基于MATLAB的异步电动机仿真
基于Matlab的三相异步电动机起动、调速和制动特性仿真

信息工程学院基于Matlab的三相异步电动机起动、调速和制动特性仿真摘要:异步电动机目前在日常生活中已得到广泛应用,其主要特点为结构简单、运行可靠、效率较高和成本较低。
为使其应用更加广泛且性能更加完善,有必要对其最基本的起动、制动和调速性能进行深入研究。
而随着电机研究的不断深入,仿真就成为对其进行研究的一个重要手段,其中Matlab软件以其方便、高效、直观的特点,广泛应用于异步电动机的仿真研究,方便快捷且节约资源,为解决一些复杂问题带来了极大的方便。
本文通过Matlab软件进行仿真,研究异步电动机起动、调速和制动的各种方法,以找到提高其性能的途径,并通过与理论相对比,验证了本文模型的有效性和正确性。
关键词:Matlab;仿真;异步电动机Simulation for Start-up ,Speed Control and Braking Character of Three-phase Asynchronous Motor Based onMatlabAbstract:Asynchronous motor has been widely used in our daily life at present, the main characteristics of simple structure, reliable operation, high efficiency and low cost. In order to make its application more widely and performance will be improved, it is necessary for the most basic starting, braking and speed regulating performance for further research. And with the research of motor, the simulation has become an important means to study, the Matlab software, with its convenient, efficient and intuitive features, are widely used in the simulation research of asynchronous motor is convenient and save resources, to solve some complex problems has brought great convenience.Based on the Matlab software simulation, the asynchronous motor starting, speed and braking methods, in order to find ways to improve its performance, and compared with the theory, proves the correctness and the effectiveness of the model. Key words:Matlab; simulation; asynchronous motor1 设计目的和意义1.1 概述在科学技术发展迅速的当今社会,电机已经成为生活中必不可少的一部分,为人们的生产生活提供了极大的方便。
基于MatlabSimulink的异步电机矢量控制系统仿真

基于Matlab/Simulink 的异步电机矢量控制系统仿真摘要在异步电机的数学模型分析中以及矢量控制系统的基础之上,利用Matlab/Simulink运用建立模块的思想分别组建了坐标变换模块、PI调节模块、转子磁链个观测模块、SVPWM等模块,然后将这些模块有机的结合,最后构成了异步电动机矢量控制的仿真模块,并且进行了仿真验证。
仿真结果分别显示了电机空载与负载情况下转矩、转速的动态变化曲线,验证了该方法的有效性、实用性,为电机在实际使用中打下了坚实的基础。
本文主要研究异步电机在矢量控制下的仿真。
使用Matlab/Simulink中的电气系统模块(PowerSystem Blocksets)将其重组得到新的模型并对其仿真,最后分析仿真结果得出结论。
关键词: 异步电机矢量控制 MATLAB/SIMULINK 变频调速目录摘要 (I)Abstract......................................................................................... 错误!未定义书签。
1 绪论 (1)1.1 电机及电力拖动技术的发展概况 (1)1.2 异步电动机的控制技术现状................................................. 错误!未定义书签。
1.3 仿真软件的简介及其选择..................................................... 错误!未定义书签。
1.4 论文的主要内容及结构安排................................................. 错误!未定义书签。
2 异步电动机的数学模型 (4)2.1 异步电动机的稳态数学模型 (4)2.2 异步电动机的动态数学模型 (5)2.3 本章小结 (7)3 矢量控制系统基本思路 (8)3.1 矢量控制的基本原理 (8)3.2 坐标变换 (9)3.3SVPWM调制 (21)3.3本章小结 (11)4 异步电机矢量控制系统仿真 (14)4.1矢量控制系统模型 (14)4.2仿真结果与分析 (15)4.5本章小结 (17)5结论与展望 (18)5.1结论 (18)5.2后续研究工作的展望 (19)参考文献 ....................................................................................... 错误!未定义书签。
基于MATLAB的异步电动机起动过程的仿真研究

m m o n a
l U
se
d B lo c k s / Co n s ta n t】
、
直 接 起 动 仿 真模 型 建 立 ( 见 图 1
图2 )
图4 转 子 串 电阻 起 动 起 动仿 真 波形
图 2 异 步 电机 直 接 起 动 仿 真 波 形
2 3
.
仿真 结果 分 析
直接起动方法
,
启动 速度快
w
e r
S y s te
a c
m
/ E le c tr ic
A
M
s
a
l So
u rc e
AC V / M
a c
o
lt a g e S o
e
,
u r c e
]
,
[异 步 电机 M
R
h in
e
y
n c
h
e
r o n o u s
h in
t】 ,
】 [异 步 电机 测 试 信 号 分 配 器
o u
,
a c
h in
;
;
;
形 象化 和 简 单 化
时 间仅 需0
1
.
1S 左 右。ຫໍສະໝຸດ 图 1 所 示 模 型 所加 负载很 小
in
,
。
,
电机稳 定 起动
,
引言
《电 机 控 制 与 运 行 》 课 程 理 论 较 为 抽 象
m 运 行后 转 速 接近 同步 转速 1 5 0 0 r /
从 图2 第 二 坐 标 可 以看
,
出
,
种方式
,
,
,
但 这 种 方 式缺 点是 起动 电流
基于MatlabSimulink的异步电机矢量控制系统仿真

基于MatlabSimulink的异步电机矢量控制系统仿真一、本文概述随着电力电子技术和控制理论的不断发展,异步电机矢量控制系统已成为现代电机控制领域的重要分支。
该系统通过精确控制异步电机的磁通和转矩,实现了对电机的高效、稳定和动态性能的优化。
Matlab/Simulink作为一种强大的仿真工具,为异步电机矢量控制系统的研究和设计提供了便捷的平台。
本文旨在探讨基于Matlab/Simulink的异步电机矢量控制系统仿真方法。
文章将简要介绍异步电机矢量控制的基本原理和关键技术,包括空间矢量脉宽调制(SVPWM)技术、转子磁链观测技术以及矢量控制策略等。
详细阐述如何利用Matlab/Simulink搭建异步电机矢量控制系统的仿真模型,包括电机模型、控制器模型以及系统仿真模型的构建过程。
文章还将探讨仿真模型的参数设置、仿真过程以及仿真结果的分析方法。
通过本文的研究,读者可以深入了解异步电机矢量控制系统的基本原理和仿真方法,掌握基于Matlab/Simulink的仿真技术,为异步电机矢量控制系统的实际设计和应用提供有益的参考和借鉴。
本文的研究也有助于推动异步电机矢量控制技术的发展和应用领域的拓展。
二、异步电机基本原理异步电机,又称感应电机,是一种广泛应用于工业领域的电动机。
其基本原理基于电磁感应和电磁力作用。
异步电机主要包括定子(静止部分)和转子(旋转部分)。
定子通常由铁芯和三相绕组构成,而转子则可能由实心铁芯、鼠笼型或绕线型结构组成。
当异步电机通电时,定子绕组中的三相电流会产生旋转磁场。
这个旋转磁场与转子中的导体相互作用,根据法拉第电磁感应定律,会在转子导体中产生感应电动势和感应电流。
这些感应电流在旋转磁场的作用下,受到电磁力的作用,从而使转子产生旋转力矩,驱动转子旋转。
异步电机的旋转速度与定子旋转磁场的旋转速度并不完全同步,这也是其被称为“异步”电机的原因。
异步电机的旋转速度通常略低于旋转磁场的同步速度,这是由于转子导体的电感和电阻导致的电磁延迟效应。
基于MATLAB的异步电机变频调速系统的仿真与分析

基于MATLAB的异步电机变频调速系统的仿真与分析1.引言随着工业自动化水平的不断提高,对电机变频调速系统的要求也越来越高。
异步电机是目前工业中最为常见的一种电机类型,其变频调速系统在工业生产中发挥着至关重要的作用。
通过变频调速系统,可以实现电机的精确控制和能耗优化,提高生产效率和降低运行成本。
对异步电机变频调速系统进行仿真与分析,对于工业生产具有重要意义。
MATLAB是一款功能强大的技术计算软件,具有丰富的工具箱和仿真功能,可以方便地进行电机系统的建模和仿真分析。
本文将基于MATLAB对异步电机变频调速系统进行仿真与分析,探讨其性能特点和优化方法。
2.异步电机变频调速系统的基本原理异步电机的变频调速系统是通过改变电机的输入频率和电压,从而控制电机的转速和转矩。
基本原理是利用变频器对电源进行调节,改变电机的供电频率和电压,以实现对电机转速的精确控制。
在变频调速系统中,一般采用闭环控制结构,通过反馈电机转速信息,控制变频器的输出频率和电压,从而实现对电机的精确控制。
还需要考虑电机的负载特性和动态响应特性,以保证系统稳定性和性能优化。
在MATLAB中,可以利用Simulink工具箱进行异步电机变频调速系统的建模。
首先需要建立电机的数学模型,包括电机的电气特性、机械特性和传感器特性等。
然后,在Simulink中建立闭环控制系统模型,包括电机模型、变频器模型和控制器模型等。
通过建立完整的系统模型,可以对异步电机变频调速系统进行仿真分析。
可以通过改变输入信号和参数,观察系统的动态响应和稳定性能,进而优化系统的控制策略和调速性能。
4.仿真与分析通过MATLAB对异步电机变频调速系统进行仿真与分析,可以得到系统的各项性能指标和特性曲线。
其中包括电机的转速-转矩特性曲线、电机的效率曲线、系统的响应时间和稳定性能等。
在仿真过程中还可以考虑不同的工况和负载情况,对系统进行多种工况的分析和评估。
通过对系统性能的综合分析,可以得到系统的优化方案和改进措施,提高系统的控制精度和能效性能。
基于MATLAB的异步电机VVVF调速系统仿真

摘要:随着电力电子技术的发展,异步电机以其在变频调速方面的优点开始显现出来了,相对于直流电机有更加广泛的应用本论文主要介绍了异步电机的工作原理以及异步电机的调速方法。
通过改变频率、改变电源电压、改变极对数等方法来改变电机的转速,我是通过改变电机频率来达到改变电机转速的目的,本文还介绍了变频器的原理和PWM(pulse width modulation)变频器的工作原理。
同时通过运用Matlab/simulink系统对异步电机转速调节进行了开环闭环的仿真。
本论文对电机转矩转速观察为开环系统,但是在闭环系统中通过使用Matlab/simulink对系统闭环进行设计仿真,实现了调速,并观察到了电机转速、转矩改变的图像,并且分析了解了异步电机转速改变的原因和仿真过程中的条件等。
关键词Matlab 异步电机变频调速仿真Abstract:With the development of power electronics, the advantage of the variable frequency speed in asynchronous machine is compared with the DC motor , it is more widely used.The principle of asynchronous machine and its way of speed governing is main discussed in this paper. The speed of electrical motor is changed by changing frequency voltage, and numbers of pole-p[airs. This paper is based on changing frequency of the electrical motor, the principle of frequency converter and working theory about PWM(pulse width modulation)is also presented. The open-loop and closed-loop simulation of speed governing with asynchronous machine is achieved through the use of Matlab/simulink system.The observation to electrical motor speed and torque in this paper is the open-loop system, in a closed-loop system, Matlab/simulink is used to design and similated the closed-loop system speed changing is realized, the changing plot of speed and torque about the electrical motor and observed the changing image of torque and the speed about the electrical motor, is observed. the reason why asynchronous machine speed changes and parameters a selection of call the component during the simulation are analyzed.Understanding of the principle of the induction motor and speed control methods, there are three main methods Speed: (1) changing the frequency, (2) change to slip (3) changes the very few. This paper has taken to change the frequency of the ways to achieve the purpose of speed. At the same time also understand the principle of the inverter, and its scope of application.Key words Matlab asynchronous machine Frequency Control Simulation目录第一章绪论 (1)第一节电气传动技术的发展概况 (1)第二节普通交流异步电动机变频调速调速范围的问题 (2)第三节交流异步电动机的调速方式 (3)一、转子回路串电阻或阻抗调速 (3)二、定子调压调速 (3)三、串级调速 (4)四、变极调速 (4)五、变频调速 (4)第四节关于matlab仿真的相关内容 (5)第二章异步电机运行基本原理及其调速方法以及变量控制 (6)第一节异步电机运行基本原理 (6)第二节异步电机的电压方程和等效电路 (6)第三节异步电机的功率方程和转矩方程 (8)第四节异步电机的调速方法 (10)一、变极调速 (10)二、变频变压调速 (11)三、改变转差率来调速 (12)第三章逆变器工作原理和控制及其应用 (14)第一节变频器的工作原理 (14)第二节变频器控制方式 (14)一、正弦脉宽调制(SPWM)控制方式 (15)二、电压空间矢量(SVPWM)控制方式 (15)三、矢量控制(VC)方式 (16)四、直接转矩控制(DTC)方式 (16)五、矩阵式交—交控制方式 (16)第三节简单的三种变频器控制方式 (17)第四节变频器的实际应用 (18)第五节正弦波脉宽调制(SPWM)变频器 (19)一、 SPWM变频器的工作原理 (20)二、 SPWM变频器的同步调制和异步调制 (21)第四章 MATLAB基于VVVF对异步电机的调速仿真实现 (24)第一节关于Matlab软件的应用与操作 (25)一、 PWM模块的组成与仿真 (25)二、电机模块的仿真 (27)三、输出观察模块的仿真 (29)第二节开环调速系统仿真 (30)第三节闭环调速系统仿真 (35)一、闭环调速Matlab仿真主模块 (36)二、控制环节模块 (37)三、仿真结果 (41)总结和展望 (46)参考文献 (48)第一章绪论异步电机的工作原理?异步电机调速又是怎么样的呢?目前主要引用在那几个领域呢?以及异步电机的仿真又是什么呢?又是怎么去仿真的呢?对这些问题的初步说明将是这篇论文所要叙述的。
基于Matlab的异步电动机故障运行状态的仿真

基于Matlab的异步电动机故障运行状态的仿真郝晓红;王慧敏【摘要】为了探讨异步电动机的故障运行状态,利用Matlab/Simulink仿真工具中丰富的电机及相关测控模块,结合多回路理论,建立了简易转子断条电机故障仿真模型及三相供电电压不对称时异步电动机运行状态仿真模型,并分析了电机各种运行状态下的定子电流、转速及转矩.同时针对不同故障,采用不同的特征量进行分析.主要包括当电机转子断条时,对电机定子电流进行频谱分析;当电机的三相供电电压不对称时,对不同三相电压不平衡度下的定子电流负序分量进行计算.仿真计算结果表明,频谱分析方法可有效应用于电机转子断条故障的诊断;定子电流负序分量可应用于三相供电电压不平衡的诊断.%For discussing the faulty running states of asynchronous motor,using abundant motor and measurement model in Matlab/Simulink,based on multi-loop motor model,a simulation modeling of simple broken rotor bars and an unbalanced voltage supply on asynchronous motor's operating is introduced to analyze stator current,speed and torque of the motor under various running states.At the same time,different faults with different featured portions are analyzed.The faults and portions include that the motor rotor breaks bars,stator current spectrum is needed to analyze,voltage supply on an asynchronous motor is unbalanced,the stator current's negative sequence component is needed to analyze.The results show that the spectral analysis method can be applied to the fault diagnosis of broken rotor bars,and stator current negative sequence component presence can be applied to diagnose unbalanced voltage supply.【期刊名称】《实验室研究与探索》【年(卷),期】2017(036)002【总页数】4页(P98-101)【关键词】异步电动机;转子断条;三相电压不对称;故障诊断【作者】郝晓红;王慧敏【作者单位】电子科技大学机械电子工程学院,成都611731;电子科技大学机械电子工程学院,成都611731【正文语种】中文【中图分类】TM343三相交流异步电动机是应用最为广泛的一种电气设备,在电力系统中的用电量占整个系统总用电量的60%以上。
基于MATLAB的异步电动机仿真

基于MATLAB的异步电动机仿真目录1 引言 (1)2 异步电动机动态数学模型 (2)2.1异步电动机动态数学模型的性质 (2)2.2三相异步电动机的多变量非线性数学模型 (2)2.2.1电压方程 (3)2.2.2磁链方程 (4)2.2.3转矩方程 (6)2.2.4电力拖动系统运动方程 (7)2.2.5三相异步电机的数学模型 (8)3 坐标变化和变换矩阵 (9)3.1三相--两相变换(3/2变换) (9)3.2三相异步电动机在两相坐标系上的数学模型 (10)3.2.1三相异步电动机在两相坐标系上的状态方程 (11)3.2.2两相静止坐标系中按定子磁链定向的状态方程 (11)4 软件介绍及模型实现 (13)4.1 Matlab/Simulink简介 (13)4.2模型实现 (13)4.2.1 Simulink模型设计 (13)4.2.2模型参数设置 (15)4.2.3仿真结果 (18)5 结论 (21)参考文献 (22)1 引言1985年,由Depenbrock教授提出的直接转距控制理论将运动控制的发展向前推进了一大步。
接着1987年把它又推广到弱磁调速范围。
不同于矢量控制技术,它无需将交流电动机与直流电动机作比较、等效和转化,不需要模仿直流电动机的控制,也不需要为解耦而简化交流电动机的数学模型[1]。
它只是在定子坐标系下分析交流电机的数学模型,强调对电机的转距进行直接控制,省掉了矢量旋转变换等复杂的变换与计算。
直接转距控制从一诞生,就以新颖的控制思想,简洁明了的系统结构,优良的静、动态性能受到人们的普遍关注。
系统建模与仿真一直是各领域研究、分析和设计各种复杂系统的有力工具。
建模可以超越理想的去模拟复杂的现实物理系统;而仿真则可以对照比较各种控制策略和方案,优化并确定系统参数。
长期以来,仿真领域的研究重点是放在仿真模型建立这一环节上,即在系统模型建立以后,设计一种算法,以使系统模型为计算机所接受,然后再将其编制成计算机程序,并在计算机上运行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录1 引言 (1)2 异步电动机动态数学模型 (2)2.1异步电动机动态数学模型的性质 (2)2.2三相异步电动机的多变量非线性数学模型 (2)2.2.1电压方程 (3)2.2.2磁链方程 (4)2.2.3转矩方程 (6)2.2.4电力拖动系统运动方程 (7)2.2.5三相异步电机的数学模型 (8)3 坐标变化和变换矩阵 (9)3.1三相--两相变换(3/2变换) (9)3.2三相异步电动机在两相坐标系上的数学模型 (10)3.2.1三相异步电动机在两相坐标系上的状态方程 (11)3.2.2两相静止坐标系中按定子磁链定向的状态方程 (11)4 软件介绍及模型实现 (13)4.1 Matlab/Simulink简介 (13)4.2模型实现 (13)4.2.1 Simulink模型设计 (13)4.2.2模型参数设置 (15)4.2.3仿真结果 (18)5 结论 (21)参考文献 (22)1 引言1985年,由Depenbrock教授提出的直接转距控制理论将运动控制的发展向前推进了一大步。
接着1987年把它又推广到弱磁调速范围。
不同于矢量控制技术,它无需将交流电动机与直流电动机作比较、等效和转化,不需要模仿直流电动机的控制,也不需要为解耦而简化交流电动机的数学模型[1]。
它只是在定子坐标系下分析交流电机的数学模型,强调对电机的转距进行直接控制,省掉了矢量旋转变换等复杂的变换与计算。
直接转距控制从一诞生,就以新颖的控制思想,简洁明了的系统结构,优良的静、动态性能受到人们的普遍关注。
系统建模与仿真一直是各领域研究、分析和设计各种复杂系统的有力工具。
建模可以超越理想的去模拟复杂的现实物理系统;而仿真则可以对照比较各种控制策略和方案,优化并确定系统参数。
长期以来,仿真领域的研究重点是放在仿真模型建立这一环节上,即在系统模型建立以后,设计一种算法,以使系统模型为计算机所接受,然后再将其编制成计算机程序,并在计算机上运行。
显然,为达到理想的目的,在这一过程中编制与修改仿真程序十分耗费时间和精力,这也大大阻碍了仿真技术的发展和应用。
近年来逐渐被大家认识的Matlab语言则很好的解决了这个问题。
2 异步电动机动态数学模型2.1异步电动机动态数学模型的性质直流电动机的磁通由励磁绕组产生,可以在电枢合上电源以前建立起来而不参与系统的动态。
过程(弱磁调速时除外)。
因此,它的动态数学模型只有一个输入变量——电枢电压和一个输入变量——转速,在控制对象中含有机电时间常数m T 和电枢回路电磁时间常数l T ,如果电力电子变换装置也计入控制对象,则还有滞后的时间常数s T 。
在工程上能够允许的一些假定条件下,可以描述成单变量(单输入单输出)的三阶线性系统[2],完全可以应用经典的线性控制理论和由它发展出来的工程设计方法进行分析与设计。
但是,同样的理论和方法用来分析与设计交流调速系统时,就不那么方便了,因为交流电机的数学模型和直流电机模型相比有着本质上的区别。
1)异步电机变压变频调速时需要进行电压(或电流)和频率的协调控制,有电压(电流)和频率两种独立的输入变量。
在输出变量中,除转速外,磁通也得算一个独立的输出变量。
因为电机只有一个三相输入电源,磁通的建立和转速的变化是同时进行的,为了获得良好的动态性能,也希望对磁通施加某种控制,使它在动态过程中尽量保持恒定,才能产生较大的动态转矩。
由于这些原因,异步电机是一个多变量(多输入多输出)系统,而电压(电流)、频率、磁通、转速之间又互相都有影响,所以是强耦合的多变量系统,可以先用下图来定性地表示。
2)在异步电机中,电流乘磁通产生转矩,转速乘磁通得到感应电动势,由于它们都是同时变化的,在数学模型中就含有两个变量的乘积项。
这样一来,即使不考虑磁饱和等因素,数学模型也是非线性的。
3)三相异步电机定子有三个绕组,转子也可等效为三个绕组,每个绕组产生磁通时都有自己的电磁惯性[3],再算上运动系统的机电惯性,和转速与转角的积分关系,即使不考虑变频装置[4]的滞后因素,也是一个八阶系统。
总起来说,异步电机的动态数学模型是一个高阶、非线性、强耦合的多变量系统。
2.2三相异步电动机的多变量非线性数学模型在研究异步电动机的多变量非线性数学模型时,常作如下的假设:(1)忽略空间谐波,设三相绕组对称,在空间互差120°电角度,所产生的磁动势沿气隙周围按正弦规律分布。
(2)忽略磁路饱和,各绕组的自感和互感都是恒定的。
(3)忽略铁心损耗。
(4)不考虑频率变化和温度变化对绕组电阻的影响。
异步电机的数学模型由下述电压方程、磁链方程、转矩方程和运动方程组成。
2.2.1 电压方程三相定子绕组的电压平衡方程为与此相应,三相转子绕组折算到定子侧后的电压方程为式中 A u , B u , C u , a u , b u ,c u —定子和转子相电压的瞬时值;A i ,B i ,C i , a i , b i ,c i —定子和转子相电流的瞬时值;A ψ,B ψ,C ψ, a ψ, b ψ,c ψ—各相绕组的全磁链; Rs, Rr —定子和转子绕组电阻上述各量都已折算到定子侧,为了简单起见,表示折算的上角标“ ’”均省略,以下同此。
电压方程的矩阵形式将电压方程写成矩阵形式,并以微分算子 p 代替微分符号 d /dt tR i u d d As A A ψ+=tR i u d d Bs B B ψ+=tR i u d d Cs C C ψ+=tR i u d d ar a a ψ+=tR i u d d br b b ψ+=tR i u d d cr c c ψ+=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡c b a C B A c b a C B A r r r s s s c b a C B A 000000000000000000000000000ψψψψψψp i i i i i i R R R R R R u u u u u u (2-1)或改写成ψp Ri u +=2.2.2 磁链方程每个绕组的磁链是它本身的自感磁链和其它绕组对它的互感磁链之和,因此,六个绕组的磁链可表达为或改写成Li =ψ(2-2)式中,L 是6×6电感矩阵,其中对角线元素 AA L ,BB L ,CC L ,aa L ,bb L ,cc L 是各有关绕组的自感,其余各项则是绕组间的互感。
实际上,与电机绕组交链的磁通主要只有两类:一类是穿过气隙的相间互感磁通,另一类是只与一相绕组交链而不穿过气隙的漏磁通,前者是主要的。
电感的种类和计算如下。
定子漏感ls L ——定子各相漏磁通所对应的电感,由于绕组的对称性,各相漏感值均相等;转子漏感lr L ——转子各相漏磁通所对应的电感; 定子互感ms L ——与定子一相绕组交链的最大互感磁通; 转子互感mr L ——与转子一相绕组交链的最大互感磁通。
由于折算后定、转子绕组匝数相等,且各绕组间互感磁通都通过气隙,磁阻相同,故可认为ms L =mr L 。
自感表达式对于每一相绕组来说,它所交链的磁通是互感磁通与漏感磁通之和,因此,定子各相自感为转子各相自感为 两相绕组之间只有互感。
互感又分为两类:(1)定子三相彼此之间和转子三相彼此之间位置都是固定的,故互感为常值; (2)定子任一相与转子任一相之间的位置是变化的,互感是角位移θ的函数。
⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡c b a C B A cC cbcacCcBcAbc bb ba bC bB bA ac ab aa aC aB aA Cc Cb Ca CC CB CA Bc Bb Ba BC BB BAAc Ab Aa AC AB AAc b a C B A i i i i i i L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L ψψψψψψs ms CC BB AA l L L L L L +===rms cc bb aa l L L L L L +===(2-2)第一类固定位置绕组的互感,三相绕组轴线彼此在空间的相位差是±120°,在假定气隙磁通为正弦分布的条件下,互感值应为于是第二类变化位置绕组的互感,定、转子绕组间的互感,由于相互间位置的变化,可分别表示为当定、转子两相绕组轴线一致时,两者之间的互感值最大,就是每相最大互感msL 。
整理以上各式,即得完整的磁链方程,显然这个矩阵方程是比较复杂的,为了方便起见,可以将它写成分块矩阵的形式式中msms ms 21)120cos(120cos L L L -=︒-=︒ms ACCB BA CA BC AB 21L L L L L L L-======msac cb ba ca bc ab 21L L L L L L L -======θcos ms cC Cc bB Bb aA Aa L L L L L L L ======)120cos(ms bC Cb aB Ba cA Ac︒-======θL L L L L L L )120cos(ms aC Ca cB Bc bA Ab ︒+======θL L L L L L L ⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡c b a C B A cC cbcacCcBcAbc bb ba bC bB bA ac ab aa aC aB aA Cc Cb Ca CC CB CA Bc Bb Ba BC BB BA Ac Ab Aa AC AB AA c b a C B A i i i i i i L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L ψψψψψψ⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡r s rr rs sr ssr s i i L L L L ΨΨ[]TC B A ψψψ=s Ψ[]Ti i i C B A =s i []Tc b a r ψψψ=Ψ[]Ti i i c b ar =i ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡+---+---+=r ms ms ms ms r ms msms ms r ms 212121212121l l l L L L LL L L L L L L L rr L (2-3)(2-5)(2-6)(2-4)值得注意的是, 和 两个分块矩阵互为转置,且均与转子位置θ有关,它们的元素都是变参数,这是系统非线性的一个根源。