各线段的比:,,;(2)指出AB,BC,CF,CD,EF,FB这六条线段中的成比例线段(写一组即可)21.如图,在△ABC与△A'B'C'中,∠A=∠A',BD、CE是△ABC的高,B'D'、C'E'是△A'B'C'的高,点D、E、D'、E'分别在AC、AB、A'C'、A'B'上,且=.求证:=22.如图所示:在△ABC中,AB=AC=5,BC=8,D,E分别为BC.AB边上一点,∠ADE=∠C,(1)求证:AD2=AE•AB;(2)∠ADC与∠BED是否相等?请说明理由;(3)若CD=2,求AD的长.23.如图,∠ABC=∠BCD=90°,∠A=45°,∠D=30°,BC=1,AC,BD交于点O.求的值.24.如图,以O为位似中心,将△ABC放大为原来的2倍(不写作法,保留作图痕迹).25.如图,在四边形ABCD中,AC平分∠DAB,AC2=AB•AD,∠ADC=90°,点E为AB的中点.(1)求证:△ADC∽△ACB.(2)若AD=2,AB=3,求的值.26.如图,点E是正方形ABCD的边BC延长线上一点,联结DE,过顶点B作BF⊥DE,垂足为F,BF交边DC于点G.(1)求证:GD•AB=DF•BG;(2)联结CF,求证:∠CFB=45°.春人教版九年级下册数学第27章相似单元测试题参考答案与试题解析一.选择题(共10小题)1.已知x:y:z=1:2:3,且2x+y﹣3z=﹣15,则x的值为()A.﹣2B.2C.3D.﹣3【分析】先利用x:y:z=1:2:3,y=2x,z=3x,然后消去y与z得到关于x的一元一次方程,再解一次方程即可.【解答】解:∵x:y:z=1:2:3,∴y=2x,z=3x,∴2x+2x﹣9x=﹣15,∴x=3.故选:C.【点评】本题考查了解三元一次方程组:利用代入消元或加减消元把解三元一次方程组的问题转化为解二元一次方程组的问题.2.若a:b=3:2,且b是a、c的比例中项,则b:c等于()A.4:3B.3:4C.3:2D.2:3【分析】由b是a、c的比例中项,根据比例中项的定义,即可求得,又由a:b=3:2,即可求得答案.【解答】解:∵b是a、c的比例中项,∴b2=ac,即,∵a:b=3:2,∴b:c=3:2.故选:C.【点评】此题考查了比例线段以及比例中项的定义.解题的关键是熟记比例中项的定义及其变形.对于四条线段a、b、c、d,如果其中两条线段的比(即它们的长度比)与另两条线段的比相等,我们就说这四条线段是成比例线段,简称比例线段.3.下列命题中,其中正确的命题个数有()(1)在△ABC中,已知AB=6,AC=,∠B=45°,则∠C的度数为60°;(2)已知⊙O的半径为5,圆心O到弦AB的距离为3,则⊙O上到弦AB所在直线的距离为2的点有3个;(3)圆心角是180°的扇形是一个半圆;(4)已知点P是线段AB的黄金分割点,若AB=1,则AP=.A.1个B.2个C.3个D.4个【分析】(1)作出图形,过点A作AD⊥BC于点D,然后求出AD的长度,再在Rt△ACD中,利用锐角的正弦值求出∠C的度数即可;(2)作出图形,根据圆的半径为5,圆心到AB的距离为3作出到直线AB的距离为2的直线,与圆的交点的个数即为所求;(3)根据半圆的圆心角等于180°解答;(4)因为AP是较长的线段还是较短的线段不明确,所以分两种情况讨论求解.【解答】解:(1)如图,过点A作AD⊥BC于点D,∵AB=6,∠B=45°,∴AD=AB sin45°=6×=3,又∵AC=,∴sin∠C===,∴∠C=60°,故本小题正确;(2)如图所示,到直线AB的距离为2的点有3个,故本小题正确;(3)∵半圆的圆心角为180°,∴圆心角是180°的扇形是一个半圆加一条直径,故本小题错误;(4)①若AP是较长线段,则AP2=AB•BP,即AP2=1×(1﹣AP),AP2+AP﹣1=0,解得AP=,②若AP是较短的线段,则AP=1﹣=,故本小题错误.综上所述,正确的命题有(1)(2)共2个.故选:B.【点评】本题考查了黄金分割,垂径定理,圆心角、弧、弦的关系,解直角三角形,作出图形,利用数形结合的思想求解比较关键.4.如图,已知直线l1,l2,l3分别交直线l4于点A,B,C,交直线l5于点D,E,F,且l1∥l2∥l3,若AB=4,AC=6,DF=9,则DE=()A.5B.6C.7D.8【分析】根据平行线分线段成比例定理解答即可.【解答】解:∵l1∥l2∥l3,AB=5,AC=8,DF=12,∴,即,可得;DE=6,故选:B.【点评】本题考查了平行线分线段成比例定理的应用,能熟练地运用定理进行计算是解此题的关键,题目比较典型,难度适中,注意:对应成比例.5.下列说法中正确的是()A.两个直角三角形一定相似B.两个等腰三角形一定相似C.两个等腰直角三角形一定相似D.两个矩形一定相似【分析】根据三角形、矩形相似的判定方法逐个分析,确定正确答案即可.【解答】解:A、两个直角三角形只有一个直角可以确定相等,其他两个角度未知,故A不正确;B、等腰三角形的角度不一定相等,各边也不一定对应成比例,故B不正确;C、两个等腰直角三角形的对应相等,所以两个等腰直角三角形相似,故C正确;D、两个矩形对应角相等,但对应边的比不一定相等,故D不正确;故选:C.【点评】本题考查了相似图形的知识,解题的关键是了解对应角相等,对应边的比相等的图形相似,难度不大.6.两个相似的六边形,如果一组对应边的长分别为3cm,4cm,且它们面积的差为28cm2,则较大的六边形的面积为()A.44.8 cm2B.45 cm2C.64 cm2D.54 cm2【分析】设大六边形的面积为xcm2,根据相似多边形的性质列出比例式,计算即可.【解答】解:设大六边形的面积为xcm2,则小六边形的面积为(x﹣28)cm2,∵两个六边形相似,∴=()2,解得,x=64,故选:C.【点评】本题考查的是相似多边形的性质,掌握相似多边形的面积比等于相似比的平方是解题的关键.7.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm,6cm和9cm,另一个三角形的最短边长为2.5cm,则它的最长边为()A.3cm B.4cm C.4.5cm D.5cm【分析】根据相似三角形的对应边成比例求解可得.【解答】解:设另一个三角形的最长边长为xcm,根据题意,得:=,解得:x=4.5,即另一个三角形的最长边长为4.5cm,故选:C.【点评】本题主要考查相似三角形的性质,解题的关键是掌握相似三角形的对应角相等,对应边的比相等.8.如图,△ABC中,P为AB上的一点,在下列四个条件中:①∠ACP=∠B;②∠APC=∠ACB;③AC2=AP•AB;④AB•CP=AP•CB,能满足△APC和△ACB相似的条件是()A.①②④B.①③④C.②③④D.①②③【分析】根据有两组角对应相等的两个三角形相似可对①②进行判断;根据两组对应边的比相等且夹角对应相等的两个三角形相似可对③④进行判断.【解答】解:当∠ACP=∠B,∠A公共,所以△APC∽△ACB;当∠APC=∠ACB,∠A公共,所以△APC∽△ACB;当AC2=AP•AB,即AC:AB=AP:AC,∠A公共,所以△APC∽△ACB;当AB•CP=AP•CB,即=,而∠PAC=∠CAB,所以不能判断△APC和△ACB相似.故选:D.【点评】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.9.如图,在平行四边形ABCD中,E是DC上的点,DE:EC=3:2,连接AE交BD于点F,则△DEF与△BAF的面积之比为()A.2:5B.3:5C.9:25D.4:25【分析】根据平行四边形的性质可得出CD∥AB,进而可得出△DEF∽△BAF,根据相似三角形的性质结合DE:EC=3:2,即可得出△DEF与△BAF的面积之比,此题得解.【解答】解:∵四边形ABCD为平行四边形,∴CD∥AB,∴△DEF∽△BAF.∵DE:EC=3:2,∴==,∴=()2=.故选:C.【点评】本题考查了相似三角形的判定与性质以及平行四边形的性质,牢记相似三角形的面积比等于相似比的平方是解题的关键.10.在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为()A.10m B.12m C.15m D.40m【分析】根据同时同地物高与影长成正比列式计算即可得解.【解答】解:设旗杆高度为x米,由题意得,=,解得:x=15.故选:C.【点评】本题考查了相似三角形的应用,主要利用了同时同地物高与影长成正比,需熟记.二.填空题(共8小题)11.若=,则=.【分析】根据分比性质,可得答案.【解答】解:由分比性质,得=﹣=﹣2=,∴=,故答案为:.【点评】本题考查了比例的性质,利用了分比性质,用x表示y,是解题关键.12.如图,直线l1∥l2∥l3,直线AC分别交l1、l2、l3于点A、B、C;过点B的直线DE分别交l1、l3于点D、E.若AB=2,BC=4,BD=1.5,则线段DE的长为 4.5.【分析】根据平行线分线段成比例定理得到=,然后把AB、BC、BD的值代入后,利用比例的性质可计算出DE的长.【解答】解:∵l1∥l2∥l3,∴=,即,∴BE=3,∴DE=3+1.5=4.5.故答案为:4.5.【点评】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.13.已知==,且a+b﹣2c=6,则a的值10.【分析】设===k,表示出a,b,c,代入a+b﹣3c=求出k的值,即可确定出a的值.【解答】解:设===k,则有a=5k,b=6k,c=4k,代入a+b﹣2c=得:5k+6k﹣8k=6,解得:k=2,则a=10,故答案为:10【点评】此题考查了比例的性质,熟练掌握比例的性质是解本题的关键.14.如图,△ABC与△ADB中,∠ABC=∠ADB=90°,∠C=∠ABD,AC=5cm,AB=4cm,AD 的长为.【分析】根据相似三角形的判定与性质即可求出答案.【解答】解:∵∠ABC=∠ADB=90°,∠C=∠ABD,∴△ACB∽△ABD,∴,∴AD==cm,故答案为:【点评】本题考查相似三角形的性质与判定,解题的关键是熟练运用相似三角形的性质与判定,本题属于基础题型.15.如图,在△ABC中,DE∥BC,=,则=.【分析】由DE∥BC可得出∠ADE=∠B、∠AED=∠C,进而可得出△ADE∽△ABC,根据相似三角形的性质可得出的值.【解答】解:∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴==.故答案为:.【点评】本题考查了相似三角形的判定与性质,利用相似三角形的判定定理证出△ADE∽△ABC是解题的关键16.已知△ABC和△DEF中.点A、B、C分别与点D、E、F相对应.且∠A=70°时,∠B=34°,∠D=70°,则当∠F=76°时,△ABC∽△DEF.【分析】利用两对角相等的三角形相似即可作出判断.【解答】解:∵△ABC和△DEF中.点A、B、C分别与点D、E、F相对应.且∠A=70°时,∠B =34°,∠D=70°,∴∠B=∠E=34°,∴∠C=∠F=76°,故答案为:76°【点评】此题考查了相似三角形的判定,熟练掌握相似三角形的判定方法是解本题的关键.17.如图,已知线段AB的两个端点在直角坐标系中的坐标分别是A(m,m),B(2n,n),以原点O为位似中心,相似比为,把线段AB缩小,则经过位似变换后A、B的对应点坐标分别是A′(m,m),B′(n,n);点A到原点O的距离是m.【分析】由于在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k,则把点A和点B的坐标都乘以即可得到点A′和点B′的坐标,再利用两点间的距离公式计算点A到原点O的距离.【解答】解:∵A(m,m),B(2n,n),而位似中心为原点,相似比为,∴A′(m,m),B′(n,n);点A到原点O的距离==m.故答案为(m,m),(n,n);m.【点评】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.18.如图,比例规是一种画图工具,使用它可以把线段按一定的比例伸长或缩短,它是由长度相等的两脚AD和BC交叉构成的,如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OD,OB=3OC),然后张开两脚,使A、B两个尖端分别在线段l的两端上,若CD =2,则AB的长是6.【分析】根据题意可知△ABO∽△DCO,根据相似三角形的性质即可求出AB的长度,此题得解.【解答】解:根据题意,可知:△ABO∽△DCO,∴=,即=3,∴AB=6.故答案为:6.【点评】本题考查了相似三角形的应用,利用相似三角形的性质求出AB的长度是解题的关键.三.解答题(共8小题)19.已知,(1)求的值;(2)若x﹣2y+4z=24,求x+y+z的值.【分析】设=k,于是得到x=2k,y=3k,z=4k,代入代数式即可得到结论.【解答】解:∵,∴设=k,∴x=2k,y=3k,z=4k,∴(1)==;(2)∵x﹣2y+4z=24,∴2k﹣6k+16k=24,∴k=2,∴x+y+z=2k+3k+4k=9k=18.【点评】本题考查了比例的性质,熟练掌握比例的性质是解题的关键.20.如图,四边形ABCD与四边形ABFE都是矩形,AB=3,AD=6.5,BF=2.(1)求下列各线段的比:,,;(2)指出AB,BC,CF,CD,EF,FB这六条线段中的成比例线段(写一组即可)【分析】(1)根据矩形的性质和线段的和差关系得到CD,EF,BC,CF,再代入数据即可求得各线段的比;(2)根据成比例线段的定义写一组即可求解.【解答】解:(1)∵四边形ABCD与四边形ABFE都是矩形,AB=3,AD=6.5,BF=2,∴CD=EF=AB=3,BC=AD=6.5,CF=BC﹣BF=4.5,∴==,==,=;(2)成比例线段有=.【点评】本题考查了矩形的性质,比例线段,解决问题的关键是得到CD,EF,BC,CF的值.21.如图,在△ABC与△A'B'C'中,∠A=∠A',BD、CE是△ABC的高,B'D'、C'E'是△A'B'C'的高,点D、E、D'、E'分别在AC、AB、A'C'、A'B'上,且=.求证:=【分析】先证△BDC∽△B′D′C′得∠ACB=∠A′C′B′,结合∠A=∠A′可证△ABC∽△A'B'C',再利用相似三角形的性质可得答案.【解答】解:∵BD是AC边上的高、B'D'是A'C'的高,∴∠BDC=∠B′D′C′=90°,∴△BDC和△B′D′C′均为直角三角形,∵=,∴△BDC∽△B′D′C′,∴∠ACB=∠A′C′B′,∵∠A=∠A′,∴△ABC∽△A'B'C',∵BD、CE是△ABC的高,B'D'、C'E'是△A'B'C'的高,∴=.【点评】本题主要考查相似三角形的判定与性质,解题的关键是掌握相似三角形的判定定理及相似三角形的对应边的比、对应高的比、对应中线的比、对应角平分线的比和周长的比都等于相似比、面积比等于相似比的平方的性质.22.如图所示:在△ABC中,AB=AC=5,BC=8,D,E分别为BC.AB边上一点,∠ADE=∠C,(1)求证:AD2=AE•AB;(2)∠ADC与∠BED是否相等?请说明理由;(3)若CD=2,求AD的长.【分析】(1)证明△DAE∽△BAD,根据相似三角形的性质证明;(2)根据三角形的外角的性质、等腰三角形的性质证明;(3)证明△ADC∽△DEB,根据相似三角形的性质求出BE,代入(1)的结论计算即可.【解答】(1)证明:∵∠ADE=∠C,∠DAE=∠BAD,∴△DAE∽△BAD,∴=,即AD2=AE•AB;(2)∠ADC=∠DAE+∠B,∠BED=∠DAE+∠ADE,∵AB=AC,∴∠B=∠C,∴∠ADC=∠BED;(3)∵∠ADC=∠BED,∠B=∠C,∴△ADC∽△DEB,∴=,即=,解得,BE=2.4,由(1)得,AD2=AE•AB=13,则AD=.【点评】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.23.如图,∠ABC=∠BCD=90°,∠A=45°,∠D=30°,BC=1,AC,BD交于点O.求的值.【分析】由同旁内角互补两直线平行得到AB与CD平行,再利用两直线平行内错角相等,以及对顶角相等得到三角形相似,由相似得比例求出所求即可.【解答】解:∵∠ABC=∠BCD=90°,∴AB∥CD,∴∠A=∠ACD,∴△ABO∽△CDO,∴,在Rt△ABC中,∠ABC=90°,∠A=45°,BC=1,∴AB=1,在Rt△BCD中,∠BCD=90°,∠D=30°,BC=1,∴CD=,∴==.【点评】此题考查了相似三角形的性质与判定,以及平行线的性质,能利用相似三角形的性质将未知线段的比转化为已知线段的比是解本题的关键.24.如图,以O为位似中心,将△ABC放大为原来的2倍(不写作法,保留作图痕迹).【分析】延长OA到A′使OA′=2OA,同样作出点B′、C′,从而得到满足条件的△A′B′C′;反向延长OA到A″使OA″=2OA,同样作出点B″、C″,从而得到满足条件的△A″B″C″.【解答】解:如图所示:△A′B′C′和△A″B″C″.【点评】本题考查了作图﹣位似变换:画位似图形的一般步骤为:先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;然后根据位似比,确定能代表所作的位似图形的关键点;最后顺次连接上述各点,得到放大或缩小的图形.25.如图,在四边形ABCD中,AC平分∠DAB,AC2=AB•AD,∠ADC=90°,点E为AB的中点.(1)求证:△ADC∽△ACB.(2)若AD=2,AB=3,求的值.【分析】(1)根据角平分线的定义得到∠DAC=∠CAB,根据相似三角形的判定定理证明;(2)根据相似三角形的性质得到∠ACB=∠ADC=90°,根据直角三角形的性质得到CE=AE,根据等腰三角形的性质、平行线的判定定理证明=,由相似三角形的性质列出比例式,计算即可.【解答】(1)证明:∵AC平分∠DAB,∴∠DAC=∠CAB,∵AC2=AB•AD,∴=,∴△ADC∽△ACB;(2)∵△ADC∽△ACB,∴∠ACB=∠ADC=90°,∵点E为AB的中点,∴CE=AE=AB=,∴∠EAC=∠ECA,∴∠DAC=∠EAC,∴∠DAC=∠ECA,∴CE∥AD;∴==,∴=.【点评】本题考查的是直角三角形的性质、平行线的判定、相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.26.如图,点E是正方形ABCD的边BC延长线上一点,联结DE,过顶点B作BF⊥DE,垂足为F,BF交边DC于点G.(1)求证:GD•AB=DF•BG;(2)联结CF,求证:∠CFB=45°.【分析】(1)由∠BCD=∠GFD=90°、∠BGC=∠FGD可证得△BGC∽△DGF,即可知,根据AB=BC即可得证;(2)连接BD,由△BGC∽△DGF知,即,根据∠BGD=∠CGF可证△BGD∽△CGF得∠BDG=∠CFG,再由即可得证.【解答】证明:(1)∵四边形ABCD是正方形∴∠BCD=∠ADC=90°,AB=BC,∵BF⊥DE,∴∠GFD=90°,∴∠BCD=∠GFD,∵∠BGC=∠FGD,∴△BGC∽△DGF,∴,∴DG•BC=DF•BG,∵AB=BC,∴DG•AB=DF•BG;(2)如图,连接BD、CF,∵△BGC∽△DGF,∴,∴,又∵∠BGD=∠CGF,∴△BGD∽△CGF,∴∠BDG=∠CFG,∵四边形ABCD是正方形,BD是对角线,∴,∴∠CFG=45°.【点评】本题主要考查相似三角形的判定和性质及正方形的性质,解题的关键是熟练掌握相似三角形的判定和性质.。
人教版九年级数学下《第二十七章相似》单元练习题(含答案)

第二十七章《相似》单元练习题一、选择题1.下列说法正确的是()A.分别在△ABC的边AB,AC的反向延长线上取点D,E,使DE∥BC,则△ADE是△ABC放大后的图形B.两位似图形的面积之比等于位似比C.位似多边形中对应对角线之比等于位似比D.位似图形的周长之比等于位似比的平方2.如图,以点O为位似中心,将△ABC缩小后得到△A′B′C′,已知OB=3OB′,则△A′B′C′与△ABC 的面积比为()A. 1∶3B. 1∶4C. 1∶8D. 1∶93.△ABC的三边之比为3∶4∶5,与其相似的△DEF的最短边是9 cm,则其最长边的长是() A. 5 cmB. 10 cmC. 15 cmD. 30 cm4.若矩形ABCD∽矩形EFGH,相似比为2∶3,已知AB=3 cm,BC=5 cm,则矩形EFGH的周长是()A. 16 cmB. 12 cmC. 24 cmD. 36 cm5.如图,∠ACB=∠ADC=90°,BC=a,AC=b,AB=c,要使△ABC∽△CAD,只要CD等于()A.B.C.D.6.如图,已知在正方形网格中的两个格点三角形是位似形,它们的位似中心是()A.点AB.点BC.点CD.点D7.“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,则井深为()A. 1.25尺B. 57.5尺C. 6.25尺D. 56.5尺8.已知A、B两地的实际距离AB=5 km,画在图上的距离A′B′=2 cm,则图上的距离与实际距离的比是()A. 2∶5B. 1∶2 500C. 250 000∶1D. 1∶250 000二、填空题9.如图,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,同一条直线上的三个点A、B、C都在横格线上.若线段AB=2 cm,则线段BC=________ cm.10.已知:如图,A′B′∥AB,A′C′∥AC,AA′的延长线交于BC于点D,△ABC与△A′B′C′是__________图形,其中____________点是位似中心.11.已知△ABC∽△A′B′C′,且S△ABC∶S△A′B′C′=16∶9,若AB=4,则A′B′=__________.12.已知△ABC∽△DEF,=,且AD为BC边上的中线,DG为EF边上的中线,则AD∶DG =__________.13.如图,以O为位似中心,将边长为256的正方形OABC依次作位似变换,经第一次变化后得正方形OA1B1C1,其边长OA1缩小为OA的,经第二次变化后得正方形OA2B2C2,其边长OA2缩小为OA1的,经第三次变化后得正方形OA3B3C3,其边长OA3缩小为OA2的,…,依次规律,经第n次变化后,所得正方形OAnBnCn的边长为正方形OABC边长的倒数,则n=________.14.如图,在△ABC中,D、E分别为AB、AC上的点,若DE∥BC,=,则=__________.15.若a∶b∶c=1∶3∶2,且a+b+c=24,则a+b-c=________.16.如图,用放大镜将图形放大,应属于哪一种变换:______________(请选填:对称变换、平移变换、旋转变换、相似变换).三、解答题17.有一个测量弹跳力的体育器材,如图所示,竖杆AC、BD的长度分别为200厘米、300厘米,CD=300厘米.现有一人站在斜杆AB下方的点E处,直立、单手上举时中指指尖(点F)到地面的高度为EF,屈膝尽力跳起时,中指指尖刚好触到斜杆AB上的点G处,此时,就将EG与EF的差值y(厘米)作为此人此次的弹跳成绩.(1)设CE=x(厘米),EF=a(厘米),求出由x和a表示y的计算公式;(2)现有一男生,站在某一位置尽力跳起时,刚好触到斜杆.已知该同学弹跳时站的位置为x=150厘米,且a=205厘米.若规定y≥50,弹跳成绩为优;40≤y<50时,弹跳成绩为良;30≤y<40时,弹跳成绩为及格,那么该生弹跳成绩处于什么水平?18.已知MN∥EF∥BC,点A、D为直线MN上的两动点,AD=a,BC=b,AE∶ED=m∶n;(1)当点A、D重合,即a=0时(如图1),试求EF.(用含m,n,b的代数式表示)(2)请直接应用(1)的结论解决下面问题:当A、D不重合,即a≠0,①如图2这种情况时,试求EF.(用含a,b,m,n的代数式表示)图1图2图3②如图3这种情况时,试猜想EF与a、b之间有何种数量关系?并证明你的猜想.19.下框中是小明对一道题目的解答以及老师的批改.题目:某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2∶1,在温室内,沿前侧内墙保留3 m的空地,其他三侧内墙各保留1 m的通道,当温室的长与宽各为多少时,矩形蔬菜种植区域的面积是288 m2?解:设矩形蔬菜种植区域的宽为x_m,则长为2x m,根据题意,得x·2x=288.解这个方程,得x1=-12(不合题意,舍去),x2=12,所以温室的长为2×12+3+1=28(m),宽为12+1+1=14(m)答:当温室的长为28 m,宽为14 m时,矩形蔬菜种植区域的面积是288 m2.我的结果也正确!小明发现他解答的结果是正确的,但是老师却在他的解答中画了一条横线,并打了一个?.结果为何正确呢?(1)请指出小明解答中存在的问题,并补充缺少的过程:变化一下会怎样?(2)如图,矩形A′B′C′D′在矩形ABCD的内部,AB∥A′B′,AD∥A′D′,且AD∶AB=2∶1,设AB与A′B′、BC与B′C′、CD与C′D′、DA与D′A′之间的距离分别为a、b、c、d,要使矩形A′B′C′D′∽矩形ABCD,a、b、c、d应满足什么条件?请说明理由.20.如图⊙O的内接△ABC中,外角∠ACF的角平分线与⊙O相交于D点,DP⊥AC,垂足为P,DH⊥BF,垂足为H.问:(1)∠PDC与∠HDC是否相等,为什么?(2)图中有哪几组相等的线段?(3)当△ABC满足什么条件时,△CPD∽△CBA,为什么?21.如图,图中的小方格都是边长为1的正方形,△ABC与△A′B′C′的顶点都在格点上.(1)求证:△ABC∽A′B′C′;(2)A′B′C′与△ABC是位似图形吗?如果是,在图形上画出位似中心并求出位似比.第二十七章《相似》单元练习题答案解析1.【答案】C【解析】∵分别在△ABC的边AB,AC的反向延长线上取点D,E,使DE∥BC,则△ADE是△ABC 放大或缩小后的图形,∴A错误.∵位似图形是特殊的相似形,满足相似形的性质,∴B,D错误,正确的是C.故选C.2.【答案】D【解析】由位似变换的性质可知,A′B′∥AB,A′C′∥AC,∴==,∴==,∴△A′B′C′与△ABC的相似比为1∶3,∴△A′B′C′与△ABC的面积的比1∶9,故选D.3.【答案】C【解析】∵△ABC和△DEF相似,∴△DEF的三边之比为3∶4∶5,∴△DEF的最短边和最长边的比为3∶5,设最长边为x,则3∶5=9∶x,解得x=15,∴△DEF的最长边为15 cm,故选C.4.【答案】C【解析】∵AB=3 cm,BC=5 cm,∴矩形ABCD的周长=2×(3+5)=16 cm,∵矩形ABCD∽矩形EFGH,相似比为2∶3,∴矩形ABCD与矩形EFGH的周长比2∶3,∴矩形EFGH的周长为24 cm,故选C.5.【答案】A【解析】假设△ABC∽△CAD,∴=,即CD==,∴要使△ABC∽△CAD,只要CD等于,故选A.6.【答案】A【解析】如图,位似中心为点A.故选A.7.【答案】B【解析】依题意有△ABF∽△ADE,∴AB∶AD=BF∶DE,即5∶AD=0.4∶5,解得AD=62.5,BD=AD-AB=62.5-5=57.5尺.故选B.8.【答案】D【解析】∵5千米=500 000厘米,∴比例尺=2∶500 000=1∶250 000;故选D.9.【答案】6【解析】如图,过点A作AE⊥CE于点E,交BD于点D,∵练习本中的横格线都平行,且相邻两条横格线间的距离都相等,∴=,即=,∴BC=6 cm.10.【答案】位似O【解析】∵A′B′∥AB,A′C′∥AC,∴∠A′B′C′=∠B,∠A′C′B′=∠C,∴△A′B′C′∽△ABC,∵AA′的延长线交于BC于点D,∴△ABC与△A′B′C′是位似图形,其中O点是位似中心.11.【答案】3【解析】∵△ABC∽△A′B′C′,且S△ABC∶S△A′B″C′=16∶9,∴AB∶A′B′=4∶3,∵AB=4,∴A′B′=3.12.【答案】【解析】∵△ABC∽△DEF,∴BC∶EF=AD∶DG,∵=,∴BC∶EF=3∶2,∴AD∶DG=3∶2.13.【答案】16【解析】由图形的变化规律可得×256=,解得n=16.14.【答案】【解析】∵DE∥BC,∴△ADE∽△ABC,∴==.故答案为.15.【答案】8【解析】∵a∶b∶c=1∶3∶2,∴设a=k,则b=3k,c=2k,又∵a+b+c=24,∴k+3k+2k=24,∴k=4,∴a+b-c=k+3k-2k=2k=2×4=8.16.【答案】相似变换【解析】由一个图形到另一个图形,在改变的过程中形状不变,大小产生变化,属于相似变化.17.【答案】解(1)过A作AM⊥BD于点M,交GE于N.∵AC⊥CD,GE⊥CD,∴四边形ACEN为矩形,∴NE=AC,又∵AC=200,EF=a,FG=y,∴GN=GE-NE=a+y-200,∵DM=AC=200,∴BM=BD-DM=300-200=100,又∵GN∥BD,∴△ANG∽△AMB,∴=,即=,∴y=x-a+200;(2)当x=150 cm,a=205 cm时,y=×150-205+200=45( cm),y=45>40.故该生弹跳成绩处于良好水平.【解析】(1)利用相似三角形的判定与性质得出△ANG∽△AMB,进而得出=,即可得出答案;(2)当x=150 cm,a=205 cm时,直接代入(1)中所求得出即可.18.【答案】解(1)∵EF∥BC,∴△AEF∽△ABC,∴=,∵=,∴=,又BC=b,∴=,∴EF=;(2)①如图2,连接BD,与EF交于点H,由(1)知,HF=,EH=,∵EF=EH+HF,∴EF=;②猜想:EF=,证明:连接DE,并延长DE交BC于G,由已知,得BG=,EF=,∵GC=BC-BG,∴EF=(BC-BG)==.【解析】(1)由EF∥BC,即可证得△AEF∽△ABC,根据相似三角形的对应边成比例,即可证得=,根据比例变形,即可求得EF的值;(2)①连接BD,与EF交于点H,由(1)知,HF=,EH=,又由EF=EH+HF,即可求得EF的值;②连接DE,并延长DE交BC于G,根据平行线分线段成比例定理,即可求得BG的长,又由EF=与GC=BC-BG,即可求得EF的值.19.【答案】解(1)小明没有说明矩形蔬菜种植区域的长与宽之比为2∶1的理由.在“设矩形蔬菜种植区域的宽为x m,则长为2x m.”前补充以下过程:设温室的宽为x m,则长为2x m.则矩形蔬菜种植区域的宽为(x-1-1)m,长为(2x-3-1)m.∵==2,∴矩形蔬菜种植区域的长与宽之比为2∶1;(2)要使矩形A′B′C′D′∽矩形ABCD,就要=,即=,即=,即2AB-2(b+d)=2AB-(a+c),∴a+c=2(b+d),即=2.【解析】(1)根据题意可得小明没有说明矩形蔬菜种植区域的长与宽之比为2∶1的理由,所以应设矩形蔬菜种植区域的宽为x m,则长为2x m,然后由题意得==2,矩形蔬菜种植区域的长与宽之比为2∶1,再利用小明的解法求解即可;(2)由使矩形A′B′C′D′∽矩形ABCD,利用相似多边形的性质,可得=,即=,然后利用比例的性质,即可求得答案.20.【答案】解(1)相等.理由如下:∵CD为∠ACF的角平分线(已知),∴∠DCP=∠DCH,DP⊥AC,DH⊥BF.∴∠DPC=∠DHC=90°.∴∠PDC=∠HDC.(2)PC=HC,DP=DH,AP=BH,AD=BD.(3)∠ABC=90°且∠ACB=60°时,△CPD∽△CBA.∵∠CPD=90°,∴∠ABC=90°.∵CD为∠ACF的角平分线,∠PCD=∠DCF=∠ACB,∴∠ACB=60°.∴∠ABC=90°且∠ACB=60°时,△CPD∽△CBA.【解析】(1)根据角平分线与垂线的性质证明角相等;(2)发现全等三角形,根据全等三角形的对应边相等证明出线段相等;(3)根据其中一个是直角三角形得到AC必须是直径.再根据另一对角对应相等,结合利用平角发现必须都是60°才可.21.【答案】(1)证明∵AB=,BC=,AC=2,A′B′=2,B′C′=2,A′C′=4,∴==,∴△ABC∽A′B′C′;(2)解如图所示:两三角形对应点的连线相交于一点,故A′B′C′与△ABC是位似图形,O即为位似中心,位似比为2.【解析】(1)分别求出三角形各边长,进而得出答案;(2)利用位似图形的性质得出答案.。
人教版九年级下册数学《第27章相似》单元检测试卷含答案

第27章相似单元检测一、选择题1. 将下图中的箭头缩小到原来的12,得到的图形是( )A. B.C. D.2. 如图,AB //EF //CD ,BC 、AD 相交于点O ,F 是AD 的中点,则下列结论中错误的是( )A. AO AD =BO BCB. OB CE =OA DFC. EF CD =OE BED. 2BE AD =OE OF3. 下列各组数中,成比例的是( )A. −6,−8,3,4B. −7,−5,14,5C. 3,5,9,12D. 2,3,6,124. 不为0的四个实数a 、b ,c 、d 满足ab =cd ,改写成比例式错误的是( )A. a c =d bB. c a =b dC. d a =b cD. a b =c d5. 如图,点P 在△ABC 的边AC 上,要判断△ABP∽△ACB ,添加一个条件,不正确的是( )A. AB BP =AC CBB. ∠APB =∠ABCC. APAB =ABACD. ∠ABP=∠C6.已知C是线段AB的黄金分割点(AC>BC),则AC:AB=( )A. (−1):2B. (+1):2C. (3−:2D. (3+:27.对于平面图形上的任意两点P,Q,如果经过某种变换得到新图形上的对应点P′,Q′,保持PQ=P′Q′,我们把这种变换称为“等距变换”,下列变换中不一定是等距变换的是( )A. 平移B. 旋转C. 轴对称D. 位似8.已知两个相似多边形的面积比是9:16,其中较小多边形的周长为36cm,则较大多边形的周长为( )A. 48 cmB. 54 cmC. 56 cmD. 64 cm9.下列各组图形不一定相似的是( )A. 两个等腰直角三角形B. 各有一个角是100∘的两个等腰三角形C. 各有一个角是50∘的两个直角三角形D. 两个矩形10.如图所示,△ABC中,DE//BC,AD=5,BD=10,DE=6,则BC的值为( )A. 6B. 12C. 18D. 24二、填空题11.如果两个相似三角形对应角平分线的比是4:9,那么它们的周长比是______ .12.如图,已知AD//BE//CF,它们依次交直线l1、l2于点A、B、C和点D、E、F.如果AB=6,BC=10,那么DEDF的值是______ .13.如果线段a、b、c、d满足ab =cd=13,那么a+cb+d=______ .14.已知线段a=3,b=6,那么线段a、b的比例中项等于______ .15.在△ABC中,点D、E分别在边AB、AC上,如果ADAB =23,AE=4,那么当EC的长是______ 时,DE//BC.三、解答题16.已知△ABC,作△DEF,使之与△ABC相似,且S△DEFS△ABC=4.要求:(1)尺规作图,保留作图痕迹,不写作法.(2)简要叙述作图依据.17. 如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,DE //BC ,已知AE =6,AD BD =34,求CE 的长.18. 如图,在平行四边形ABCD 中,DE ⊥AB 于点E ,BF ⊥AD 于点F .(1)AB ,BC ,BF ,DE 这四条线段能否成比例?如不能,请说明理由;如能,请写出比例式;(2)若AB =10,DE =2.5,BF =5,求BC 的长.19.已知a3=b4=c5≠0,求2a−b+ca+3b的值.20.作图题用圆规、直尺作图,不写作法,但要保留作图痕迹.如图,在△ABC中,AB>AC,点D位于边AC上.求作:过点D、与边AB相交于E点的直线DE,使以A、E为顶点的三角形与原三角形相似.【答案】1. A2. C3. A4. D5. A6. A7. D8. A9. D10. C11. 4:912. 3813. 1314. 315. 616. 解:(1)如图所示:△DEF即为所求;(2)∵△DEF∽△ABC,且S△DEFS△ABC=4,∴DEAB =DFAC=EFBC=12,∴作AB,AC的垂直平分线,进而得出AB,AC的中点,即可得出ED,EF,DF的长.17. 解:∵DE//BC,∴AEEC =ADBD=34,∵AE=6,∴CE=8.18. 解:(1)(1)证明:∵在▱ABCD中,DE⊥AB,BF⊥AD,∴S▱A BCD=AB⋅DE=AD⋅BF,∴ADDE =ABBF;(2)∵AB⋅DE=AD⋅BF,∴10×2.5=5BC,解得:BC=5.19. 解:设a3=b4=c5=k,所以,a=3k,b=4k,c=5k,则2a−b+ca+3b =6k−4k+5k3k+12k=715.20. 解:如图1所示:△AED∽△ABC,如图2所示:△ADE∽△ABC,综上所述:直线DE即为所求.。
人教版九年级下册数学《第27章相似》单元测试含答案试卷分析解析

第27章相似一、选择题1.如果a=3,b=2,且b是a和c的比例中项,那么c=()A. B. C. D.2.已知△ABC∽△DEF,面积比为9:4,则△ABC与△DEF的对应边之比为()A. 3:4B. 2:3C. 9:16D. 3:23.已知△ABC∽△A′B′C′,sinA=m,sinA′=n,则m和n的大小关系为()A. m<nB. m>nC. m=nD. 无法确定4.已知△ABC∽△DEF,且相似比为2:3,则△ABC与△DEF的对应高之比为()A. 2:3B. 3:2C. 4:9D. 9:45.三角尺在灯泡的照射下在墙上形成的影子如图所示。
若OA=20cm,OA′=50cm,则这个三角尺的周长与它在墙上形成的影子的周长的比是()A. 5:2B. 2:5C. 4:25D. 25:46.如图,△ADE∽△ABC,若AD=1,BD=2,则△ADE与△ABC的相似比是().A. 1:2B. 1:3C. 2:3D. 3:27.如图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC相似的是()A. B. C. D.8.如图,直线l1∥l2∥l3,直线AC分别交l1、l2、l3与点A、B、C,直线DF分别交l1、l2、l3与点D、E、F,AC与DF相交于点H,如果AH=2,BH=1,BC=5,那么的值等于()A. B. C. D.9.如图,矩形AEHC是由三个全等矩形拼成的,AH与BE、BF、DF、DG、CG分别交于点P、Q、K、M、N,设△BPQ, △DKM, △CNH 的面积依次为S1,S2,S3。
若S1+ S3=20,则S2的值为( )A. 8B. 10C. 12D.10.如图,CD是Rt△ABC斜边AB上的高,CD=6,BD=4,则AB的长为()A. 10B. 11C. 12D. 1311.如图,∠1=∠2,则下列各式不能说明△ABC∽△ADE的是()A. ∠D=∠BB. ∠E=∠CC.D.12.如图,小李打网球时,球恰好打过网,且落在离网4m的位置上,则球拍击球的高度h为()A. 0.6mB. 1.2mC. 1.3mD. 1.4m二、填空题13.在一张复印出来的纸上,一个多边形的一条边由原图中的2cm变成了6cm,这次复印的放缩比例是________ .14.已知线段a=2cm,b=8cm,那么线段a和b的比例中项为________ cm.15. 已知△ABC在坐标平面内三顶点的坐标分别为A(0,2)、B(3,3)、C(2,1).以B为位似中心,画出与△ABC相似(与图形同向),且相似比是3的三角形,它的三个对应顶点的坐标分别是 ________.16.如图,直线l1∥l2∥l3,直线AC分别交l1、l2、l3于点A、B、C;过点B的直线DE分别交l1、l3于点D、E.若AB=2,BC=4,BD=1.5,则线段BE的长为________ .17.如图,在△ABC中,AB=9,AC=12,BC=18,D为AC上一点,DC=AC.在AB上取一点E得△ADE.若图中两个三角形相似,则DE的长是________ .18.在比例尺为1:6000的地图上,图上尺寸为1cm×2cm的矩形操场,实际尺寸为________.19.已知△ABC中的三边a=2,b=4,c=3,h a,h b,h c分别为a,b,c上的高,则h a:h b:h c=________.20.有一张矩形风景画,长为90cm,宽为60cm,现对该风景画进行装裱,得到一个新的矩形,要求其长、宽之比与原风景画的长、宽之比相同,且面积比原风景画的面积大44%.若装裱后的矩形的上、下边衬的宽都为acm,左、右边衬的宽都为bcm,那么ab=________ cm221.如图,在四边形ABCD中,对角线AC、BD相交于点E,∠DAB=∠CDB=90°,∠ABD=45°,∠DCA=30°,AB=6,则AE=________.22. 勾股定理与黄金分割是几何中的双宝,前者好比黄金,后者堪称珠玉.生活中到处可见黄金分割的美.如图,线段AB=1,点P1是线段AB的黄金分割点(AP1<BP1),点P2是线段AP1的黄金分割点(AP2<P1P2),点P3是线段AP2的黄金分割点(AP3<P2P3),…,依此类推,则AP n的长度是________.三、解答题(共3题;共15分)23.如图,M为线段AB的中点,AE与BD交于点C,∠DME=∠A=∠B=α,且DM交AC于F,ME交BC于G(1)求证:△AMF∽△BGM;(2)连接FG,如果α=45°,AB=4,BG=3,求FG的长.24.如图,学校旗杆附近有一斜坡,小明准备测量旗杆AB的高度,他发现当斜坡正对着太阳时,旗杆AB 的影子恰好落在水平地面和斜坡的坡面上,此时小明测得水平地面上的影子长BC=20米,斜坡坡面上的影子CD=8米,太阳光AD与水平地面BC成30°角,斜坡CD与水平地面BC成45°的角,求旗杆AB的高度.(=1.732,=1.414,=2.449,精确到1米).25.又到了一年中的春游季节.某班学生利用周末去参观“三军会师纪念塔”.下面是两位同学的一段对话:甲:我站在此处看塔顶仰角为60°;乙:我站在此处看塔顶仰角为30°;甲:我们的身高都是1.6m;乙:我们相距36m.请你根据两位同学的对话,计算纪念塔的高度.(精确到1米)26. 如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且.(1)求证:△ADF∽△ACG;(2)若,求的值.27. 如图①,在△ABC中,AB=AC,BC=acm,∠B=30°.动点P以1cm/s的速度从点B出发,沿折线B﹣A ﹣C运动到点C时停止运动.设点P出发x s时,△PBC的面积为y cm2.已知y与x的函数图象如图②所示.请根据图中信息,解答下列问题:(1)试判断△DOE的形状,并说明理由;(2)当a为何值时,△DOE与△ABC相似?参考答案一、选择题C D C A B B B D A D D D二、填空题13.1:314.415.(﹣6,0)、(3,3)、(0,﹣3)16.317.6或818.60m×120m19.6:3:420.5421.222.三、解答题23.证明:(1)∵∠DME=∠A=∠B=α,∴∠AMF+∠BMG=180°﹣α,∵∠A+∠AMF+∠AFM=180°,∴∠AMF+∠AFM=180°﹣α,∴∠AFM=∠BMG,∴△AMF∽△BGM;(2)解:当α=45°时,可得AC⊥BC且AC=BC,∵M为AB的中点,∴AM=BM=2,∵△AMF∽△BGM,∴,∴AF===,AC=BC=4•cos45°=4,∴CF=AC﹣AF=4﹣=,CG=BC﹣BG=4﹣3=1,∴FG== =.24.解:延长AD交BC于E点,则∠AEB=30°,作DQ⊥BC于Q,在Rt△DCQ中,∠DCQ=45°,DC=8,∴DQ=QC=8sin45°=8×=4,在Rt△DQE中,QE=≈9.8(米)∴BE=BC+CQ+QE≈35.5(米)在Rt△ABE中,AB=BEtan30°≈20(米)答:旗杆的高度约为20米.25.解:如图,CD=EF=BH=1.6m,CE=DF=36m,∠ADH=30°,∠AFH=30°,在Rt△AHF中,∵tan∠AFH=,∴FH=,在Rt△ADH中,∵tan∠ADH=,∴DH=,而DH﹣FH=DF,∴﹣=36,即﹣=36,∴AH=18,∴AB=AH+BH=18+1.6≈33(m).答:纪念塔的高度约为33m.26.(1)证明:∵∠AED=∠B,∠DAE=∠DAE,∴∠ADF=∠C,∵,∴△ADF∽△ACG.(2)解:∵△ADF∽△ACG,∴,又∵,∴,∴=1.27.(1)解:△DOE是等腰三角形.理由如下:过点A作AM⊥BC于M,∵AB=AC,BC=acm,∠B=30°,∴AM= × = a,AC=AB= a,∴S△ABC= BC•AM= a2,∴P在边AB上时,y= •S△ABC= ax,P在边AC上时,y= •S△ABC= a2﹣ax,作DF⊥OE于F,∵AB=AC,点P以1cm/s的速度运动,∴点P在边AB和AC上的运动时间相同,∴点F是OE的中点,∴DF是OE的垂直平分线,∴DO=DE,∴△DOE是等腰三角形(2)解:由题意得:∵AB=AC,BC=acm,∠B=30°,∴AM= × = a,∴AB= a,∴D(a,a2),∵DO=DE,AB=AC,∴当且仅当∠DOE=∠ABC时,△DOE∽△ABC,在Rt△DOF中,tan∠DOF= = = a,由a=tan30°= ,得a= ,∴当a= 时,△DOE∽△ABC.第11页共11页。
人教版九年级数学下册第27章相似单元检测试卷【含答案】

人教版九年级数学下册第27章相似单元检测试卷考试总分: 120 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题,每小题 3 分,共 30 分)1.已知x:y=2:5,下列等式中正确的是()A.(x+y):y=2:5B.(x+y):y=5:2C.(x+y):y=3:5D.(x+y):y=7:52.如图,在△ABF中,D为AB的中点,C为BF上一点,AC与DF交于点E,AE=34AC,则BCCF的值为()A.1B.34C.43D.23.如图,点D在BC上,∠ADC=∠BAC,下列结论中,正确的是()A.△ABC∽△DACB.△ABC∽△ADCC.△ABC∽△DABD.△ABD∽△ACD4.已知如图,点C是线段AB的黄金分割点(AC>BC),则下列结论中正确的是()A.AB2=AC2+BC2B.BC2=AC⋅BAC.AC2=AB⋅BCD.AC=2BC5.若三角形的每条边长都扩大为原来的5倍,则下列说法正确的是()A.每个角都扩大5倍B.周长扩大5倍C.面积扩大5倍D.无法确定6.如图,在△ABC中,DE // BC,下列比例式成立的是()A.AD DB =DEBCB.DEBC=ACECC.AD DB =AEECD.DBAD=AEEC7.下列说法正确的是()①所有的等腰三角形都相似;②所有的等边三角形都相似;③所有的直角三角形都相似;④所有的等腰直角三角形都相似.A.①② B.②③ C.③④ D.②④8.下列命题错误的是()A.两个全等的三角形一定相似B.两个直角三角形一定相似C.两个相似三角形的对应角相等,对应边成比例D.相似的两个三角形不一定全等9.在相同水压下,口径为4cm的水管的出水量是口径为1cm的水管出水量的()A.4倍B.8倍C.12倍D.16倍10.身高1.6米的小芳站在一棵树下照了一张照片,小明量得照片上小芳的高度是1.2厘米,树的高度为6厘米,则树的实际高度大约是()A.8米B.4.5米C.8厘米D.4.5厘米二、填空题(共 10 小题,每小题 3 分,共 30 分)11.在梯形ABCD中,AB // DC,AB=18cm,DC=8cm,E,F分别是腰AD,BC上的点,且EF // AB,若梯形DEFC∽梯形EABF,那么EF=________cm.12.若△ABC∽△DEF,△ABC与△DEF的周长比为1:2,则△ABC与△DEF的面积比为________.13.如图,在Rt△ABC中,∠C=90∘,CD⊥AB于D.若AD=2cm,DB=6cm,则CD=________.14.如图,△AOB∽△DOC,且AO=3,OB=4,OD=6,则BC=________.15.如图,△ABC,AB=12,AC=15,D为AB上一点,且AD=23AB,在AC上取一点E,使以A、D、E为顶点的三角形与ABC相似,则AE等于________.16.如图,在△ABC中,DE // BC,AE:EC=3:5,则S△ADE:S△ABC=________.17.如图,在△ABC中,P为AB上一点,在下列四个条件中:①∠ACP=∠B;②∠APC=∠ACB;③AC2=AP⋅AB;④AB⋅CP=AP⋅CB,能满足△APC与△ACB 相似的条件是________(只填序号).18.如图,梯形ABCD中,AB // CD,∠B=∠C=90∘,点F在BC边上,AB=8,CD= 2,BC=10,若△ABF与△FCD相似,则CF的长为________.19.如图,边长为1的正方形ABCD中,点E在CB延长线上,连接ED交A8于点F,AF=x(0.2≤x≤0.8),EC=y.则大致能反映y与x之闻函数关系的是________.20.数学兴趣小组想测量一棵树的高度,在阳光下,一名同学测得一根长为1米的竹竿的影长为0.8米.同时另一名同学测量一棵树的高度时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图),其影长为1.2米,落在地面上的影长为2.4米,则树高为________米.三、解答题(共 6 小题,每小题 10 分,共 60 分)21.如图,在正方形网格上,请你画两个三角形,使它们不全等且分别与图中的△ABC相似,其相似比不为1,三角形的顶点都在正方形的顶点上,并注明相应的字母.22.如图,AB⊥MN,CD⊥MN,垂足分别为点B,D,AB=2,CD=4,BD=3,在直线MN上是否存在点P,能使△PAB与△PCD相似?如果存在,满足上述条件的点P 有几个?说明点P与点B,D的距离,并作出图形.23.如图,△ABC中,A、B两点在x轴的上方,点C的坐标是(−1, 0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C,并把△ABC的边长放大到原来的2倍.设点B的对应点B′的横坐标是2,求点B的横坐标.24.已知:线段a、b、c,且a2=b3=c4.(1)求a+bb的值.(2)如线段a、b、c满足a+b+c=27.求a、b、c的值.25.已知△ABC∽△DEF,DEAB=23,△ABC的周长是12cm,面积是30cm2.(1)求△DEF的周长;(2)求△DEF的面积.26.如图,已知△ABC,AB=AC=1,∠A=36∘,∠ABC的平分线BD交AC于点D.(1)求AD的长;(2)求cosA的值(结果保留根号).答案1.D2.D3.A4.C5.B6.C7.D8.B9.D10.A11.1212.1:413.2√3cm14.1215.10或6.416.96417.①,②,③18.2或819.y=1x20.4.221.解:如图所示:△A′B′C′和△DEF即为所求.22.解:存在点P,能使△PAB与△PCD相似,满足上述条件的点P有4个.设PB=x,若点P 在点B 的左侧,如图1, ∵∠PBA =∠PCD =90∘,∴当AB CD =PB PD 时,△PBA ∽△PDC ,即24=xx+3,解得x =3,此时PD =6; 当ABPD =PBCD 时,△PBA ∽△CDP ,即2x+3=x4,解得x 1=−3+√412,x 2=−3−√412(舍去),此时PD =3+√412;若点P 在线段BD 上,如图2,∵∠PBA =∠PCD =90∘,∴当AB CD =PB PD 时,△PBA ∽△PDC ,即24=x3−x ,解得x =1,此时PD =2; 当ABPD =PBCD 时,△PBA ∽△CDP ,即23−x =x4,无解; 若点P 在D 点右侧,如图3, ∵∠PBA =∠PCD =90∘,∴当AB CD =PB PD 时,△PBA ∽△PDC ,即24=xx−3,解得x =−3,舍去; 当ABPD =PBCD 时,△PBA ∽△CDP ,即2x−3=x4,解得x 1=3+√412,x 2=3−√412(舍去),此时PD =−3+√413;综上所述,满足上述条件的点P 有4个,当PB =3时,PD =6;当PB =−3+√412时PD =3+√412;当PB =1时,PD =2;当PB =3+√412,PD =−3+√413.23.解:过点B 、B ′分别作BD ⊥x 轴于D ,B ′E ⊥x 轴于E , ∴∠BDC =∠B ′EC =90∘.∵△ABC 的位似图形是△A ′B ′C , ∴点B 、C 、B ′在一条直线上,∴∠BCD =∠B ′CE , ∴△BCD ∽△B ′CE . ∴CD CE =BC B′C , 又∵BCB′C =12,∴CDCE =12,又∵点B ′的横坐标是2,点C 的坐标是(−1, 0), ∴CE =3,∴CD =32. ∴OD =52,∴点B 的横坐标为−52.24.解:(1)∵a 2=b3, ∴ab =23,∴a+bb =53,(2)设a 2=b 3=c4=k , 则a =2k ,b =3k ,c =4k , ∵a +b +c =27, ∴2k +3k +4k =27, ∴k =3,∴a =6,b =9,c =12.25.解:(1)∵DE AB =23,∴△DEF 的周长=12×23=8(cm);(2)∵DE AB =23, ∴△DEF 的面积=30×(23)2=1313(cm 2).26.解:(1)∵AB =AC ,∠A =36∘,∴∠C =∠ABC =12(180∘−∠A)=72∘,∵BD 平分∠ABC ,∴∠ABD =∠CBD =36∘=∠A , ∴AD =BD ,∵∠C =72∘,∠CBD =36∘,∴由三角形内角和定理得:∠BDC =72∘=∠C , ∴BD =BC =AD ,∵∠C=∠C,∠CBD=∠A,∴△ABC∽△BDC,∴BC CD =ACBC,∴BC2=AC×CD,∵AD=BD=BC,∴AD2=AC×CD=AC×(AC−AD),解关于AD的方程得:AD=√5−12AC=√5−12,即AD=√5−12;(2)如图,过点D作DE⊥AB于点E.由(1)知,AD=BD,则AE=12AB=12,∴cosA=AEAD ,即12√5−12=√5+14,∴cosA的值是√5+14.。
第27章 相似三角形发单元测试卷2022-2023学年人教版九年级数学下册

人教新版九年级下册《第27章相似三角形》2022年单元测试卷一、单选题(本大题共10小题,共44分)1.(5分)选项图形与如图所示图形相似的是()A. B.C. D.2.(5分)若ΔABC∽ΔDEF,相似比为1:2,则ΔABC与ΔDEF的周长比为()A. 2:1B. 1:2C. 4:1D. 1:43.(5分)如图,点P是△ABC的边AB上的一点,若添加一个条件,使△ABC与△CBP相似,则下列所添加的条件错误的是()A. ∠BPC=∠ACBB. ∠A=∠BCPC. AB:BC=BC:PBD. AC:CP=AB:BC4.(5分)将一个直角三角形的三边扩大3倍,得到的三角形是()A. 直角三角形B. 锐角三角形C. 钝角三角形D. 不能确定5.(4分)如图,比例规是伽利略发明的一种画图工具,使用它可以把线段按一定比例伸长或缩短,它是由长度相等的两脚AD和BC交叉构成的.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OD,OB=3OC),然后张开两脚,使A、B两个尖端分别在线段l的两个端点上,若CD=3cm,则AB的长是()A. 9cmB. 12cmC. 15cmD. 18cm6.(4分)如图,在平面直角坐标系中的第一象限内,△ABC的顶点坐标分别是A(1,2),B(1,1),C(3,1),以原点O为位似中心,作出△ABC的位似图形△DEF.若△DEF与△ABC的相似比为2:1.则点F的坐标为()A. (2,4)B. (2,2)C. (6,2)D. (7,2)7.(4分)如图,在正方形ABCD中,E是边AD中点,F是边AB上一动点,G是EF延长线上一点,且GF=EF.若AD=4,则线段CG长度的最小值和最大值分别为()A. 4,4√2B. 2√5,4√2C. 2√5,2√13D. 6,2√138.(4分)如图,在RtΔABC中,∠ACB=90°,AC=6,BC=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是()A. 125B. 4 C. 245D. 59.(4分)如图,PA、PB切⊙O于点A、B,点C是⊙O上一点,且∠ACB=65°,则∠P 等于()A. 65°B. 130°C. 50°D. 45°10.(4分)如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②SΔFAB:S四边形CBFG=1:2;③∠ABC=∠ABF;①A D2=FQ⋅AC,其中正确的结论的个数是()A. 1B. 2C. 3D. 4二、填空题(本大题共7小题,共28分)11.(4分)如图,已知ADDB =AEEC,AD=6.4cm,DB=4.8cm,EC=4.2cm,则AC=______ cm.12.(4分)如图,表示ΔAOB为O为位似中心,扩大到ΔCOD,各点坐标分别为:A(1,2),B(3,0),D(4,0),则点C坐标为 ______ .13.(4分)如图,已知CB平分∠ACD,CB⊥AB垂足为点B,CD⊥BD垂足为点D,AC=5cm,BC=4cm,则BD=______.14.(4分)如图,正方形ABCD中,BE=EF=FC,CG=2GD,BG分别交AE、AF于M、N,下列结论:①AF⊥BG;②BN=43NF;③S四边形CGNF=S△ABN;④BMMG=38.其中正确结论的序号有 ______.15.(4分)如图,平行四边形ABCD中,E为AD的中点,已知ΔDEF的面积为1,则四边形ABFE的面积为______.16.(4分)如图,小明用长为3m的竹竿CD做测量工具,测量学校旗杆AB的高度,移动竹竿,使竹竿与旗杆的距离DB=12m,则旗杆AB的高为______m.17.(4分)如图,点P1,P2,P3,P4均在坐标轴上,且P1P2⊥P2P3,P2P3⊥P3P4.若点P1,P2的坐标分别为(0,−1),(−2,0),则点P4的坐标为________.三、解答题(本大题共7小题,共28分)18.(4分)如图,一个木框,内外是两个矩形ABCD和EFGH,问按图中所示尺寸,满足什么条件这两个矩形相似?19.(4分)如图所示,在△ABC中,∠ACB=90°,AM是BC边的中线,CN⊥AM于N 点,连接BN.求证:(1)△MCN∽△MAC;(2)∠NBM=∠BAM.20.(4分)如图所示,在△ABC中,DE//BC,EF//CD,AF=4,AB=6.求AD的长.21.(4分)如图,在四边形ABCD中,点E是对角线AC上一点,且ABAC =AEAD=BECD.(1)若∠DAE=22°,求∠BAD的度数;(2)判断△ADE与△ACB是否相似,并说明理由.22.(4分)如图,△ABC内接于⊙O,AB是⊙O的直径,BD与⊙O相切于点B,BD交AC的延长线于点D,E为BD的中点,连接CE.(1)求证:CE是⊙O的切线.(2)连接OE,已知BD=3√5,CD=5,求OE的长.23.(4分)将一个直角三角形纸片AOB,放置在平面直角坐标系中,点A(−√3,0),点B(0,1),点O(0,0).过边OA上的动点M(点M不与点O,A重合)作MN⊥AB于点N,沿着MN折叠该纸片,得顶点A的对应点A′.设AM=m,折叠后的△A′NM与四边形OBNM重叠部分的面积为S.(Ⅰ)如图①,当点A′与顶点B重合时,求点M的坐标;(Ⅰ)如图②,当点A′落在第一象限时,A′M与OB相交于点C,试用含m的式子表示S,并直接写出m的取值范围;(Ⅰ)当1⩽m<√3时,求S的取值范围(直接写出结果即可).24.(4分)如图,在△ABC中,AB=BC,AD⊥BC于点D,BE⊥AC于点E.AD交BE 于点F,点G为BC边的中点,作BH⊥AB交直线FG于点H.(1)如图1,当∠ABC=60°,AF=3时,CF=______,BH=______.(2)如图2,当∠ABC=45°时,试探索AF与BH的数量关系,并证明.(3)如图3,当∠ABC=α(0°<α<60°)时,(2)中AF与BH的数量关系 ______成立(填“仍然”或“不再”),请说明理由.答案和解析1.【答案】D;【解析】解:因为相似图形的形状相同,所以A、B、C中形状不同,故选:D.根据相似图形的性质,根据形状相同排除A、B、C,可得出答案.此题主要考查相似图形的性质,掌握相似图形的对应角相等、对应边成比例是解答该题的关键.2.【答案】B;【解析】解:∵ΔABC∽ΔDEF,ΔABC与ΔDEF的相似比为1:2,∴ΔABC与ΔDEF的周长比为1:2.故选:B.根据相似三角形的周长的比等于相似比得出.这道题主要考查了相似三角形的性质:相似三角形(多边形)的周长的比等于相似比.3.【答案】D;【解析】解:A、已知∠B=∠B,若∠BPC=∠ACB,则△ABC与△CBP相似,故A不符合题意;B、已知∠B=∠B,若∠A=∠BCP,则△ABC与△CBP相似,故B不符合题意;C、已知∠B=∠B,若AB:BC=BC:PB,则△ABC与△CBP相似,故C不符合题意;D、若AC:CP=AB:BC,但夹角不是公共等角∠B,则不能证明△ABC与△CBP相似,故D符合题意,故选:D.根据相似三角形的判定逐一进行判断即可.此题主要考查了相似三角形的性质,熟练掌握相似三角形的判定是解答该题的关键.4.【答案】A;【解析】解:将直角三角形的三条边长同时扩大同一倍数,得到的三角形与原三角形相似,因而得到的三角形是直角三角形故选A.根据三组对应边的比相等的三角形相似,依据相似三角形的性质就可以求解.这道题主要考查相似三角形的判定以及性质,得出两三角形相似是解答该题的关键,是基础题,难度不大.5.【答案】A;【解析】解:∵OA=3OD,OB=3CO,∴OA:OD=BO:CO=3:1,∠AOB=∠DOC,∴ΔAOB∽ΔDOC,∴AOOD =ABCD=31,∴AB=3CD,∵CD=3cm,∴AB=9cm,故选:A.首先根据题意利用两组对边的比相等且夹角相等的三角形是相似三角形判定相似,然后利用相似三角形的性质求解.此题主要考查相似三角形的应用,解答该题的关键是熟练掌握相似三角形的判定方法,学会利用相似三角形的性质解决问题.6.【答案】C;【解析】解:∵△ABC与△DEF位似.△DEF与△ABC的相似比为2:1,∴△ABC与△DEF位似比为1:2,∵点C的坐标为(3,1),∴点F的坐标为(3×2,1×2),即(6,2),故选:C.根据位似变换的性质解答即可.此题主要考查的是位似变换的性质、相似三角形的性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或−k.7.【答案】D;【解析】解:如图,过点G作GH⊥AB于点H,作GK⊥BC交CB的延长线于点K,则∠GHF=∠GHB=∠K=90°,∵四边形ABCD是正方形,∴∠A=∠ABC=90°,AD=AB=BC=4,∵E是边AD中点,∴AE=2,在△AFE和△HFG中,{∠A=∠GHF∠AFE=∠GFHEF=GF,∴△AFE≌△HFG(AAS),∴AF=FH,GH=AE=2,设AF=FH=x,且0⩽x⩽4,则BH=|4−2x|,∵∠HBK=180°−90°=90°=∠K=∠GHB,∴四边形BHGK是矩形,∴GK=BH=|4−2x|,BK=GH=2,∴CK=CB+BK=4+2=6,∴CG2=CK2+GK2=62+(4−2x)2=4(x−2)2+36,∵4>0,∴当x=2时,CG2有最小值36,即CG的最小值为6,∵0⩽x⩽4,∴当x=0或4时,CG2有最大值52,即CG的最大值为√52=2√13,故选:D.如图,过点G作GH⊥AB于点H,作GK⊥BC交CB的延长线于点K,结合正方形的性质可证△AFE≌△HFG(AAS),得出:AF=FH,GH=AE=2,设AF=FH=x,且0⩽x⩽4,则BH=|4−2x|,由勾股定理可得CG2=CK2+GK2=62+(4−2x)2=4(x−2)2+36,再运用二次函数的性质即可求得答案.本题是几何综合题,考查了正方形的性质,矩形的判定和性质,全等三角形的判定和性质,勾股定理,二次函数的性质等,解答该题的关键是学会添加常用辅助线,构造全等三角形解决问题.8.【答案】C;【解析】解:如图,过点C作CM⊥AB交AB于点M,交AD于点P,过点P作PQ⊥AC于点Q,∵AD是∠BAC的平分线.∴PQ=PM,这时PC+PQ有最小值,即CM的长度,∵AC=6,BC=8,∠ACB=90°,∴AB=√AC2+BC2=√62+82=10.∵SΔABC=12AB⋅CM=12AC⋅BC,∴CM=AC.BCAB =6×810=245,即PC+PQ的最小值为245.故选:C.过点C作CM⊥AB交AB于点M,交AD于点P,过点P作PQ⊥AC于点Q,由AD是∠BAC 的平分线.得出PQ=PM,这时PC+PQ有最小值,即CM的长度,运用勾股定理求出AB,再运用SΔABC=12AB⋅CM=12AC⋅BC,得出CM的值,即PC+PQ的最小值.这道题主要考查了轴对称问题,解答该题的关键是找出满足PC+PQ有最小值时点P和Q的位置.9.【答案】C;【解析】解:连接OA,OB.PA、PB切⊙O于点A、B,则∠PAO=∠PBO=90°,由圆周角定理知,∠AOB=2∠C=130°,∵∠P+∠PAO+∠PBO+∠AOB=360°,∴∠P=180°−∠AOB=50°.故选:C.连接OA,OB.根据圆周角定理和四边形内角和定理求解即可.本题利用了切线的概念,圆周角定理,四边形的内角和为360度求解,是中考常见题型.10.【答案】D;【解析】该题考查了相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质、三角形的面积,矩形的判定与性质、等腰直角三角形的性质;熟练掌握正方形的性质,证明三角形全等和三角形相似是解决问题的关键.由正方形的性质得出∠FAD=90°,AD=AF=EF,证出∠CAD=∠AFG,由AAS证明ΔFGA≌ΔACD,得出AC=FG,①正确;证明四边形CBFG是矩形,得出SΔFAB=1 2FB.FG=12S四边形CBFG,②正确;由等腰直角三角形的性质和矩形的性质得出∠ABC=∠ABF=45°,③正确;证出ΔACD∽ΔFEQ,得出对应边成比例,得出AD.FE=AD2=FQ.AC,④正确.解:∵四边形ADEF为正方形,∴∠FAD=90°,AD=AF=EF,∴∠CAD+∠FAG=90°,∵FG⊥CA,∴∠GAF+∠AFG=90°,∴∠CAD=∠AFG,在ΔFGA和ΔACD中,{∠G=∠C∠AFG=∠CADAF=AD∴ΔFGA≌ΔACD(AAS),∴FG=AC,①正确;∵BC=AC,∴FG=BC,∵∠ACB=90°,FG⊥CA,∴FG//BC,∵FG=BC,FG//BC,∴四边形CBFG是平行四边形,又∵FG⊥CA,∴四边形CBFG是矩形,∴∠CBF=90°,SΔFAB=12FB.FG=12S四边形CBFG,②正确;∵CA=CB,∠C=∠CBF=90°,∴∠ABC=∠ABF=45°,③正确;易证∠DQB=∠ADC,∴∠FQE=∠DQB=∠ADC,∠E=∠C=90°,∴ΔACD∽ΔFEQ,∴ACEF =ADFQ,∴AD.FE=AD2=FQ.AC,④正确;故选D.11.【答案】9.8;【解析】解:∵ADDB =AEEC,∴6.44.8=AE4.2,解得:AE=5.6(cm),则AC=AE+EC=5.6+4.2=9.8(cm),故答案为:9.8.根据ADDB =AEEC,可以先求出AE的长,即可得到AC的长.此题主要考查了比例的基本性质,在比例式中,已知三个就可求得第四个的量.12.【答案】(43,83); 【解析】解:∵ΔAOB 与ΔCOD 是位似图形,OB =3,OD =4,所以其位似比为3:4.∵点A 的坐标为A(1,2),所以点C 的坐标为(43,83).故答案为:(43,83).由图中数据可得两个三角形的位似比,进而由点A 的坐标,结合位似比即可得出点C 的坐标.此题主要考查了位似变换以及坐标与图形结合的问题,能够利用位似比求解一些简单的计算问题.13.【答案】125; 【解析】解:∵CB ⊥AB 垂足为点B ,∴∠ABC =90°,∵AC =5cm ,BC =4cm ,∴AB =√AC 2−BC 2=3(cm ),∵CD ⊥BD 垂足为点D ,∴∠ABC =∠D =90°,∵CB 平分∠ACD ,∴∠ACB =∠BCD ,∴ΔACB ∽ΔBCD ,∴AC BC=AB BD , ∴54=3BD ,∴BD =125,故答案为:125.根据勾股定理得到AB =√AC 2−BC 2=3(cm ),根据角平分线的定义得到∠ACB =∠BCD ,根据相似三角形的性质即可得到结论.此题主要考查了相似三角形的判定和性质,角平分线的定义,垂直的定义,勾股定理,熟练掌握相似三角形的判定和性质定理是解答该题的关键.14.【答案】①③④;【解析】解:过点G 作GH ⊥AB ,垂足为H ,交AE 于点O ,∵四边形ABCD是正方形,∴AD=AB=BC=CD,∠ABC=∠C=∠DAB=∠D=90°,AD//BC,∵BE=EF=FC,CG=2GD,∴BF=23BC,CG=23CD,∴BF=CG,∴△ABF≌△BCG(SAS),∴∠AFB=∠CGB,∵∠CGB+∠CBG=90°,∴∠AFB+∠CBG=90°,∴∠BNF=180°−(∠AFB+∠CBG)=90°,∴AF⊥BG,故①正确;在Rt△ABF中,tan∠AFB=ABBF =AB23BC=32,∴在Rt△BNF中,tan∠AFB=BNNF =32,∴BN=32NF,故②不正确;∵△ABF≌△BCG,∴S△ABF=S△BCG,∴S△ABF−S△BNF=S△BCG−S△BNF,∴S四边形CGNF=S△ABN,故③正确;∵∠DAB=∠D=∠AHG=90°,∴四边形ADGH是矩形,∴AD=GH,DG=AH,AD//GH,∴GH//BC,设DG=AH=a,∴CD=3DG=3a,∴AB=AD=BC=3a,∴BE=13BC=a,∵∠AHO=∠ABE=90°,∠HAO=∠BAE,∴△AHO∽△ABE,∴AHAB =OHBE,∴a3a =OHa,∴OH=13a,∴GO=GH−OH=3a−13a=83a,∵GH//BC,∴∠OGM=∠GBE,∠GOM=∠OEB,∴△GOM∽△BEM,∴GOBE =GMBM=83aa=83,∴BMMG =38,故④正确,所以,正确结论的序号有:①③④,故答案为:①③④.过点G作GH⊥AB,垂足为H,交AE于点O,根据正方形的性质可得AD=AB=BC= CD,∠ABC=∠C=∠DAB=∠D=90°,AD//BC,再根据BE=EF=FC,CG=2GD,从而可得BF=CG,进而可证△ABF≌△BCG,然后利用全等三角形的性质可得∠AFB=∠CGB,从而可得∠AFB+∠CBG=90°,即可判断①;在Rt△ABF中,利用锐角三角函数的定义求出tan∠AFB=32,然后在Rt△BNF中,利用锐角三角函数的定义可得BNNF =32,即可判断②,由①可得△ABF≌△BCG,从而可得S△ABF=S△BCG,即可判断③,根据题意易证四边形ADGH是矩形,从而可得AD=GH,DG=AH,AD//GH,进而可得GH//BC,然后设DG=AH=a,再证明A字模型相似三角形△AHO∽△ABE,从而利用相似三角形的性质求出OH的长,进而求出GO的长,最后再证明8字模型相似三角形△GOM∽△BEM,利用相似三角形的性质即可判断④.此题主要考查了正方形的性质,解直角三角形,全等三角形的判定与性质,相似三角形的判定与性质,熟练掌握全等三角形的判定与性质,相似三角形的判定与性质,以及正方形的十字架模型是解答该题的关键.15.【答案】5;【解析】解:∵四边形ABCD是平行四边形,∴AD//BC,∴DE:BC=EF:FC=DF:FB=1:2,ΔBFC∽ΔDFE,∴SΔBFC=4⋅SΔDEF=4,SΔDFC=2⋅SΔDEF=2,SΔBDC=SΔABD=6,∴S四边形ABFE=SΔABD−SΔDEF=6−1=5,故答案为5.由于四边形ABCD是平行四边形,那么AD//BC,AD=BC,根据平行线分线段成比例定理的推论可得ΔDEF∽ΔBCF,再根据E是AD中点,易求出相似比,从而可求ΔBCF的面积,再利用ΔBCF与ΔDEF是同高的三角形,则两个三角形面积比等于它们的底之比,从而易求ΔDCF的面积,由此即可解决问题;该题考查了平行四边形的性质、平行线分线段成比例定理的推论、相似三角形的判定和性质.解答该题的关键是知道相似三角形的面积比等于相似比的平方、同高两个三角形面积比等于底之比,先求出ΔBCF的面积.16.【答案】9;【解析】解:由题意得,CD//AB,∴ΔOCD∽ΔOAB,∴CDAB =ODOB,即3AB =66+12,解得AB=9.故答案为:9.根据ΔOCD和ΔOAB相似,利用相似三角形对应边成比例列式求解即可.该题考查了相似三角形的应用,是基础题,熟记相似三角形对应边成比例是解答该题的关键.17.【答案】(8,0);【解析】该题考查的是相似三角形的判定和性质以及坐标与图形的性质,掌握相似三角形的判定定理和性质定理是解答该题的关键.根据相似三角形的性质求出P3D的坐标,再根据相似三角形的性质计算求出OP4的长,得到答案.解:∵点P1,P2的坐标分别为(0,−1),(−2,0),∴OP1=1,OP2=2.∵RtΔP1OP2∽RtΔP2OP3,∴OP1OP2=OP2OP3,即12=2OP3,解得OP3=4.∵RtΔP2OP3∽RtΔP3OP4,∴OP2OP3=OP3OP4,即24=4OP4,解得OP4=8,则点P4的坐标为(8,0).故答案为(8,0).18.【答案】解:当两个矩形ABCD和EFGH相似时,ADEH =CDGH,即:mm−2b =nn−2a,整理得:ab =nm,故当ab =nm时两个矩形相似.;【解析】利用相似多边形的对应边的比相等列出比例式即可求得尺寸满足的条件.此题主要考查了相似多边形的性质,解答该题的关键是根据题意列出比例式,难度不大.19.【答案】证明:(1)∵∠ACB=90°,CN⊥AM,∴∠ACB=∠MNC,∵∠NMC=∠CMA,∴△MCN∽△MAC;(2)由(1)得:△MCN∽△MAC,∴MCMA =MNMC,∴MC2=MN•MA,∵AM是BC边的中线,∴MB=MC,∴MB2=MN•MA,∵∠BMN=∠AMB,∴△MNB∽△MBA,∴∠NBM=∠BAM.;【解析】(1)根据两个角相等的两个三角形相似可直接证明;(2)由(1)得:△MCN∽△MAC,则MCMA =MNMC,再根据BM=CM,以及∠BMN=∠AMB,可证△MNB∽△MBA,从而解决问题.此题主要考查了相似三角形的判定与性质,利用两边成比例且夹角相等证明△MNB∽△MBA是解答该题的关键.20.【答案】解:∵DE∥BC,∴△ADE∽△ABC.∴ADAB =AEAC①.∵EF∥CD,∴△AEF∽△ACD.∴AFAD =AEAC②.由①与②,得AFAD =AD AB,∴AD2=AF•AB=4×6=24.∴AD=2√6.;【解析】由DE//BC,EF//CD,得△AEF∽△ACD,可得△ADE∽△ABC分别得AFAD =AEAC,ADAB=AE AC ,进而可证得AFAD=ADAB,便可求得答案.此题主要考查了相似三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.21.【答案】解:(1)∵ABAC =AEAD=BECD.∴△ABE∽△ACD,∴∠DAE=∠BAE=22°,∴∠BAD=44°;(2)△ADE∽△ACB,理由如下:∵ABAC =AEAD,∴ABAE =ACAD,又∵∠DAC=∠BAE,∴△ADE∽△ACB.;【解析】(1)通过证明△ABE∽△ACD,可得∠DAE=∠BAE=22°,即可求解;(2)由两组对应边的比相等且夹角对应相等的两个三角形相似,可证明△ADE∽△ACB.此题主要考查了相似三角形的判定,掌握相似三角形的判定方法是解答该题的关键.22.【答案】(1)证明:如图,连接OC,∵OB=OC,∴∠OBC=∠OCB,∵AB是直径,∴∠ACB=90°,∵E为BD的中点,∴BE=CE=DE,∴∠ECB=∠EBC,∵BD与⊙O相切于点B,∴∠ABD=90°,∴∠OBC+∠EBC=90°,∴∠OCB+∠ECB=90°,∴∠OCE=90°∴OC ⊥CE ,又∵OC 为半径,∴CE 是⊙O 的切线;(2)解:连接OE ,∵∠D=∠D ,∠BCD=∠ABD ,∴△BCD ∽△ABD ,∴BD AD =CD BD ,∴BD 2=AD•CD ,∴(3√5)2=5AD ,∴AD=9,∵E 为BD 的中点,AO=BO ,∴OE=12AD=92.; 【解析】(1)由等腰三角形的性质可得∠OBC =∠OCB ,由圆周角定理可得∠ACB =90°,由直角三角形的性质可得BE =CE =DE ,可得∠ECB =∠EBC ,由切线的性质可得∠ABD =90°,可证OC ⊥CE ,可得结论;(2)通过证明△BCD ∽△ABD ,可得BD AD =CD BD ,可求AD 的长,由三角形中位线定理可求解.此题主要考查了相似三角形的判定和性质,圆的有关知识,等腰三角形的性质,直角三角形的性质,利用相似三角形的性质求出AD 的长是本题的关键.23.【答案】解:(Ⅰ)由题意得BM=AM=m ,∵A (-√3,0),B (0,1),∴OB=1,OA=√3,∴OM=√3-m ,由勾股定理得:BM 2=OB 2+OM 2,∴m 2=12+(√3-m )2,即m2=1+3-2√3m+m2,m=2√33,∴OM=√3−2√33=√33,∴M(-√33,0);(Ⅱ)S=5√38m2+3m−√3,2√33<m≤√3,由(1)知,使A'落在第一象限,则m>2√33,∵OA=√3,∴2√33<m≤√3,∵△MNA'是由△AMN翻折得到,∴S=S△AOB-S△AMN-S△MOC∵OA=√3,OB=1,∴S△AOB=12×√3×1=√32,AB=√OA2+OB2=2,∵AM=m,∴M(-√3+m,0),∵MN⊥AB,∴Sin∠BAO=BOAB =MNAM,∴12=MNm,∴MN=m2,∴AN=√MA2−MN2=√32m,∴S△AMN=12×√32m×m2=√38m2,∵sin∠BAO=12,∴∠BAO=30°,∴∠AMN=∠A′MN=60°,∴∠CMO=180°-∠AMN-∠A′MN=60°,tan60°=√3=COMO,∵MO=√3-m,∴CO=√3(√3−m),∴S△CMO=12×CO×OM=12×√3(√3−m)(√3−m)=√32(√3−m)2∴S=√32−√38m2−√32(√3−m)2=√3 2−√38m2−√32(3−2√3m+m2)=√32−√38m 2−3√32+3m −√32m 2 =-5√38m 2+3m-√3,(Ⅲ)√38<S ≤√35, 由(2)得:S=-5√38m 2+3m-√3, 当m=-2×(−5√38)=4√35时S 取最大值,4√35<m <√3单调递减, ∵4√35>1, ∴顶点为抛物线的最高点,顶点的纵坐标为S 的最大值,S max =4ac−b 24a =4×(−5√38)×√3−94×(−5√38)=√35,S (m=1)=-5√38+3−√3=3−13√38,S (m=√3)=-5√38×(√3)2+3×√3−√3=√38, ∵S (m=√3)<S (m=1),∴√38<S ≤√35.; 【解析】(Ⅰ)由坐标得OA 、OB 的长,再根据勾股定理得m 的值,从而求出OM 的长,得到M 坐标; (Ⅰ)因为使A ′落在第一象限,OA =√3,所以可以确定m 的取值范围;由图可得S =S △AOB −S △AMN −S △MOC ,所以分别求出三个三角形面积(用含m 的式子表示),其中用到三角函数、勾股定理等;(Ⅰ)根据(2)得到的关于S 的二次函数解析式可知,抛物线开口向下,顶点在1⩽m <√3部分,所以顶点的纵坐标是S 的最大值;再分别计算m =1和m =√3时函数值,比较大小,从而求解.本题属于几何代数综合题,考查勾股定理、三角函数、待定系数法求二次函数解析式及最值,解题关键是结合图形,分析题意综合运用以上知识点,计算比较繁琐.24.【答案】3 3 仍然;【解析】解:(1)∵AB =AC ,∠ABC =60°,∴△ABC 是等边三角形,BE ⊥AC ,∴BE 垂直平分AC ,∠CBE =30°,∴AF =CF =3,∵BH ⊥AB ,∴∠HBC =30°,∵AD ⊥BC ,∴∠H =∠BFH =60°,BF =CF ,∴BF=BH=CF=3,故答案为:3,3;(2)AF=BH,理由如下:连接CF,∵∠ABD=45°,AD⊥BC,∴AD=BD,∵BE⊥AC,∴∠AEF=∠BDF=90°,∵∠AFE=∠BFD,∴∠EAF=∠DBF,∴△ADC≌△BDF(ASA),∴DF=DC,∴∠DCF=45°,∵BH⊥AB,∴∠HBG=45°,∴∠HBG=∠FCD,∵BG=CG,∠BGH=∠CGF,∴△CGF≌△BGH(ASA),∴BH=CF,∵BA=BC,BE⊥AC,∴BE是AC的垂直平分线,∴AF=CF,∴AF=BH;(3)仍然成立,理由如下:连接CF,由(2)同理可得,△ADC∽△BDF,∴ADBD =DCDF,∴∠ABD=∠CFD,∵BH⊥AB,∴∠BHG+∠ABD=90°,∴∠HBG=∠FCG,由(2)同理可得,△CGF≌△BGH(ASA),∴BH=CF,∵BA=BC,BE⊥AC,∴BE是AC的垂直平分线,∴AF=CF,∴AF=BH,故答案为:仍然.(1)根据等边三角形的性质可得AF=CF=BF=3,再说明BF=BH,可得答案;(2)连接CF,首先利用ASA证明△ADC≌△BDF,得DF=DC,则∠DCF=45°,再证明△CGF≌△BGH,得BH=CF,从而证明结论;(3)连接CF,首先证明△ADC∽△BDF,得ADBD =DCDF,则有∠ABD=∠CFD,由(2)同理可得,△CGF≌△BGH(ASA),从而解决问题.本题是三角形综合题,主要考查了等腰三角形的性质,等边三角形的性质,全等三角形的判定与性质,相似三角形的判定与性质,证明△CGF≌△BGH是解答该题的关键.。
最新人教版九年级数学下册第二十七章-相似单元测试试题(含解析)

人教版九年级数学下册第二十七章-相似单元测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如果两个相似多边形的周长比是2:3,那么它们的面积比为()A.2:3 B.4:9 C D.16:812、如图,已知直线a∥b∥c,分别交直线m、n于点A、C、E、B、D、F,AC=4,CE=6,BD=3,则DF 的长是()A.92B.4 C.6 D.23、一种数学课本的宽与长之比为黄金比,已知它的长是26cm,那么它的宽是()cmA.B.26 C.D.134、某校开展“展青春风采,树强国信念”科普阅读活动.小明看到黄金分割比是一种数学上的比例关系,它具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值,应用时一般取0.618.特别奇妙的是在正五边形中,如图所示,连接顶点AB ,AC ,ACB ∠的平分线交边AB 于点D ,则点D 就是线段AB 的一个黄金分割点,即0.618AD AB≈,已知10cm AC =,那么该正五边形的周长为( )A .19.1cmB .25cmC .30.9cmD .40cm5、如图,已知AB 、CD 、EF 都与BD 垂直,垂足分别是B 、D 、F ,且AB =4,CD =12,那么EF 的长是( )A .2B .2.5C .2.8D .36、在ABC 中,D ,E 分别是边AB ,AC 上的两个点,并且DE ∥BC ,AD :BD =3:2,则ADE 与四边形BCED 的面积之比为( )A .3:5B .4:25C .9:16D .9:257、在△ABC 中,AB =AC ,∠A =36°,BD 平分∠ABC ,交AC 于点D .BC =8,则AC =( )A . 4B . 4C .16D .128、如图, 点 E 是线段 BC 的中点, B C AED ∠∠∠==, 下列结论中, 说法错误的是( )A .ABE △ 与 ECD 相似B .ABE △ 与 AED 相似C .AB AE AE AD = D .BAE ADE ∠=∠9、如图,线段AB 两个端点的坐标分别为(6,6)A ,(8,2)B ,以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的12后得到线段CD ,则端点C 的坐标为( )A .(3,3)B .(4,3)C .(3,1)D .(4,1) 10、如图,H 是平行四边形ABCD 的边AD 上一点,且12AH DH =,BH 与AC 相交于点K ,那么AK :KC 等于()A.1:1 B.1:2 C.1:3 D.1:4第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知O是坐标原点,点A、B分别在x轴,y轴上,OA=1,OB=2,若点D在x轴下方,且使得△AOB和△OAD相似(不包括全等),则点D的坐标为__________.2、如图,在△ABC中,∠ABC=45°,过点C作CD⊥AB于点D,过点B作BM⊥AC于点M,连接MD,过点D作DN⊥MD,交BM于点N.CD与BM相交于点E,若点E是CD的中点;下列结论:①∠AMD=45°;②NE﹣EM=MC;③EM:MC:NE=1:2:3;④S△ACD=2S△DNE.其中正确的结论有 _____.(填写序号即可)3、如图,在ABC中,D为AB边上的一点,要使BAC EAD△∽△成立,还需要添加一个条件,你添加的条件是__________4、如图,ABC ∆中,AB AC =,点D 为AB 上一点,4BD AD =,连接CD ,45BCD ︒∠=,132AC =,则BC 的长为________.5、若3x =7y ,则x y=_____.三、解答题(5小题,每小题10分,共计50分)1、小豪为了测量某塔高度,把镜子放在离塔(AB )50m 的点E 处,然后沿着直线BE 后退到点D ,这时恰好在镜子里看到塔尖A ,再测得DE =2.4m ,小豪目高CD =1.68m ,求塔的高度AB .2、阅读:两千多年前,古希腊数学家欧多克索斯发现了黄金分割,即:点P 是线段AB 上一点(AP >BP ),若满足BP AP AP AB=,则称点P 是AB 的黄金分割点.黄金分割在我们的数学学习中也处处可见,比如我们把有一个内角为36°的等腰三角形称为“黄金三角形”.(1)理解:如图(1),请将内角分别36°,36°,108°的等腰三角形分割成三个“黄金三角形”,并标出每个“黄金三角形”内角的度数;(2)运用:如图(2),已知等腰三角形ABC 为“黄金三角形”,AB=AC ,∠A=36°,BD 为∠ABC 的平分线.求证:点D 是AC 的黄金分割点.3、如图,在等腰直角ABC 中,90ACB ∠=︒,AC BC =,过点C 作射线CP AB ∥,D 为射线CP 上一点,E 在边BC 上(不与,B C 重合)且45DAE ∠=︒,AC 与DE 交于点O .(1)求证:ADC AEB △△;(2)求证:ADE ACB ;(3)如果CD CE =,求证:2CD CO CA =.4、如图,在ABCD 中,BE AB ⊥于点E ,交AC 于点F ,且:1:2AE EB =.(1)求证:AEF CDF∽△△;(2)求AEF与AFD的面积比.5、如图,在Rt△ABC中,∠ACB=90°,BC mAC n,CD⊥AB于点D,点E是直线AC上一动点,连接DE,过点D作FD⊥ED,交直线BC于点F.(1)探究发现:如图1,若m=n,点E在线段AC上,则DEDF=;(2)数学思考:①如图2,若点E在线段AC上,则DEDF=(用含m,n的代数式表示);②当点E在直线AC上运动时,①中的结论是否仍然成立?请仅就图3的情形给出证明;(3)拓展应用:若AC BC=DF=CE的长.---------参考答案-----------一、单选题1、B【解析】【分析】根据相似多边形的周长比求出相似比,再根据相似多边形的面积比等于相似比的平方计算,得到答案.【详解】解:∵两个相似多边形的周长比是2:3,∴这两个相似多边形的相似比是2:3,∴它们的面积比是4:9,故选B.【点睛】本题考查相似多边形的性质,掌握相似多边形的周长比等于相似比,面积比等于相似比的平方是解题的关键.2、A【解析】【分析】由直线////a b c,根据平行线分线段成比例定理,即可得AC BDCE DF=,又由4AC=,6CE=,3BD=,即可求得DF的长即可.【详解】解:////a b c,∴AC BDCE DF=,4AC=,6CE=,3BD=,∴436DF=, 解得:92DF =,故选择A .【点睛】此题考查了平行线分线段成比例定理.题目比较简单,解题的关键是注意数形结合思想的应用.3、D【解析】【分析】根据一种数学课本的宽与长之比为黄金比,即可得到宽:长:1=⎝⎭,由此求解即可. 【详解】解:∵一种数学课本的宽与长之比为黄金比,∴宽:长:1=⎝⎭, ∵长是26cm ,∴宽2613==,故选D .【点睛】本题主要考查了黄金比,解题的关键在于能够熟练掌握黄金分割比例.4、C【解析】【分析】根据正五边形各边相等,各内角相等,得到ADC AEC ≅△△ ,得到AE AD = ,再根据0.618AD AB≈求出AD 即可求解 .【详解】解:∵正五边形每个内角=540=1085︒︒ ,每条边相等,AB AC = , ∴108AEC ECB ∠=∠=︒ ,∵AE EC = , ∴180108362EAC ECA ︒-︒∠=∠==︒ , ∴1083672ACB ECB ECA ∠=∠-∠=︒-︒=︒ ,∵DC 为∠ACB 的平分线,∴1362ACD ACB ∠=∠=︒ , ∵AB AC = ,∴72ABC ACB ∠=∠=︒ , ∴36BAC ∠=︒ , ∵AC AC = ,∴()ADC AEC ASA ≅ , ∴AE AD = , ∵0.618ADAB≈,10cm AB AC ==, ∴100.618 6.18cm AE AD ==⨯= , ∴该五边形周长=6.185=30.9cm ⨯ , 故选:C . 【点睛】本题考查正多边形的性质,三角形全等的判定与性质,黄金比例,通过全等求出正五边形边长是解题关键. 5、D 【解析】 【分析】根据相似三角形的判定得出△DEF ∽△DAB ,△BFE ∽△BDC ,根据相似得出比例式,求出1EF EFAB DC+=,代入求出即可. 【详解】解:∵AB 、CD 、EF 都与BD 垂直,∴AB ∥EF ∥CD ,∴△DEF ∽△DAB ,△BFE ∽△BDC , ∴EF DF AB BD =,EF BFDC BD =, ∴1EF EFAB DC+=, ∵AB =4,CD =12, ∴EF =3, 故选:D . 【点睛】本题考查了相似三角形的性质和判定,能根据相似三角形的性质得出比例式是解此题的关键. 6、C 【解析】 【分析】根据题意先判断△ADE ∽△ABC ,再根据相似三角形的面积之比等于相似比的平方进行分析计算即可得到结论. 【详解】 解:∵DE ∥BC , ∴△ADE ∽△ABC , ∵AD :BD =3:2, ∴:3:5AD AB =, ∴22:3:59:25ADE ABCSS==,∴ADE 与四边形BCED 的面积之比为9:16.【点睛】本题考查相似三角形的判定和性质,注意掌握相似三角形的面积之比等于相似比的平方.7、A【解析】【分析】根据两角对应相等,判定两个三角形相似.再用相似三角形对应边的比相等进行计算求出AC的长.【详解】解:∵AB=AC,∠A=36°,∴∠ABC=∠C=180362︒-︒=72°,∵BD平分∠ABC,∴∠ABD=∠DBC=36°,∴∠BDC=∠ABD+∠A=72°,∴∠BDC=∠C=72°,∴AD=BD=BC=8.∵∠A=∠DBC=36°,∠C公共角,∴△ABC∽△BDC,∴BC ACCD BC=,即888ACAC=-,整理得:AC2-8AC-64=0,解方程得:AC AC舍去),故选:A.本题考查的是相似三角形的判定与性质,先用两角对应相等判定两个三角形相似,再用相似三角形的性质对应边的比相等进行计算求出AC 的长. 8、D 【解析】 【分析】根据外角的性质可得BAE DEC ∠=∠,结合已知条件即可证明ABE ECD ∽△△,从而判断A ,进而可得AB AEEC ED=,根据E 是中点,代换BE CE =,进而根据两边成比例夹角相等可证ABE △∽AED ,进而判断B ,C ,对于D 选项,利用反证法证明即可. 【详解】解:AEC BAE B AED DEC ∠=∠+∠=∠+∠,AED B ∠=∠BAE DEC ∴∠=∠又B C ∠=∠ABE ECD ∴∽故A 选项正确ABE ECD ∽△△AB AEEC ED∴= E 为BE 的中点∴BE CE =AB AEBE ED∴= 又B AED ∠=∠∴ABE △∽AED故B 、C 选项正确ABE △∽AEDDAE BAE ∴∠=∠若BAE ADE ∠=∠ 则DAE ADE ∠=∠AE DE ∴=根据现有条件无法判断AE DE =,故BAE ADE ∠∠≠ 故D 选项不正确 故选:D . 【点睛】本题考查了相似三角形的性质与判定,掌握相似三角形的性质与判定是解题的关键. 9、A 【解析】 【分析】利用位似图形的性质结合两图形的位似比进而得出C 点坐标. 【详解】解:∵线段AB 的两个端点坐标分别为A (6,6),B (8,2),以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的12后得到线段CD ,∴端点C 的横坐标和纵坐标都变为A 点的一半, ∴端点C 的坐标为:(3,3). 故选:A . 【点睛】此题主要考查了位似图形的性质,利用两图形的位似比得出对应点横纵坐标关系是解题关键.10、C【解析】【分析】根据AH=12DH求出AH:AD即AH:BC的值是1:3,再根据相似三角形对应边成比例求出AK:KC的值.【详解】解:∵AH=12DH,∴AH:AD=13,∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴AH:BC=1 3∴△AHK∽△CBK,∴13 AK AHKC BC==故选:C.【点睛】本题考查了相似三角形的判定和性质,平行四边形的性质,比例式的变形是解题的关键.二、填空题1、(0,-12)或(1,-12)或(15,25-)或(45,25-).【解析】【分析】点D 在y 轴上,根据△AOB ∽△DOA ,可得BO OA AO OD=,即211OD =;当点D 在过点A 平行y 轴的直线上,根据△AOB ∽△D 1AO ,1BO OA OA D A =,即1211D A =;当点D 2在AD 上,作D 2E ⊥x 轴于E ,OD 2⊥AD 于D 2,在Rt △AOB 中,ABOD 2A ∽△AOB ,2BO ABAD OA =,即22AD △D 2EA ∽△DOA ,22AD D E AE AD AO OD ==2112D E AE ==,求出AE =45,D 2E =25,当点D 3在0D 1上,作D 3F ⊥x 轴于F ,AD 3⊥OD 1于D 3,根据△OD 3A ∽△BOA ,3BO ABOD AO =,即32OD,3OD =△D 3FO ∽△D 1AO ,3311OD D F OF OD OA AD ==3112D F OF ==,求出OE =45,D 3F =25即可. 【详解】解:点D 在y 轴上,△AOB ∽△DOA , ∴BO OA AO OD=,即211OD =,解得OD =12, 点D (0,-12);当点D 在过点A 平行y 轴的直线上,△AOB ∽△D 1AO ,∴1BO OA OA D A =,即1211D A =, 解得D 1A =12, 点D 1(1,-12);当点D 2在AD 上,作D 2E ⊥x 轴于E ,OD 2⊥AD 于D 2,在Rt △AOB 中,AB= ∵△OD 2A ∽△AOB ,∴2BO AB AD OA =,即22AD =∴2AD =在Rt △OAD 中,AD= ∵D 2E ⊥x 轴于E ,,OD ⊥x 轴, ∴D 2E∥OD ,∴∠AD 2E =∠ADO ,∠D 2EA =∠DOA =90°, ∴△D 2EA ∽△DOA ,∴22AD D EAE AD AO OD ==2112D E AE ==, ∴AE =45,D 2E =25,∴OE =OA -AE =1-45=15,∴D 2(15,25-)当点D 3在OD 1上,作D 3F ⊥x 轴于F ,AD 3⊥OD 1于D 3, ∵△OD 3A ∽△BOA ,∴3BO AB OD AO =,即32OD ,∴3OD =在Rt △OAD 1中,0D 1=, ∵D 3F ⊥x 轴于F ,OD ⊥x 轴, ∴D 3F∥OD ,∴∠OD 3F =∠QD 1A ,∠D 3FO =∠D 1AO =90°, ∴△D 3FO ∽△D 1AO ,∴3311OD D F OF OD OA AD ==3112D FOF ==, ∴OE =45,D 3F =25,∴D 3(45,25-);△AOB 和△OAD 相似(不包括全等),则点D 的坐标为(0,-12)或(1,-12)或(15,25-)或(45,25-). 故答案为(0,-12)或(1,-12)或(15,25-)或(45,25-).【点睛】本题考查三角形相似的判定与性质,勾股定理,掌握三角形相似判定与性质是解题关键.2、①②③【解析】【分析】①利用ASA证明△BDN≌△CDM,再证明△DMN是等腰直角三角形,即可判断结论①正确;②过点D作DF⊥MN于点F,则∠DFE=90°=∠CME,可利用AAS证明△DEF≌△CEM,即可判断结论②正确;③先证明△BDE∽△CME,可得出CMEM=BDDE=2,进而可得CM=2EM,NE=3EM,即可判断结论③正确;④先证明△BED≌△CAD(ASA),可得S△BED=S△CAD,再证明BN<NE,可得S△BDN<S△DEN,进而得出S△BED<2S△DNE,即可判断结论④不正确.【详解】解:①∵CD⊥AB,∴∠BDC=∠ADC=90°,∵∠ABC=45°,∴BD=CD,∵BM⊥AC,∴∠AMB=∠ADC=90°,∴∠A+∠DBN=90°,∠A+∠DCM=90°,∴∠DBN=∠DCM,∵DN⊥MD,∴∠CDM+∠CDN=90°,∵∠CDN+∠BDN=90°,∴∠CDM=∠BDN,∴△BDN≌△CDM(ASA),∴DN =DM ,∵∠MDN =90°,∴△DMN 是等腰直角三角形,∴∠DMN =45°,∴∠AMD =90°-45°=45°,故①正确;②如图1,由(1)知,DN =DM ,过点D 作DF ⊥MN 于点F ,则∠DFE =90°=∠CME ,∵DN ⊥MD ,∴DF =FN ,∵点E 是CD 的中点,∴DE =CE ,在△DEF 和△CEM 中,DEF CEM DFE CME DE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△DEF ≌△CEM (AAS ),∴ME =EF ,CM =DF ,∴FN =CM ,∵NE-EF=FN,∴NE-EM=MC,故②正确;③由①知,∠DBN=∠DCM,又∵∠BED=∠CEM,∴△BDE∽△CME,∴CMEM=BDDE=2,∴CM=2EM,NE=3EM,∴EM:MC:NE=1:2:3,故③正确;④如图2,∵CD⊥AB,∴∠BDE=∠CDA=90°,由①知:∠DBN=∠DCM,BD=CD,∴△BED≌△CAD(ASA),∴S△BED=S△CAD,由①知,△BDN≌△CDM,∴BN=CM,∴BN=FN,∴BN<NE,∴S△BDN<S△DEN,∴S△BED<2S△DNE.∴S△ACD<2S△DNE.故④不正确,故答案为:①②③.【点睛】本题考查全等三角形的判定和性质、等腰直角三角形的性质、相似三角形的判定和性质、三角形面积等知识,解题的关键是熟练掌握全等三角形的判定和性质.3、AED ABC∠=∠∠=∠或ADE ACB【解析】【分析】根据图形可以看出两个三角形有一个公共角A∠,相似证明中,有两个角对应相等即可证明两三角形相似,即添加对应角相等即可.【详解】解:由图可知,在BAC EAD∠=∠△与△中,BAC EAD∴添加的条件为:AED ABC∠=∠∠=∠或ADE ACB故答案为:AED ABC∠=∠∠=∠或ADE ACB【点睛】本题主要考查三角形相似的判定,掌握判定相似的条件是解题的关键.4、【分析】过A点作AH⊥BC,过D点作DE⊥BC,得到BH=CH,△ABH∽△DBE,设BC=10a,求出BE=4a、DE=6a,根据Rt△BDE中,BD2=DE2+BE2,求出a,故可求解.【详解】过A点作AH⊥BC,过D点作DE⊥BC∵AB AC=∴BH=CH,设BC=10a∴BH=CH=5a∵132AC==AB,4BD AD=∴BD=426 55 AB=∵AH⊥BC,DE⊥BC ∴DE∥AH∴△ABH∽△DBE∴AB HBDB EB=∵4BD AD=∴5=4 AB HB DB EB=∴BE=4a∴CE=10a-4a=6a∵45BCD︒∠=,DE⊥BC∴∠CDE=180°-45°-90°=45°∴△ADE是等腰直角三角形∴DE=CE=6a在Rt△BDE中,BD2=DE2+BE2即(265)2=(6a)2+(4a)2解得a∴BC=10a=故答案为:【点睛】此题主要考查三角形内线段求解,解题的关键是熟知相似三角形的判定与性质、等腰三角形的性质及勾股定理的运用.5、7 3【解析】【分析】依据比例的基本性质,即两内项之积等于两外项之积,即可进行解答.【详解】解:若3x=7y,则73 xy故答案为:7 3【点睛】此题主要考查比例的基本性质,掌握比例的性质是解题的关键.三、解答题1、35m【解析】【分析】根据题意得:∠ABE=∠CDE=90°,BB=50m BE=50m,由光的反射定律得:∠AEB=∠CED,从而得到△ABE∽△CDE,再由相似三角形的性质,即可求解.【详解】解:根据题意得:∠ABE=∠CDE=90°,BE=50m,由光的反射定律得:∠AEB=∠CED,∴△ABE∽△CDE,∴BBBB=BBBB,∴BB1.68=502.4,解得:BB=35m,即塔的高度为35m.【点睛】本题主要考查了相似三角形的实际应用,明确题意,准确得到相似三角形是解题的关键.2、(1)见解析;(2)见解析【解析】【分析】(1)根据“黄金三角形”的定义进行分割即可;(2)证明△CBD∽△CAB,结合图形、根据黄金分割的定义判断即可.【详解】解:(1)如图,(2)∴∠ABC=∠C=72°又∵BD平分∠ABC∴∠ABD=∠CBD=12∠ABC=36°∴∠BDC=180°-∠C-∠CBD=72°∴AD=BD,BC=BD即AD=BC=BD·又∵∠C=∠C,∠CBD=∠A∴△CBD∽△CAB∴BBBB=BBBB∴BBBB=BBBB·即D点是AC的黄金分割点【点睛】本题考查的是黄金分割的概念和性质,掌握把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB 和BC的比例中项,叫做把线段AB黄金分割是解题的关键.3、(1)见解析;(2)见解析;(3)见解析【解析】【分析】(1)根据题意先由等腰直角△ABC得到∠BAC=∠B=45°,从而结合∠DAE=45°得到∠DAC=∠EAB,再由平行线的性质得到∠ACP=∠BAC=∠B=45°,从而得到△ADC∽△AEB;(2)根据题意由相似三角形的性质得到AD:AE=AC:AB,转化为AD:AC=AE:AB,结合∠DAE=∠CAB=45°得证结果;(3)根据题意结合∠ACD=45°和∠ACB=90°,由CD=CE得到∠CDE=∠CED=22.5°,从而得到∠DAC=22.5°,然后得到△OCD∽△DCA,最后即可求证.【详解】解:(1)证明:∵ABC是等腰直角三角形,∴∠BBB=∠B=45°,∵∠BBB=45°,BB∥BB,∴∠BBB=∠BBB,∠BBB=∠BBB=∠B=45°,∴ΔBBB∼ΔBBB;(2)证明:∵ΔBBB∼ΔBBB∴BBBB=BBBB,即BBBB=BBBB,∵∠BBB=∠BBB=45°,∴ΔBBB∼ΔBBB;(3)∵∠BBB=45°,∠BBB=90°,∴∠BBB+∠BBB=180°−90°−45°=45°,∵CD CE=,∴∠BBB=∠BBB=22.5°,∵ΔBBB∼ΔBBB,∴∠BBB=∠BBB=90°,∴∠BBB=180°−∠BBB−∠BBB−∠BBB=180°−90°−22.5°−45°=22.5°∴∠BBB=∠BBB,又∵∠BBB=∠BBB,∴ΔBBB∼ΔBBB,∴BBBB=BBBB,∴2CD CO CA=【点睛】本题考查相似三角形的判定与性质以及等腰直角三角形的性质,解题的关键是通过线段的比例关系得到三角形相似.4、(1)见解析;(2)1:3【解析】【分析】(1)由ABCD得出BB∥BB,由平行线的性质得∠BBB=∠BBB,∠BBB=∠BBB,即可证明△BBB∼△BBB;(2)由:1:2AE EB=得出BB:BB=1:3,由相似三角形的性质得BBBB =BBBB=13由BE AB⊥得∠BBB=90°,由三角形的面积公式得B△BBB=12×BB×BB,B△BBB=12×BB×BB,即可求出B△BBB:B△BBB.【详解】(1)∵四边形ABCD 是平行四边形,∴BB ∥BB ,∴∠BBB =∠BBB ,∠BBB =∠BBB ,∴△BBB ∼△BBB ;(2)∵BB :BB =1:2,∴BB :BB =BB :BB =1:3,∵△BBB ∼△BBB ,∴BB BB =BB BB =13,∵BB ⊥BB ,∴∠BBB =90°,∵B △BBB =12×BB ×BB ,B △BBB =12×BB ×BB ,∴B △BBB :B △BBB =BB :BB =1:3.【点睛】本题考查相似三角形的判定与性质、三角形的面积公式,掌握相似三角形的判定定理以及性质是解题的关键.5、(1)1;n m ;(2)①n m ;②n m ;(3)CE =CE =【解析】【分析】(1)先用等量代换判断出ADE CDF ∠=∠,A DCB ∠=∠,得到ADE ∽CDF ,再判断出ADC ∽CDB △即可;(2)方法和()1一样,先用等量代换判断出ADE CDF ∠=∠,A DCB ∠=∠,得到ADE ∽CDF ,再判断出ADC ∽CDB △即可;(3)由()2的结论得出ADE ∽CDF ,判断出2CF AE =,求出DE ,再利用勾股定理,计算出即可.【详解】解:()1当m n =时,即:BC AC =,90ACB ∠=,90A ABC ∴∠+∠=,CD AB ⊥,90DCB ABC ∴∠+∠=,A DCB ∴∠=∠,90FDE ADC ∠=∠=,FDE CDE ADC CDE ∴∠-∠=∠-∠,即ADE CDF ∠=∠,ADE ∴∽CDF ,DE AD DF DC∴=, A DCB ∠=∠,90ADC BDC ∠=∠=,ADC ∴∽CDB △,1AD AC DC BC ∴==,1DE DF∴= ()290ACB ∠=①,90A ABC ∴∠+∠=,CD AB ⊥,90DCB ABC ∴∠+∠=,A DCB ∴∠=∠,90FDE ADC ∠=∠=,FDE CDE ADC CDE ∴∠-∠=∠-∠,即ADE CDF ∠=∠,ADE ∴∽CDF ,DE AD DF DC∴=, A DCB ∠=∠,90ADC BDC ∠=∠=,ADC ∴∽CDB △,AD AC n DC BC m ∴==,DE n DF m∴= ②成立.如图3,90ACB ∠=,90A ABC ∴∠+∠=,又CD AB ⊥,90DCB ABC ∴∠+∠=,A DCB ∴∠=∠,90FDE ADC ∠=∠=,FDE CDE ADC CDE ∴∠+∠=∠+∠,即ADE CDF ∠=∠,ADE ∴∽CDF ,DE AD DF DC∴=, A DCB ∠=∠,90ADC BDC ∠=∠=,ADC ∴∽CDB △,AD AC n DC BC m∴==, DE n DF m∴=. ()3由()2有,ADE ∽CDF , 12DE AC DF BC ==, 12AD AE DE CD CF DF ∴===, 2CF AE ∴=,如图4图5图6,连接EF .在Rt DEF △中,DE =DF =EF ∴= ①如图4,当E 在线段AC 上时,在Rt CEF 中,())222CF AE AC CE CE ==-=,EF =根据勾股定理得,222CE CF EF +=,)22[2]40CE CE ∴+=CE ∴=CE =舍) ②如图5,当E 在AC 延长线上时,在Rt CEF 中,())222CF AE AC CE CE ==+=,EF = 根据勾股定理得,222CE CF EF +=,)22[2]40CE CE ∴+=,CE ∴CE =-舍),③如图6,当E 在CA 延长线上时,在Rt CEF 中,()(222CF AE CE AC CE ==-=,EF =根据勾股定理得,222CE CF EF +=,(22[2]40CE CE ∴+=,CE ∴=CE =,综上:CE =CE =【点睛】本题是三角形综合题,主要考查了三角形相似的性质和判定,勾股定理,判断相似是解决本题的关键,求CE 是本题的难点.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3) 的面积是________平方单位.
21.探究:如图①,在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥m于点D,CE⊥m于点E,求证:△ABD≌△CAE.
应用:如图②,在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC,求证:DE=BD+CE.
24.如图,在Rt△ABC中,∠C=90°,AC=20cm,BC=15cm,现有动点P从点A出发,沿AC向点C方向运动,动点Q从点C出发,沿CB向点B方向运动,如果点P的速度是4cm/秒,点Q的速度是2cm/秒,它们同时出发,当有一点到达所在线段的端点时,就停止运动.设运动时间为t秒.求:
(1)当t=3秒时,这时,P,Q两点之间的距离是多少?
16.在△ABC中,AB=9,AC=6.点M在边AB上,且AM=3,点N在AC边上.当AN=_____时,△AMN与原三角形相似.
三、解答题
17.如图,在△ABC中,D是AB上一点,且 ,E、F是AC上的点,且DE∥BC,DF∥BE,AF=9.求EC的长.
18.已知如图,E为平行四边形ABCD的边AB的延长线上的一点,DE分别交AC、BC于G、F,试说明:DG是GE、GF的比例中项.
A. B. C. D.
8.如图,在正方形网格上有两个相似三角形△ABC和△DEF,则∠BAC的度数为( )
A.105°B.115°C.125°D.135°
9.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条边DF=50cm,EF=30cm,测得边DF离地面的高度AC=1.5m,CD=20m,则树高AB为( )
人教版九年级数学下册《第27章相似》单元测试卷
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.若 = ,则 的值为( )
A. B. C. D)
A.1:3B.3:1C.3:5D.5:3
22.已知:如图,在平行四边形ABCD中,AC为对角线,E是边AD上一点,BE⊥AC交AC于点F,BE、CD的延长线交于点G,且∠ABE=∠CAD.
(1)求证:四边形ABCD是矩形;
(2)如果AE=EG,求证:AC2=BC•BG.
23.求证:相似三角形面积的比等于相似比的平方.(请根据题意画出图形,写出已知,求证并证明)
19.如图,△ABC与△ADE中,∠C=∠E,∠1=∠2;
(1)证明:△ABC∽△ADE.
(2)请你再添加一个条件,使△ABC≌△ADE.你补充的条件为:.
20.已知在平面直角坐标系内, 的三个顶点的分别为 , , (正方形网格中每个小正方形的边长是一个单位长度).
(1)在网格内画出 向下平移2个单位长度得到的 ,点 的坐标是________;
3.如图,在 中,点P在边AB上,则在下列四个条件中:: ; ; ; ,能满足 与 相似的条件是()
A. B. C. D.
4.如图,在正方形ABCD中,E是CD的中点,点F在BC上,且FC= BC.图中相似三角形共有()
A.1对B.2对C.3对D.4对
5.如图,△ABC中,DE∥BC, ,AE=2cm,则AC的长是( )
12.一个4米高的电线杆的影长是6米,它临近的一个建筑物的影长是36米.则这个建筑的高度是_____m.
13.两个相似三角形的面积比为1:9,则它们的周长比为_____.
14.如图,四边形ABCD与四边形EFGH位似,其位似中心为点O,且 ,则 ______.
15.上午某一时刻,身高1.7米的小刚在地面上的影长为3.4米,则影长26米的旗轩高度为___________米
A.12mB.13.5mC.15mD.16.5m
10.如图,在Rt△ABC,∠BAC=90°,AD⊥BC,AB=10,BD=6,则BC的值为( )
A. B. C. D.
二、填空题
11.如图,用长3m、4m、5m的三根木棒正好搭成一个Rt△ABC,AC=3,∠C=90°,用一束垂直于AB的平行光线照上去,AC、BC在AB的影长分别为AD、DB,则AD=_____,BD=_____.
(2)若△CPQ的面积为S,求S关于t的函数关系式.
(3)当t为多少秒时,以点C,P,Q为顶点的三角形与△ABC相似?
A.2cmB.4cmC.6cmD.8cm
6.如图,DE∥FG∥BC,若DB=4FB,则EG与GC的关系是( )
A.EG=4GCB.EG=3GCC.EG= GCD.EG=2GC
7.如图,取一张长为 、宽为 的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边 应满足的条件是()