有机挥发物气体检测原理

合集下载

PID光离子气体测量原理

PID光离子气体测量原理

PID光离子气体测量原理PID(Photoionization Detector,光离子化检测器)是一种常用的气体检测仪器,适用于检测低浓度的挥发性有机化合物(VOCs)。

PID的测量原理是利用紫外光照射样品后,样品中的化合物会发生光离子化反应产生光离子,通过不同电极间的电子流动来测量电离电流,从而确定气体浓度。

PID的工作原理如下:首先,光源发出特定波长的紫外光,通常使用能量较高的氙灯或碘钨灯作为光源。

紫外光照射样品中的化合物,当化合物的电离能小于紫外光的能量时,会发生光离子化反应。

光离子化反应是指化合物中的分子或离子通过吸收光子能量,从而损失一个或多个电子,形成带正电荷的光离子。

光离子化反应的产物可以通过下面的化学方程式来表示:HC + hv → H+ + C+其中,HC代表化合物,hv代表紫外光。

接下来,光离子化反应产生的正离子会在电场的作用下向阳极方向运动,而其余的电子则会向阴极方向运动,这样就形成了电离电流。

这个电离电流可以通过电流放大器以及其他电路进行放大和处理,最终得到与被测化合物浓度相关的电信号。

通过对电信号进行采集和分析处理,就可以确定被测挥发性有机化合物的浓度。

PID的测量原理具有许多优点。

首先,它对大多数挥发性有机化合物都具有较高的响应,可以覆盖很广的测量范围。

其次,具有灵敏度高、相对快速的特点,可以快速检测出浓度较低的化合物。

再次,PID可以实时连续监测,以及对多种挥发性有机化合物进行同时检测。

另外,与气相色谱法相比,PID具有更简便、快速、便携的特点,并且测量结果不受大气压和流速等因素的影响。

然而,PID也存在一些限制。

首先,它对不同化合物的响应因子不同,因此需要根据被测化合物的特性进行校正,以获得准确的测量结果。

其次,PID对水和大气中的氧气也有一定的响应,因此在测量过程中需要采取相应的措施进行干扰消除或校正。

最后,对于较高浓度的化合物,可能会发生偏移和饱和现象,需要在实际操作中注意。

化学实验知识:气相色谱-质谱联用法分析物质中挥发性有机物的实验方法

化学实验知识:气相色谱-质谱联用法分析物质中挥发性有机物的实验方法

化学实验知识:“气相色谱-质谱联用法分析物质中挥发性有机物的实验方法”在现代科学技术领域中,化学实验扮演着非常重要的角色。

这其中,一种被称为“气相色谱-质谱联用法”的实验方法,可以帮助我们快速、准确地分析物质中的挥发性有机物。

一、实验原理气相色谱-质谱联用法实验的核心技术就是将气相色谱和质谱技术相结合,来准确分离、识别和定量分析混合物中的挥发性有机物。

首先,气相色谱会将混合物化为气态样品,然后通过信号检测来检测样品中有机化合物的种类和数量。

具体来说,气相色谱会将样品分离成不同的组分,并且根据每个组分的蒸汽压大小,将气流分为待分离的组分和非组分部分。

这样,我们就可以以单独的方式研究每一个组分的属性。

接下来,质谱将分析气相色谱所分离出来的组分,利用高速速度的激光束来进一步检测样品中小分子的性质和数量。

具体来说,质谱会将样品中挥发性有机物的分子化成“离子”形态,然后判断这些离子在质谱仪中移动的时间和特征。

二、实验步骤1、采集样品。

首先,要确定好要分析的样品,并采用正确的方法采集样品。

这个方法并无具体要求,可以通过手动、自动或机械方式进行采集。

2、准备样品。

样品采集后需要进行处理,具体操作包括过滤,加热或蒸馏。

这个过程需要根据样品的类型和性质进行,可以通过调整气体流量、温度、时间等参数来提取所需的挥发性有机物。

3、用气相色谱仪分离组分。

这个步骤需要将之前处理过后的样品注入到气相色谱仪仪器中,然后通过以偏域为基础的气体相进行样品分离。

4、用质谱仪进行分析。

分离好的样品再通过在线质谱检测仪实现实时定性分析。

三、实验注意事项1、加热温度。

如果样品加热温度过高,可能会导致化合物的分解和失真。

所以要控制好加热时间和温度。

2、样品收集。

样品收集需要用比较完善的收集器具和样品储存器具,便于后续的存储和混合检测。

3、光源模型。

气相色谱必须使用一种可靠的UV光源,比如具有1/2英寸三极物理量的UV辐射标准率模型分析仪。

四、实验应用领域气相色谱-质谱联用法广泛应用于生物学、药学、环境科学等领域,可以帮助科学家们探索分析样本中有机化合物的降解、分离和鉴定。

voc气体传感器原理

voc气体传感器原理

voc气体传感器原理VOC气体传感器原理VOC(挥发性有机化合物)气体传感器是一种用于检测空气中挥发性有机化合物浓度的重要设备。

它可以广泛应用于室内空气质量监测、工业生产过程控制和环境污染监测等领域。

本文将介绍VOC气体传感器的原理及其应用。

一、VOC气体传感器的工作原理VOC气体传感器的工作原理基于化学吸附和电学测量。

传感器内部通常包含一个可吸附VOC分子的材料,当VOC分子进入传感器时,它们会与吸附材料发生化学反应或吸附,导致传感器电阻发生变化。

该变化与VOC浓度成正比,通过测量电阻变化即可确定空气中VOC 的浓度。

二、VOC气体传感器的工作原理详解1. 吸附材料选择传感器的吸附材料对其性能至关重要。

常用的吸附材料包括金属氧化物、聚合物和纳米材料等。

这些材料具有较高的吸附性能,能够有效地吸附VOC分子。

2. 化学反应或吸附当VOC分子进入传感器内部时,它们与吸附材料发生化学反应或吸附作用。

这些反应或吸附导致传感器内部电子结构的变化,改变传感器的电阻。

3. 电学测量传感器内部包含电极,通过测量电阻的变化来确定VOC浓度。

通常采用电桥或电阻器网络等电路来测量电阻的变化。

当VOC浓度发生变化时,电阻值也会相应变化,通过测量电阻值的变化,可以得到VOC浓度的信息。

三、VOC气体传感器的应用VOC气体传感器在各个领域都有广泛的应用,以下列举几个典型的应用场景。

1. 室内空气质量监测VOC气体传感器可以用于监测室内空气中的VOC浓度,帮助人们了解室内空气质量和健康状况。

它可以提醒人们是否需要开窗通风或采取其他措施改善室内空气质量。

2. 工业生产过程控制在一些工业生产过程中,VOC气体的排放会对环境造成污染和健康风险。

VOC气体传感器可以用于监测工业生产过程中的VOC排放情况,帮助企业控制和减少VOC的排放,保护环境和员工的健康。

3. 环境污染监测VOC气体传感器可以用于环境污染监测,例如城市空气质量监测、工业园区污染监测等。

PID传感器检测VOC原理

PID传感器检测VOC原理

PID传感器检测VOC原理
PID传感器是一种常用于揭示挥发性有机化合物(VOCs)浓度的传感器。

VOCs是一类在常温下轻易挥发的有机化合物,包括多种化学物质,如苯、甲醛和二甲苯等。

这些VOCs通常来自化工厂、汽车尾气、涂料、溶剂、清洁剂等多种环境中的源头。

1.紫外线光源:传感器中包含一个紫外线(UV)光源,通常是一种低压汞灯。

该光源产生了具有特定波长的紫外线辐射,通常为10.6eV。

2.电离室:传感器中有一个电离室,该电离室由两个电极组成,一个称为阳极,另一个称为阴极。

阳极上有一个电极环,可以产生电场。

3.离子产生:当气体样品通过传感器时,紫外线光源照射在气体中的VOCs上,使其吸收能量并电离。

VOCs分子电子被紫外线光源能量激发,自由电子与正离子形成离子对。

4.电流测量:离子对在电场的作用下向阳极移动,产生电流。

该电流在传感器中的测量电路中被放大,然后测量和记录。

5.浓度计算:根据电离室中的电流大小和其他一些参数,可以计算出VOCs浓度。

测量电路中通常有一个校准曲线或者算法,可以将电流转换为对应的VOCs浓度。

为了准确测试VOCs浓度,PID传感器的使用需要进行定期的校准和维护。

校准可以通过将传感器暴露在已知浓度的参考气体中进行。

维护方面,常见的操作包括清洁传感器以去除附着物、更换紫外线光源和定期检查和调整测量电路。

总之,PID传感器是一种常用于检测VOCs浓度的传感器。

它基于紫外线光电离原理,通过测量离子产生的电流来计算VOCs的浓度。

然而,使用PID传感器需要定期校准和维护,以确保准确可靠的测量结果。

pid及fid原理

pid及fid原理

pid及fid原理
PID及FID原理
PID(Proportional-Integral-Derivative)和FID(Flame Ionization Detector)是两种常见的气体检测器。

PID主要用于检测挥发性有机
物(VOCs),而FID则用于检测烃类化合物。

PID的原理是利用紫外线辐射将气体中的VOCs电离,产生电子和离子,然后通过电子和离子的复合反应产生电流信号,从而检测气体中
的VOCs浓度。

PID的灵敏度高,可以检测到非常低浓度的VOCs,
但对于一些高沸点的化合物,其检测灵敏度较低。

FID的原理是将气体样品通过火焰,烃类化合物在火焰中燃烧产生离子,然后通过离子的电导率来检测气体中的烃类化合物浓度。

FID的灵敏度也很高,可以检测到非常低浓度的烃类化合物,但对于一些非烃类化
合物,其检测灵敏度较低。

PID和FID都是常见的气体检测器,它们在环境监测、工业安全等领
域有着广泛的应用。

在使用这些检测器时,需要注意其检测范围和灵
敏度,以及对于不同化合物的检测能力。

同时,还需要注意检测器的
使用和维护,以确保其正常工作和准确检测。

tvoc传感器的原理

tvoc传感器的原理

tvoc传感器的原理
TVOC(总挥发性有机物)传感器是一种用于监测室内空气污染的传感器,它用于检测空气中挥发性有机物(VOC)的濃度。

它可以用来测量例如醛、甲醛和丙烯等挥发性有机化合物,以及一些特定污染物,如苯和toluene。

TVOC传感器的工作原理是利用温度重整技术(TDR)来检测挥发性有机物的濃度。

原理是夹在电子组件的传感器电阻膜上的TDS技术。

TDR的原理是装入内置电容的传感器电路芯片,向传感器内面板施加集电器电压。

当这一电压变化时,传感器电阻会发生变化,这种变化可以通过反映在电路芯片中的电流变化而得到测量。

TVOC传感器内部包含一个基本的热敏型电阻传感器,它可以分别测量甲醛、VOC等有毒、有腐蚀性气体的濃度。

TVOC传感器是利用电容技术来检测TVOC濃度,原理是利用把带有电容的传感器电阻膜夹入到电路芯片中的特殊的能量捕获技术,当环境中有TVOC污染物时,气体会穿过传感器电阻膜,电容会发热释放到传感器传感器电阻膜中,并通过电路芯片转换成电流,以此来测量TVOC污染物的濃度。

TVOC传感器有许多优点,它可以准确快速地测量环境中的TVOC污染物,并且价格不高,易于安装和维护,耐用耐抗污染。

但是,由于TVOC传感器的特殊原理,它只能测量有机物的部分组成,因此不能测量其他污染物的濃度。

此外,数据的准确性受到传感器的位置、环境温度和湿度等因素的影响。

空气中挥发性有机物的分析与检测

空气中挥发性有机物的分析与检测

空气中挥发性有机物的分析与检测随着社会的快速发展和工业化的进程,大量的化学物质被排放到大气中,其中包括挥发性有机物(VOCs)。

VOCs是一类具有高挥发性的有机化合物,主要来源包括燃烧排放、工业生产、汽车尾气、油漆和溶剂等。

VOCs对环境和人体健康造成了严重的影响,因此对空气中的VOCs进行分析和检测显得尤为重要。

VOCs的主要组成包括芳烃类、醇类、酮类、醛类和烃类等。

这些化合物在大气中具有较高的活性,可与氮氧化物和太阳光相互作用,形成臭氧和其他有害物质,对环境和人类的健康造成危害。

对空气中VOCs的分析与检测显得尤为重要。

VOCs的主要检测方法包括气相色谱-质谱联用技术(GC-MS)、气相色谱-火焰光度检测技术(GC-FID)、气相色谱-电子捕获检测技术(GC-ECD)和气相色谱-电离检测技术(GC-NCI)。

GC-MS是目前应用最为广泛的一种分析方法,其通过气相色谱将混合的化合物分离,并通过质谱仪对其进行定性和定量分析。

GC-FID技术可以对样品中的化合物进行定性和定量分析,而GC-ECD和GC-NCI则主要用于对卤代烷烃和硅烷等化合物的检测。

在空气中VOCs的检测过程中,首先需要采集大气样品并对其进行预处理。

常用的大气样品采集方法包括固相微萃取(SPME)、吸附管采样和泵式采样等。

接着,将采集到的样品通过气相色谱仪进行分离,再通过相应的检测技术进行分析,得出VOCs的种类和浓度信息。

在实际的环境监测中,VOCs的检测通常需要考虑到样品中复杂的成分以及低浓度下的分析。

需要选用灵敏度高、分辨率好的仪器进行分析,同时也需要考虑到样品预处理的方法和分析过程中的干扰物的去除。

还需要建立一套完善的质量控制体系,确保分析结果的准确性和可靠性。

除了空气中VOCs的分析检测外,我们还需要对其造成的健康和环境影响进行深入研究。

据统计,VOCs是导致室内空气污染和城市大气污染的主要原因之一,对人体健康和环境造成了严重危害。

便携式VOC检测仪的功能参数是怎样的

便携式VOC检测仪的功能参数是怎样的

便携式VOC检测仪的功能参数是怎样的1.测量原理:便携式VOC检测仪根据挥发性有机化合物的浓度通过气体传感器的变化来判断,并将结果显示在仪器的屏幕上。

常用的测量原理包括电化学、PID(光离子化检测器)等。

2. 测量范围:便携式VOC检测仪一般会有不同的量程可供选择,以适应不同环境中VOCs浓度的变化。

常见的量程范围从低ppb(10^-9)到高ppm(10^-6)。

3.响应时间:响应时间是指便携式VOC检测仪从检测到VOCs存在的时间到结果显示的时间。

一般情况下,响应时间应该尽可能短,以便及时采取相应的防护措施。

4.精确度:精确度是指便携式VOC检测仪测量结果与标准值之间的差异。

通常使用测量误差或绝对误差来表示。

精确度一般应在可接受范围内。

5.分辨率:分辨率是指便携式VOC检测仪能够分辨的最小变化量。

对于VOCs的检测仪器,一般分辨率越高,能够检测到的细微变化也越小。

6.显示方式:便携式VOC检测仪的显示方式多种多样,可以是数字显示,也可以是液晶显示。

一些高级的型号还可以通过蓝牙或者USB接口将数据传输到计算机或者移动设备上进行分析和记录。

7.数据存储与导出:便携式VOC检测仪通常具有数据存储功能,可以将检测的数据存储在内部存储器中。

同时,也可以通过USB接口或者无线传输将数据导出到计算机或者移动设备上。

8.电池寿命:便携式VOC检测仪一般使用可充电电池,电池寿命直接影响仪器的使用时间。

一般情况下,电池寿命越长,使用时间越长。

9.机械结构:便携式VOC检测仪一般是手持式的,机械结构应该轻便、坚固,方便携带和使用。

10.抗干扰能力:环境中常常存在各种干扰物质,便携式VOC检测仪应具有一定的抗干扰能力,以保证测试结果的准确性。

11.自动校准与自动清洗功能:为了保持测试结果的准确性,便携式VOC检测仪通常具有自动校准和自动清洗功能,可以自动校准零点和气体浓度。

12.报警功能:便携式VOC检测仪一般会设置一定的报警阈值,当VOCs浓度超过设定值时会触发报警,以提醒使用者采取相应的措施。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. VOCs的定义VOCs的学术定义:是指在正常状态下(20℃,101.3kPa),蒸气压在0.1mmHg(13.3Pa)以上沸点在260℃(500℉)以下的有机化学物质。

2.VOCs的特性●均含有碳元素,还含有H、O、N、P、S及卤素等非金属元素。

●熔点低,易分解,易挥发,均能参加大气光化学反应,在阳光下产生光化学烟雾。

●常温下,大部分为无色液体,具有刺激性或特殊气味。

●大部分不溶于水或难溶于水,易溶于有机溶剂。

●种类达数百万种,大部分易燃易爆,部分有毒甚至剧毒。

●相对蒸气密度比空气重。

3.VOCs的分类VOCs按其化学结构,可以分为:烃类(烷烃、烯烃和芳烃)、酮类、酯类、醇类、酚类、醛类、胺类、腈(氰)类等。

4.常见VOCs的理化性质所列部分VOCs选自GBZ2.1《国家职业卫生标准---工作场所有害因素职业接触限值—化学有害因素》VOCs的主要危害1.总体危害(1)危害环境①在阳光和热的作用下参与氧化氮反应形成臭氧,导致空气质量变差并且是夏季光化学烟雾、城市灰霾的主要成分;②VOCs是形成细粒子(PM2.5)和臭氧的重要前体物质,大气中VOCs在PM2.5中的比重占20%~40%左右,还有部分PM2.5由VOCs转化而来;③VOCs大多为溫室效应气体--导致全球范围内的升温。

(2)危害健康①刺激性&毒性VOCs超过一定浓度时,会刺激人的眼睛和呼吸道,使皮肤过敏、咽痛与乏力;VOCs很容易通过血液-大脑的障碍,损害中枢神经;VOCs伤害人的肝脏、肾脏、大脑和神经系统。

②致癌性、致畸作用和生殖系统毒性2.常见毒性VOCs的具体危害注:皮:指因皮肤、黏膜和眼睛直接接触蒸气、液体和固体,通过完整的皮肤吸收引起的全身效应敏:指已被人或动物资料证实该物质可能有致敏作用G1:指国际癌症组织(IARC)确认为致癌物;G2B:指为可疑人类致癌物3.常见毒性VOCs的容许浓度注:①中国职业接触限值悉依GBZ2.1-2007《工作场所有害因素职业接触限值—化学有害因素》。

②美国标准悉依NIOSH(职业安全健康研究所)或OSHA(美国职业安全与健康管理局)标准。

4.苯中毒(1)苯中毒原因主要是因苯在肝中细胞色素P450单加氧酶作用下被氧化为环氧苯有毒中间体,环氧苯在肝脏和骨髓中通过代谢形成苯酚、邻苯/对苯二酚、邻苯醌、对苯醌等代谢产物,该等代谢物进入细胞后,与细胞核中的DNA结合,会使染色体变化,直至癌变。

(2)苯与白血病1897年Nenoir与Claude报道了第1例苯作业工人白血病。

白血病患者中,很大部分与苯及其有机制品有接触历史。

卫生机构对苯接触人员的健康状况进行的调查表明:白血病的发病与苯接触的时间、浓度相关。

苯引起的白血病多在时间、高浓度接触后发生,最短6月,最长23年。

(3)职业接触①以苯为最终或中间产物的石油、化工行业,如煤化工中的干溜、焦炉气、煤焦油分馏;石化中的连续重整、苯抽提、苯乙烯、干气制乙苯、PX、乙烯等。

②以苯为生产原料的染料、药物、香料、农药、塑料、合成橡胶等行业。

③以苯为溶剂及稀释剂的油漆、印刷、电镀、油墨、粘胶、树脂、制鞋等行业。

(4)侵入途径:吸入、食入、经皮肤吸收☆嗅出苯的气味时,它的浓度大概是0.5-1.5ppm,这时就应该注意到中毒的危险。

VOCs检测法律依据一、 VOCs检测的法律依据1、安全生产法规(1)《危险化学品安全管理条例》(中华人民共和国国务院令第344号)第18条:危险化学品的生产、储存、使用单位,应当在生产、储存和使用场所设置报警装置。

(2)《生产过程安全卫生要求总则》(GB/T 12801 -2008)5.3.1.c:对产生危险和有害因素的过程,应配置监控检测仪器仪表。

(3)《产许可证条例》(国务院令第397号 2004)第6条:企业取得安全生产许可证,应当具备下列安全生产条件:(十一)有重大危险源检测、评估、监控措施和应急预案。

(4)《危险化学品重大危险源罐区现场安全监控装备设置规范》(AQ 3036-2010)2、职业健康卫生法规(1)《中华人民共和国职业病防治法》第23条:对可能发生职业损伤的有毒、有害工作场所,用人单位应当设置报警装置。

(2)《国家职业卫生标准-工业企业设计卫生标准》(GBZ 1-2010)6.1.6 应结合生产工艺和毒物特性,在有可能发生急性职业中毒的工作场所,根据自动报警装置技术发展水平设计自动报警或检测装置。

(3)《工作场所有害因素职业接触限值—化学有害因素》(GBZ2.1-2007)(4)《使用有毒物品作业场所劳动保护条例》(国务院 2002年第352)第11条:可能突然泄漏大量有毒物品或者易造成急性中毒的作业场所,设置自动报警装置。

3、环保法规(1)《国家环境保护“十二五”科技发展规划》(2011,环保部)该文将“有机污染物自动监测系统”列为“支持关键技术、装备和产品研发”项目。

(2)《重点区域大气污染防治“十二五”规划》(2012,环保部)该文规定“工业VOCs排放逐步安装在线连续监测系统,厂界安装VOCs环境监测设施”。

(3)《关于推进大气污染联防联控工作改善区域空气质量指导意见》(国办发[2010]33号)(二十三)各地环保部门应加强对重点企业的监督性监测,并推进其安装污染源在线监测装置。

4、生产使用法规(1)《石油化工可燃气体和有毒气体检测报警设计规范》(GB50493-2009)(2)《石油化工企业设计防火规范》(GB50160-2008)第4.6.11条:在使用或产生甲类气体或甲、乙A类液体的装置内,宜按区域控制和重点控制相结合的原则,设置可燃气体报警器探头。

二、毒性VOCs的检测范围1、确定依据(1)《石油化工可燃气体和有毒气体检测报警设计规范》(GB50493-2009)5.3.1(4)“有毒气体的测量范围宜为0~300%最高容许浓度或0~300%短时间接触容许浓度”。

(2)《国家职业卫生标准-工作场所有害因素职业接触限值》(GBZ2.1—2007)4.1 工作场所空气中化学物质容许浓度:苯的PC-STEL为10mg/m3(2.87ppm)(3)《国家职业卫生标准-工作场所有毒气体检测报警装置设置规范》(GBZ/T223-2009) 5.3 气体检测仪检测范围0~10倍PC-STEL,最小检测量≤0.5倍PC-STEL2、苯的检测范围(1)依据上述规定,苯的检测范围分别为:2.87ppm×3 = 8.61 ppm≈ 9 ppm(2)目前国际、国内苯检测器的实际测量范围:① 固定式:0-10 / 20 ppm② 便携式:0-1,000 /2,000 ppm(主要用于测漏)三、毒性VOCs探测器报警点的设定(以苯为例)1、设定依据(1)《国家职业卫生标准-工业企业设计卫生标准》(GBZ 1-2010)6.1.6.3 毒物报警值应根据有毒气体毒性和现场实际情况至少设警报值和高报值。

预报值为MAC或PC-STEL的1/2,无PC-STEL 的化学物质,预报值可设在相应超限倍数值的1/2;警报值为PC-STEL值,无PC-STEL的化学物质,警报值可设在相应超限倍数值;高报值应综合考虑有毒气体毒性、作业人员情况、事故后果、工艺设备等各种因素后设定。

(2)《石油化工可燃气体和有毒气体检测报警设计规范》(GB50493-2009)5.3.3(3)有毒气体的报警设定值宜小于或等于100%最高容许浓度或短时间接触容许浓度。

(3)《危险化学品重大危险源罐区现场安全监控装备设置规范》(AQ3036-2010)4.3.6 有毒气体报警至少分为两级,第一级报警阈值为最高允许浓度的75%;第二级报警值为最高允许浓度的2倍-3倍。

2、苯检测器的报警设定值(1)、按上述要求,苯检测器的报警设定值应为:①低段报警设定值: PC-STEL 3.08ppm(10mg/m3 )的1/2,约1.5ppm(实际为3-5ppm);② 高段报警设定值:PC-STEL 3.08ppm(10mg/m3 ),约3ppm(实际为5-7ppm)。

(2)、实际应用中苯探测器的建议报警设定值为:①低段报警设定值:一般为 1.5-3ppm(量程0-10ppm);② 高段报警设定值:一般为3-7ppm(量程0-10ppm)。

PID检测技术介绍1.什么是PID?PID是英文Photo Ionization Detection–即“光离子化检测”的英文首字母缩写。

PID的基本原理是利用惰性气体真空放电现象所产生的紫外线(VUV),使待测气体分子发生电离,并通过测量离子化后的气体所产生的电流强度,从而得到待测气体浓度。

2.光离子(PID)检测方法具有哪些优点?(1)精度高,可满足低浓度苯的定量检测(2) 抗干扰性强,石化行业常见气体(烷烃)不易对其产生的影响(3) 配合泵吸式进气,响应迅速,恢复快;(4) 是一种非破坏性检测器,它不会“燃烧”或永久性改变待测气体3.PID传感器原理PID传感器由紫外灯光源和离子室等主要部分构成,在离子室有正负电极,形成电场,有机挥发物分子在高能紫外线光源激发下,产生负电子和正离子,这些电离的微粒在电极间形成电流,经检测器放大和处理后输出电流信号,最终检测到ppm级的浓度。

4.PID能检测哪些气体?主要是各种人工合成的不饱和烃类及大分子、长链的有机化合物。

(1) 含碳的有机化合物:① 卤代烃类、硫代烃类、不饱和烃类(如烯烃)等。

② 芳香类:苯、甲苯、二甲苯(包括邻、间、对位二甲苯)、奈等。

③ 醇类:甲硫醇、丙烯醇、正丁醇、2-丁氧基乙醇等。

④ 酮类和醛类:乙醛、醋醛、丙酮、丙烯醛等。

⑤ 胺类:二甲基胺、二甲基甲酰胺等。

(2) 部分不含碳的无机气体:氨、半导体气体(如砷、硒、溴、碘)等。

5.PID不能检测哪些气体?PID不能检测大部分自然界中存在的小分子、含饱和键的化合物。

(1) 空气(N2,O2,CO2,H2O)(2) 常见毒气(CO,HCN,SO2)(3) 天然气(甲烷、乙烷、丙烷等)、氢气(4) 酸性气体(HCl,HF,HNO3)(5) 氟里昂(6) 臭氧(7) 放射性物质等。

PID探测器优势●优势一:采用专利真空陶管电离型PID灯应用最新一代光离子技术,具有远超上一代产品的寿命及检测精度(PID灯18个月质保)。

相对业内平均6-8个月的PID灯质保期,具有显著的技术优势同时具有更高的整体性价比。

●优势二:采用专利双通道供气,具备自动清洗、自动调零功能专利双气道进气系统,配合专用过滤装置,可实现自动清洗、自动调零功能。

使其具有超强的对抗恶劣环境(高湿、粉尘)的能力,同时确保检测精度,减少现场维护工作量。

●优势三:内置长寿命隔膜泵,检测灵敏、响应迅速1.扩散式检测优点:成本相对低廉缺点:① 苯及大多挥发性有机物常温下为雾状的汽液混合物蒸气,比空气重,很难自由扩散透过隔爆片进入离子室,故响应时间长(通常15分钟以上);② 同样原因导致挥发性有机物扩散进入离子室后很难被排出, 故恢复时间长;③ 因PID检测为非破坏性检测,有机蒸气会在离子室内循环电离,不仅缩短了探测器的寿命,更会导致其长时间误报(通常30分钟以上);④ 传感器和离子室不能置于防爆壳体内,受环境(温度、湿度、粉尘)影响大,故障率高。

相关文档
最新文档