基于MATLAB的Boost电路仿真
基于MATLAB的Boost电路仿真

知识就堤力量—基于Matlab 的Boost电路仿真姓名:学号: 班级:知识就堤力量1、前言由于DC/DC开关电源具有高效率,高功率密度和高可靠性等优点,越来越广泛地应用于通信、计算机、工业设备和家用电器等领域。
在近几十年里,开关电源技术得到了长足的发展。
在很多场合下,需要从低压电源变换到高压电源,Boost变换器是最基本,也是最常用的一种变换器。
在电力电子系统的研究中,仿真研究由于其高效、高精度及高的经济性与可靠性而得到大量应用。
近二十年来,仿真已逐渐成为电力电子技术研究的有力工具。
Matlab语言的强大仿真功能和方便性受到广大使用者的广泛爱好。
本文对Boost变换器电路进行简单的介绍,采用Matlab来完成建模和仿真。
2、Boost电路的工作状态Boost变换器的电路结构如下图所示:iT. nBoost电路的结构⑻开关状态1 (S闭合)(b)开关状态2 (S关断)3、Matlab 仿真分析Matlab 是一种功能强大的仿真软件,它可以进行各种各样的模拟电路和数 字电路仿真,并给出波形输出和数据输出,无论对哪种器件和哪种电路进行仿真, 均可以得到精确的仿真结果。
采用 Matlab 仿真分析方法,可直观、详细的描述 Boost 电路由启动到达稳态的工作过程,并对其中各种现象进行细致深入的分 析,便于我们真正掌握Boost 电路的工作特性。
仿真图如下所示:电路工作原理:在电路中IGBT 导通时,电流由E 经升压电感L 和V 形成回路,电感L 储能; 当IGBT 关断时,电感产生的反电动势和直流电源电压方向相同互相叠加,从而 在负载侧得到高于电源的电压,二极管的作用是阻断 IGBT 导通是,电容的放电 回路。
调节开关器件V的通断周期,可以调整负载侧输出电流和电压的大小。
4-Vo |t\a «E MeJsnuramQ Stfi»RLC Ewnch HR ltd g e Sours I llc —— ScQpe(c)开关状态3 (电感电流为零)ScoptlVCurrent MeasurementDiodeKDT Cm rue nt Measuremehti C T古 * 知识就堤力量其负载侧输出电压的平均值为:t off 上式中T 为开关周期,•…为导通时间,总说-为关断时间在模型仿真中的参数设置:(1) 设置电源电压为200V ,电阻的阻值为5Q 。
基于MATLAB的升压-降压式变换器的建模与仿真

基于MATLAB 的升压-降压式变换器的建模与仿真一、摘要本文在对升压-降压(Boost-Buck )式变换器电路理论分析的基础上,建立了基于Simulink 的升压-降压式变换器的仿真模型,运用IGBT 对升压-降压进行控制,并对工作情况进行仿真分析与研究。
通过仿真分析也验证了本文所建模型的正确性。
二、设计意义直流斩波就是将直流电压变换成固定的或可调的直流电压,也称DC/DC 变换。
使用直流斩波技术,不仅可以实现调压的功能,而且还可以达到改善网侧谐波和提高功率因数的目的。
升压-降压式变换电路即升降压斩波电路,主要应用于已具有直流电源需要调节直流电压的场合。
三、设计原理升压-降压式变换器电路图如下图1-1所示。
设电路中电感L 值很大,电容C 值也很大,使电感电流L i 和电容电压0u 基本为恒值。
图1-1 电路原理设计原理是:当可控开关V 出于通态时,电源经V 向电感L 供电使其贮存能量,此时电流为1i ,方向如图1-1中所示。
同时,电容C 维持输出电压基本恒定并向负载R 供电。
此后,使V 关断,电感L 中贮存的能量向负载释放,电流为2i ,方向如图1-1中所示。
可见,负载电压极性为上负下正,与电源电压极性相反,因此该电路也称作反极性斩波电路。
稳定时,一个周期T 内电感L 两端电压L u 对时间的积分为零,当V 处于通态期间时,L u =E ;而当V 处于端态期间时,L u =-0u 。
于是,E on t =off t U 0,所以输出电压为U=offon t t E=βαE 其中β=1-α,若改变导通比α,则输出电压既可以比电源电压高,也可以比电源电压低。
当0<α<0.5时为降压,当0.5<α<1时为升压,如此可以实现升压-降压的变换,该电路称作升降压斩波电路即升降压变换器。
图1-2中给出了电源电流1i 和负载电流2i 的波形,设两者的平均值分别为1I 和2I , 当电流脉动足够小时,有21I I =off on t t 。
基于MatlabSimulink的BOOST电路仿真

基于Matlab/Simulink的BOOST电路仿真姓名:weitor学号:**********班级:07自动化2班时间:2010年12月5日1引言BOOST 电路又称为升压型电路, 是一种直流- 直流变换电路, 其电路结构如图1 所示。
此电路在开关电源领域内占有非常重要的地位, 长期以来广泛的应用于各种电源设备的设计中。
对它工作过程的理解掌握关系到对整个开关电源领域各种电路工作过程的理解, 然而现有的书本上仅仅给出电路在理想情况下稳态工作过程的分析, 而没有提及电路从启动到稳定之间暂态的工作过程, 不利于读者理解电路的整个工作过程和升压原理。
采用matlab仿真分析方法, 可直观、详细的描述BOOST 电路由启动到达稳态的工作过程, 并对其中各种现象进行细致深入的分析, 便于我们真正掌握BOOST 电路的工作特性。
2电路组成线路由开关S、电感L、电容C组成,如图1所示,完成把电压Vs 升压到Vo的功能。
图1BOOST 电路的结构3电路的工作状态BOOST 电路的工作模式分为电感电流连续工作模式和电感电流断续工作模式。
其中电流连续模式的电路工作状态如图2 (a) 和图2 (b) 所示, 电流断续模式的电路工作状态如图2 (a)、(b)、(c) 所示, 两种工作模式的前两个工作状态相同, 电流断续型模式比电流连续型模式多出一个电感电流为零的工作状态。
(1)充电过程在充电过程中,开关闭合(三极管导通),等效电路如图2 (a),开关(三极管)处用导线代替。
这时,输入电压流过电感。
二极管防止电容对地放电。
由于输入是直流电,所以电感上的电流以一定的比率线性增加,这个比率跟电感大小有关。
随着电感电流增加,电感里储存了一些能量。
(2)放电过程如图2 (b),这是当开关断开(三极管截止)时的等效电路。
当开关断开(三极管截止)时,由于电感的电流保持特性,流经电感的电流不会马上变为0,而是缓慢的由充电完毕时的值变为0。
基于MATLAB的Boost型功率因数校正电路的仿真分析

基于MATLAB的Boost型功率因数校正电路的仿真分析作者:孟利明王秀莲来源:《数字技术与应用》2009年第11期[摘要]本文在传统Boost型转换器的基础上,采用ZVT软开关技术对其改进,并使用MATLAB软件建立了仿真模型进行仿真分析。
[关键词]软开关 Boost型转换器功率因数校正[中图分类号]TN913[文献标识码]A[文章编号]1007-9416(2009)11-0047-021 引言为了满足输入电流谐波满足要求减小对电网的污染,现今的开关电源都采用功率因数校正技术(PFC)。
常见的功率因数校正转换器主电路的拓扑结构有:降压式(Buck)、升压式(Boost)、降/升压式(Buck-Boost)、反激式(Flyback)等,其中因Boost变换器具有效率高、电路简单、成本低等优点而等到广泛的应用[1]。
但传统的Boost变换器采用的是硬开关PFC技术,使得开关损耗大、开关电流应力大和二极管开关噪音大。
为弥补硬开关变换器的不足,人们不断探讨新型的Boost软开关变换器,如零电压过渡(ZVT-Boost)软开关变换器和零电流过渡(ZCT-Boost)软开关变换器。
由于零过渡软开关具有主开关为ZCS或ZVS、续流二极管为ZVS或ZCS、主开关和续流二极管的电流和电压应力小及在宽范围电源电压和负载电流内均可满足ZVS和ZCS条件,它们代表了目前软开关变换技术的最新发展[2]。
本文针对一种ZVT-Boost变换器,采用MATLAB/SIMULINK仿真软件建立其仿真模型,并根据仿真图形对其电流电压进行了详细的分析。
2 ZVT-Boost型变换器的设计2.1 ZVT-Boost型变换器拓扑电路图 1 是ZVT-Boost变换器的拓扑电路。
有图可知,除在主开关加有谐振电容Cs外,在传统的Boost变换器拓扑结构的基础上还多了有 Cb、Cr、Lr、D1、D2、D5和辅助开关S2组成的谐振电路。
2.2 变换器工作过程假设交流电源侧电感足够大,Lin >> Lr,开关频率远远高于输入正弦波频率,则在一个开关周期内交流电源相当于一个直流电源[3]。
完整word版,BOOST电路设计及matlab仿真

Boost升压电路及MATLAB仿真一、设计要求1.输入电压(VIN):12V2.输出电压(VO):18V3.输出电流(IN):5A4.电压纹波:0.1V5.开关频率设置为50KHz需设计一个闭环控制电路,输入电压在10—14V或负载电流在2—5A范围变化时,稳态输出能够保持在18V 。
根据设计要求很显然是要设计一个升压电路即Boost电路。
Boost电路又称为升压型电路,是一种开关直流升压电路,它可以是输出电压比输入电压高。
其工作过程包括电路启动时的瞬态工作过程和电路稳定后的稳态工作过程。
二、主电路设计图1主电路2.1 Boost电路的工作原理Boost升压电路电感的作用:是将电能和磁场能相互转换的能量转换器件,当MOS开关管闭合后,电感将电能转换为磁场能储存起来,当MOS断开后电感将储存的磁场能转换为电场能,且这个能量在和输入电源电压叠加后通过二极管和电容的滤波后得到平滑的直流电压提供给负载,由于这个电压是输入电源电压和电感的磁场能转换为电能的叠加后形成的,所以输出电压高于输入电压,既升压过程的完成。
Boost升压电路的肖特基二极管主要起隔离作用,即在MOS开关管闭合时,肖特基二极管的正极电压比负极的电压低,此时二极管反向截止,使此电感的储能过程不影响输出端电容对负载的正常供电;因在MOS管断开时,两种叠加后的能量通过二极向负载供电,此时二极管正向导通,要求其正向压降越小越好,尽量使更多的能量供给到负载端。
闭合开关会引起通过电感的电流增加。
打开开关会促使电流通过二极管流向输出电容因储存来自电感的电流,多个开关周期以后输出电容的电压升高,结果输出电压高于输入电压。
接下来分两部分对Boost电路作具体介绍即充电过程和放电过程。
充电过程在充电过程中,开关闭合(三极管导通),等效电路如图二,开关(三极管)处用导线代替。
这时,输入电压流过电感。
二极管防止电容对地放电。
由于输入是直流电,所以电感上的电流以一定的比率线性增加,这个比率跟电感大小有关。
电力电子课程实践_基于matelab仿真平台的Boost升压电路验证探究

师学院物理与电气工程学院《电力电子技术》课程实践基于matelab仿真平台的Boost升压电路验证探究指导老师:永超姓名:衍翀班级:电气一班学号:111102022基于matelab仿真平台的Boost电路验证探究引言斩波器的工作方式有三种:一是脉宽调制方式,保持周期T不变,改变开关导通时间on T。
二是频率调制方式,保持on T不变,改变周期T。
三是混合型,on T和T都可调,使占空比改变。
直流斩波电路作为将直流电变成另一种固定电压或可调电压的直流直流变换器 ,在直流传动系统、充电蓄电电路、开关电源、电力电子变换装置及各种用电设备中得到普通的应用。
直流斩波技术已被广泛用于开关电源及直流电动机驱动中,使其控制获得加速平稳、快速响应、节约电能的效果。
全控型电力电子器件IGBT在牵引电传动电能传输与变换、有源滤波等领域得到了广泛的应用。
一、方案介绍主电路的功能是对输入的200V的直流电压进行升压。
它主要由全控型器件IGBT及电感、电容器件组成。
控制电路部分则是对全控型器件IGBT的通断进行控制,来获得不同的占空比,实现不同占空比下电压的抬升。
二、Boost电路工作原理假设L值、C值很大。
当V导通时(图1中s拨向a),E向L充电,充电电流恒为I1,同时C 的电压向负载供电,因C 值很大,输出电压为恒值,记为o U 。
设V 通的时间为ton ,此阶段L 上积蓄的能量为EI1ton 。
当V 断开时(图1s 拨向b ),E 和L 共同向C 充电并向负载R 供电。
设V 断的时间为toff ,则此期间电感L 释放能量为:off1ot E)I-(U稳态时,一个周期T 中L 积蓄能量与释放能量相等,则有:经过化简,可以得到输出电压的值:因为周期T 大于toff ,则输出电压高于电源电压,故称升压斩波电路。
也称之为boost 变换器。
三、仿真步骤1.启动MATLAB ,进入SIMULINK 后新建一个仿真模型的新文件。
升压-降压式变换器的仿真讲解

基于matlab的仿真
?3.控制脉冲占空比分别设为 50%时的波形图如下:
IGBT 电流
二极管 电流
电感 电流
负载 电压
基于matlab的仿真
?负载上平均电压为100 V,波形为有少许波 纹的直流电压;
?仿真结果与升降压斩波理论分析吻合。
基于matlab的仿真
?5.控制脉冲占空比分别设为 75%时的波形图如下:
IGBT 电流
二极管 电流
电感 电流
负载 电压
基于matlab的仿真
?负载上平均电压为300 V,波形为有少许波 纹的直流电压;
?理论计算: 反;
,Uo与E极性相
?仿真结果与升降压斩波理论分析吻合。
直流斩波电路工作原理分析
? 同样地分析BUCK-BOOST 斩波电路的工作过程,可以得 到电感上的电压和电流波形如图3-3 所示。
直流斩波电路工作原理分析
? 由伏秒平衡原理可得电感电流连续和断续的输出电压,且 其极性与输入相反。
? a) 电感电流连续时,有 化简可得
? b) 电感电流断续时,有 化简可得
? 由此可以看出,电感电流断续时,BUCK-BOOST 斩波电 路的输出电压也增大。
直流斩波电路工作原理分析
?负载电压
,改变导通时间可以轻
松实现直流变换的升降压作用
?则当1>D>0.5时, >1,此时为升压
?当0.5>D>0时, <1 ,此时为降压
基于matlab的仿真
? 1.根据升降压电路原理图建立升压-降压式变换器仿真模型 如下:
BOOST电路设计和matlab仿真

Boost升压电路及MATLAB仿真一、设计要求1.输入电压(VIN):12V2.输出电压(VO):18V3.输出电流(IN):5A4.电压纹波:0.1V5.开关频率设置为50KHz需设计一个闭环控制电路,输入电压在10—14V或负载电流在2—5A范围变化时,稳态输出能够保持在18V 。
根据设计要求很显然是要设计一个升压电路即Boost电路。
Boost电路又称为升压型电路,是一种开关直流升压电路,它可以是输出电压比输入电压高。
其工作过程包括电路启动时的瞬态工作过程和电路稳定后的稳态工作过程。
二、主电路设计图1主电路2.1 Boost电路的工作原理Boost升压电路电感的作用:是将电能和磁场能相互转换的能量转换器件,当MOS开关管闭合后,电感将电能转换为磁场能储存起来,当MOS断开后电感将储存的磁场能转换为电场能,且这个能量在和输入电源电压叠加后通过二极管和电容的滤波后得到平滑的直流电压提供给负载,由于这个电压是输入电源电压和电感的磁场能转换为电能的叠加后形成的,所以输出电压高于输入电压,既升压过程的完成。
Boost升压电路的肖特基二极管主要起隔离作用,即在MOS开关管闭合时,肖特基二极管的正极电压比负极的电压低,此时二极管反向截止,使此电感的储能过程不影响输出端电容对负载的正常供电;因在MOS管断开时,两种叠加后的能量通过二极向负载供电,此时二极管正向导通,要求其正向压降越小越好,尽量使更多的能量供给到负载端。
闭合开关会引起通过电感的电流增加。
打开开关会促使电流通过二极管流向输出电容因储存来自电感的电流,多个开关周期以后输出电容的电压升高,结果输出电压高于输入电压。
接下来分两部分对Boost电路作具体介绍即充电过程和放电过程。
充电过程在充电过程中,开关闭合(三极管导通),等效电路如图二,开关(三极管)处用导线代替。
这时,输入电压流过电感。
二极管防止电容对地放电。
由于输入是直流电,所以电感上的电流以一定的比率线性增加,这个比率跟电感大小有关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于Matlab的Boost
电路仿真
姓名:
学号:
班级:
1、前言
由于DC/DC开关电源具有高效率,高功率密度和高可靠性等优点,越来越广泛地应用于通信、计算机、工业设备和家用电器等领域。
在近几十年里,开关电源技术得到了长足的发展。
在很多场合下,需要从低压电源变换到高压电源,Boost变换器是最基本,也是最常用的一种变换器。
在电力电子系统的研究中,仿真研究由于其高效、高精度及高的经济性与可靠性而得到大量应用。
近二十年来,仿真已逐渐成为电力电子技术研究的有力工具。
Matlab语言的强大仿真功能和方便性受到广大使用者的广泛爱好。
本文对Boost变换器电路进行简单的介绍,采用Matlab来完成建模和仿真。
2、Boost电路的工作状态
Boost变换器的电路结构如下图所示:
Boost 电路的结构
(a) 开关状态1 (S 闭合) (b) 开关状态2 (S 关断)
(c) 开关状态3 (电感电流为零)
3、Matlab仿真分析
Matlab 是一种功能强大的仿真软件,它可以进行各种各样的模拟电路和数字电路仿真,并给出波形输出和数据输出,无论对哪种器件和哪种电路进行仿真,均可以得到精确的仿真结果。
采用Matlab仿真分析方法,可直观、详细的描述Boost 电路由启动到达稳态的工作过程,并对其中各种现象进行细致深入的分析,便于我们真正掌握Boost电路的工作特性。
仿真图如下所示:
电路工作原理:
在电路中IGBT导通时,电流由E经升压电感L和V形成回路,电感L储能;当IGBT关断时,电感产生的反电动势和直流电源电压方向相同互相叠加,从而在负载侧得到高于电源的电压,二极管的作用是阻断IGBT导通是,电容的放电回路。
调节开关器件V的通断周期,可以调整负载侧输出电流和电压的大小。
其负载侧输出电压的平均值为:
上式中T 为开关周期, 为导通时间, 为关断时间。
在模型仿真中的参数设置:
(1)设置电源电压为200V ,电阻的阻值为5Ω。
(2)脉冲发生器脉冲周期T=0.2ms,脉冲宽度为50%。
(3)IGBT 和二极管的参数可以保持默认值。
(4)初选L 的值为0.1ms ,C 的值为100µF 。
启动仿真:
设置仿真时间为0.03s ,算法采用ode15s 。
所对应的开关管电压的波形、二极管电流的波形、输出电压的波形、开关管电流的波形仿真图如下所示:
电路相应信号仿真波形
E t T E t t t U off off off on o =+=
电路相应信号放大仿真波形
观察图易见,电感电流在5ms 左右趋于稳定, 电路进入稳态。
通过改变电感的值可更清楚的观察电感电流的波形,如图所示:
4、结论
以上的仿真过程分析,可以得到以下结论:直流变换电路主要以全控型电力电子器件作为开关器件,通过控制主电路的接通与关断,将恒定的直流斩成断续的方波,经滤波后变为电压可调的直流输出电压。
利用Simulink对升压斩波电路的仿真结果进行了分析,与采用常规电路分析方法所得到的输出电压波形进行比较,进一步验证了仿真结果的正确性。
由此可见,应用Matlab的动态系统仿真工具Simulink进行直流变换器的仿真,能够较好模拟实际电路的各种电气量。