晶胞结构及计算
3-1-2晶胞及其相关参数计算 (含视频)(教学课件)-高中化学人教版(2019)选择性必修第二册

6 1 +8 1 +4=8 28
晶胞的相关计算: 1. 晶体化学式的确定 学以致用2:请计算出NaCl晶胞Na+和Cl-的个数。
Na+数=12×
1 4
+1 =4
Cl-数=8×
1 8
+6
×
1 2
=4
一个晶胞含4个NaCl
Na+数: Cl-数=1:1
氯化钠的化学式为NaCl
ห้องสมุดไป่ตู้
离子晶体化学式只表示每个晶胞或晶体中各类粒子的最简整数比
知识拓展 1. 三棱柱晶胞中粒子数目的计算
三棱柱
体心 面心 棱边
顶点
1 1/2 水平1/4 竖1/6
1/12
任务一:晶胞中粒子数目的计算——六棱柱
六棱柱
体心 面心 棱边 顶点
1 1/2 水平1/4 竖1/3
1/6
小结
(1)立方体 (3)六棱柱
体心 面心 棱边 顶点
1
1/2 (2)三棱柱
1/4
1/8
复习回顾
晶体的构成微粒呈周期性的有序排列
晶体:内部微粒(原子、离子或分子)在三维空间里呈周期性排列
而构成的具有规则几何外形的固体。
一、晶胞
金刚石结构 思考讨论
铜晶体结构
只需研究基本重复单元
氯化钠晶体结构
要研究晶体的结构,应当如何入手呢?是否需要研究构成晶体的所有部分?
晶胞:描述晶体结构的最小基本重复单元叫做晶胞。
晶胞的相关计算:
大蓝本61页
例1: 以晶胞参数为单位长度建立的坐标系 可以表示晶胞中各原子的位置,称作原子分数 坐标,如图中原子1的坐标为 12,21,12 ,则原 子 2 和 3 的 坐 标 分 别 为 _________ 、 __________ 。
晶胞结构

晶胞结构一、金属晶体2.钾型A2(体心立方堆积)堆积晶胞钾型A2堆积晶胞是立方体心, 因此晶胞的大小可以用等径圆球的半径r 表示出来, 即晶胞的边长a 与r 的关系为:A2堆积的空间利用率的计算:A2堆积用圆球半径r 表示的晶胞体积为:ar r a r a 43,34 ,43===%02.68833364342234223364)34(33333==⋅=⋅===πππr r V V A rV rr V 晶胞圆球圆球晶胞堆积的空间利用率为:个圆球的体积为:每个晶胞中3.六方最密堆积(4)A1(面心立方最密堆积)A1是ABCABCABC······型式的堆积,从这种堆积中可以抽出一个立方面心点阵,因此这种堆积型式的最小单位是一个立方面心晶胞。
A1堆积晶胞是立方面心, 因此晶胞的大小可以用等径圆球的半径r 表示出来, 即晶胞的边长a 与r 的关系为:A1堆积空间利用率的计算:A1堆积用圆球半径r 表示的晶胞体积为:(5)A4堆积形成晶胞A4堆积晶胞是立方面心点阵结构, 因此晶胞的大小可以用等径圆球的半径r 表示出来, 即晶胞的边长a 与r 的关系为:A4堆积的空间利用率的计算:A4堆积用圆球半径r 表示的晶胞体积为: ra r a 22 ,42==%05.742312163441344 4216)22(33333==⋅=⋅===πππr r V V A r V r r V 晶胞圆球圆球晶胞堆积的空间利用率为:个圆球的体积为:每个晶胞中ar r a r r a 83,38 ,8243===⨯=%01.34163335123484348 833512)38(33333==⋅=⋅===πππr r V V A r V r r V 晶胞圆球圆球晶胞堆积的空间利用率为:个圆球的体积为:每个晶胞中二、原子晶体1.金刚石立体网状结构,每个碳原子形成4个共价键,任意抽出2个共价键,每两个单键归两个六元环所有,而不是只归一个六元环所有(如图所示,红色的两个碳碳单键,可以构成蓝色和紫红色的两个六元环)。
第十二章物质结构与性质第九课时晶胞结构的分析与计算2课件-高三化学一轮复习

⑤金刚石型堆积 设原子半径为 R,由于原子在晶胞体对角线方向 上相切(相邻两个碳原子之间的距离为晶胞体对角线
的四分之一),可以计算出晶胞参数:a=b=c=8 3 3R, α=β=γ=90°。每个晶胞中包含八个原子。
η=8×a433πR3×100%=88×433πRR33×100%≈34.01%。 3
角度一 原子坐标ቤተ መጻሕፍቲ ባይዱ数的计算 [典题示例 4] (1)(2019·全国卷Ⅱ)一种四方结构的超导化合物
的晶胞如图 1 所示。晶胞中 Sm 和 As 原子的投影位置如图 2 所示。
图1
图2
以晶胞参数为单位长度建立的坐标系可以表示晶胞中各原子
鸟不展翅膀难高飞。
人儿生童大不 有得无,行抱胸负一怀,,这般虽无寿关作百紧岁要为犹,为可拔无成也年高。人则设不可问胸无出大志现。 ,主要考查晶胞的微粒组成、晶胞的
桐山万里丹山路,雄风清于老风声
人雄若鹰密有 必志须度,比万鸟、事飞可得微为高。,粒因为间它的的猎物距就是离鸟。、空间占有率、原子分数坐标等内容,如 2020
[解析] (1)根据图 1 中原子 1 的坐标为12,12,12,可看出原子 2 的 z 轴为 0,x、y 轴均为12,则原子 2 的坐标为12,12,0;原子 3 的 x、y 轴均为 0,z 轴为12,则原子 3 的坐标为0,0,12。(2)D 与 周围 4 个原子形成正四面体结构,D 与顶点 A 的连线处于晶胞体对 角线上,过面心 B、C 及上底面面心原子的平面且平行侧面将晶胞 2 等分,同理过 D 原子的且平行侧面的平面将半个晶胞再 2 等分, 可知 D 处于到各个面的14处,则 D 原子的坐标参数为14,14,14。
晶体结构的分析和计算

一、晶胞对组成晶胞的各质 点的占有率
立方晶胞
体心: 1 面心: 1/2 棱边: 1/4 顶点: 1/8
有关晶体的计算
1、当题给信息为晶体中最小重 复单元——晶胞(或平面结构)中 的微粒排列方式时,要运用空间想 象力,将晶胞在三维空间内重复延 伸,得到一个较完整的晶体结构, 形成求解思路。
例1:
因C60分子含30个双键,与极活泼的F2发生加成反应即可生成C60F60 (只 要指__出__“___C_6_0_含__3_0_个__双__键__”__即__可__,_但__答__“__因__C_6_0_含__有__双__键__”__不__行__)____.
(3)通过计算,确定C60分子所含单键数.C60分子所含单键数为___________. 可由欧拉定理计算键数(即棱边数):60+(12+20)-2=90 C60分子中单键为:90-30=60
例4:
金刚石晶体中 含有共价键形成的 C原子环,其中最
小的C环上有__6___
个C原子。
巩固练习一:
石墨晶体的层状结构,层内 为平面正六边形结构(如图), 试回答下列问题: (1)图中平均每个正六边形占
有C原子数为__2__个、占有的碳 碳键数为__3__个。
(2)层内7个六元环完全占有
的C原子数为1_4____个,碳原子
2、当题给信息为晶体中微粒 的排列方式时,可在晶体结构中 确定一个具有代表性的最小重复 单元——晶胞为研究对象,运用 点、线、面的量进行解答。
例2:
右图是石英晶 体平面示意图(它实 际上是立体的网状结 构),其中硅、氧原 子数之比为____.
1:2
例3:Байду номын сангаас
如图直线交点处 的圆圈为NaCl晶体中 Na+或Cl-所处位置, 晶体中,每个Na+周 围与它最接近的且距 离相等的Na+个数为: ____ 12
晶胞结构的分析与计算

晶胞结构的分析与计算——晶体结构与性质章复习(第2课时)【学习目标】1.能根据分摊法确定晶体的组成;提高抽象思维能力,提升宏观辨识与微观探析的发展水平。
(重难点)2.通过典型晶胞再认识,学会利用晶胞的基本特点分析晶体中微粒配位数。
3.建立解晶胞的一般观念、思维模型,能类比迁移相关知识解决新情境新问题;提升解决复杂问题的能力。
(重难点),则晶胞中最邻近两个金属原子间的距离为?最近发现一种由钛原子和碳原子构成的气态团簇分子,如顶角和面心的原子是钛原子,棱的中心和体心的原子是碳原子,它的化学式是?分摊法能解决哪些问题?使用分摊法时应注意什么问题?石英晶体的晶胞如图,确定其化学式的方法有哪些?晶胞中,配位情况对比CsCl晶胞数目NaCl晶胞数目CaF2晶胞数目+Ca2+配位数1.有下列某晶体的空间结构示意图。
图中●和化学式中M分别代表阳离子,图中○和化学式中N分别代表阴离子,则化学式为MN2的晶体结构为()A B C D2.下列说法正确的是()(N A表示阿伏加德罗常数)A.1mol冰中含有氢键的个数为2 N AB.12g石墨中含有C-C键的个数为3N AC.二氧化硅晶体中存在四面体网状结构,O处于中心,Si处于4个顶点D.密置层在三维空间堆积可得体心立方堆积和面心立方最密堆积3.氮化碳结构如下图所示,其硬度超过金刚石,下列有关氮化碳的说法不正确的是()A.氮化碳属于原子晶体B.氮化碳中碳显-4价,氮显+3价C.氮化碳的化学式为C3N4D.每个碳原子与四个氮原子相连,每个氮原子与三个碳原子相连4.ZnS在荧光体、光导体材料、涂料、颜料等行业中应用广泛。
立方ZnS晶体结构如下图所示,其晶胞边长为540.0 pm.密度为(列式并计算),a位置S2-离子与b位置Zn2+离子之间的距离为pm(列示表示)5.晶胞有两个基本要素:①原子坐标参数,表示晶胞内部各原子的相对位置,下图为Ge单晶的晶胞,其中原子坐标参数A为(0,0,0);B为(1/2,0,1/2);C为(1/2,1/2,0)。
晶体结构的分析与计算

(3)GaAs的熔点为1 238 ℃,密度为ρ g·cm-3,其晶胞结构如图所示。该 晶体的类型为__原__子__晶__体__,Ga与As以_共__价___键结合。Ga和As的摩尔质量 分别为MGa g·mol-1和MAs g·mol-1,原子半径分别为rGa pm和rAs pm,阿 伏加德罗常数值为NA,则GaAs晶胞中原子的体积占晶胞体积的百分率为 _4_π_×__13_0(_-M_30G_Na_+A_ρ_M(_r_A3G_sa)+__r_3A_s)_×__1_0_0_%___。
123456
3.(2020·四川武胜烈面中学高 二期中)有四种不同堆积方式 的金属晶体的晶胞如图所示, 下列有关说法正确的是 A.①为简单立方堆积,②为六方最密堆积,③为体心立方堆积,④为面
心立方最密堆积
√B.每个晶胞都是规则排列的
C.晶胞中原子的配位数分别为:①6,②8,③8,④12 D.空间利用率的大小关系为:①<②<③<④
4.(2020·哈尔滨第六中学高二期中)以NA表示阿伏加德罗常数的值,下列 说法错误的是
A.18 g冰(图1)中含O—H键数目为2NA B.28 g晶体硅(图2)中含有Si—Si键数目为2NA
√C.44 g干冰(图3)中含有NA个晶胞结构单元
D.石墨烯(图4)是碳原子单层片状新材料,12 g石墨烯中含C—C键数目为1.5NA
123456
解析 在氯化钠晶体中,Na+和Cl-的配位数都是6,则距离Na+最近的 六个Cl-形成正八面体,A项正确; 分子晶体的构成微粒是分子,每个分子为一个整体,所以该分子的化学 式为E4F4或F4E4,B项正确; 锌采取六方最密堆积,配位数为12,C项错误; KO2晶体中每个K+周围有6个紧邻的O-2 ,每个 O-2 周围有6个紧邻的K+, D项正确。故选C。
晶胞结构

晶胞结构一、金属晶体2.钾型A2(体心立方堆积)堆积晶胞钾型A2堆积晶胞是立方体心, 因此晶胞的大小可以用等径圆球的半径r 表示出来, 即晶胞的边长a 与r 的关系为:A2堆积的空间利用率的计算:A2堆积用圆球半径r 表示的晶胞体积为:ar r a r a 43,34 ,43===%02.68833364342234223364)34(33333==⋅=⋅===πππr r V V A rV rr V 晶胞圆球圆球晶胞堆积的空间利用率为:个圆球的体积为:每个晶胞中3.六方最密堆积(4)A1(面心立方最密堆积)A1是ABCABCABC······型式的堆积,从这种堆积中可以抽出一个立方面心点阵,因此这种堆积型式的最小单位是一个立方面心晶胞。
A1堆积晶胞是立方面心, 因此晶胞的大小可以用等径圆球的半径r 表示出来, 即晶胞的边长a 与r 的关系为:A1堆积空间利用率的计算:A1堆积用圆球半径r 表示的晶胞体积为:(5)A4堆积形成晶胞A4堆积晶胞是立方面心点阵结构, 因此晶胞的大小可以用等径圆球的半径r 表示出来, 即晶胞的边长a 与r 的关系为:A4堆积的空间利用率的计算:A4堆积用圆球半径r 表示的晶胞体积为: ra r a 22 ,42==%05.742312163441344 4216)22(33333==⋅=⋅===πππr r V V A r V r r V 晶胞圆球圆球晶胞堆积的空间利用率为:个圆球的体积为:每个晶胞中ar r a r r a 83,38 ,8243===⨯=%01.34163335123484348 833512)38(33333==⋅=⋅===πππr r V V A r V r r V 晶胞圆球圆球晶胞堆积的空间利用率为:个圆球的体积为:每个晶胞中二、原子晶体1.金刚石立体网状结构,每个碳原子形成4个共价键,任意抽出2个共价键,每两个单键归两个六元环所有,而不是只归一个六元环所有(如图所示,红色的两个碳碳单键,可以构成蓝色和紫红色的两个六元环)。
晶胞参数计算公式

晶胞参数计算公式晶胞参数是材料表征的重要参数,因而晶胞参数的计算十分重要。
本文针对晶胞参数的计算,详细介绍了晶胞参数计算公式中的一些重要概念及计算方法。
首先,晶胞参数是描述物质电学性质的概念,包括晶胞体积、晶胞定律、晶格常数和晶体结构等。
其中晶胞体积指:物质经过特定初始条件下晶胞构型变化后占用的总空间,是两个基本晶胞参数。
晶胞定律指:晶胞的长、宽、高之间的关系,是一种结构参数的表示。
晶格常数指:两个原子之间的距离,是一种晶胞结构参数的表示。
晶体结构是指:物质中原子构成的定向三维晶体结构。
晶胞参数计算公式包括晶胞参数计算公式和晶格常数计算公式。
晶胞参数计算公式用于计算晶胞体积,晶胞定律及晶体结构,主要有两种计算方法:一种是基于原子坐标的公式,如Bravais(1848)公式、Voronoi(1908)公式和Ginzburg-Landau(1950)公式;另一种是基于晶胞参数的公式,如Hilbert(1912)公式、Madelung(1925)公式和Ladd(1977)公式。
晶格常数计算公式用于计算晶格参数,主要有两种计算方法:一种是基本元素计算法,如Weaire(1892)公式和Morse(1931)公式;另一种是分子力学计算法,如Lennard-Jones(1938)公式和Stillinger-Weber(1985)公式。
现代晶体学通过实验测量元素晶体中原子间距离,利用晶胞参数和晶格常数计算公式,可以准确地确定晶体结构,进而研究物质的物理性质,为应用物理学的发展作出贡献。
在电子结构的计算中,也使用晶胞参数和晶格常数计算公式,分析不同晶体结构的能带结构和电子电荷密度等。
因此,晶胞参数计算公式和晶格常数计算公式是材料表征的重要工具,它们是物理化学所不可缺少的技术手段,极大地提高了研究物质性质的精度。
无论是在材料物理研究中,还是在电子结构计算中,晶胞参数计算公式和晶格常数计算公式都是物理学家必备的技术工具,必将对物理研究和应用物理学的发展产生重要作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
晶胞结构及计算
一、键数与配位数的判断
1.下列说法中正确的是()
A.金刚石晶体中的最小碳原子环由6个碳原子构成
B.晶体中只要有阳离子,就有阴离子
C.1 mol SiO2晶体中含2 mol Si—O键
D.金刚石化学性质稳定,即使在高温下也不会和O2反应
2.下列叙述正确的是()
A.分子晶体中的每个分子内一定含有共价键
B.原子晶体中的相邻原子间只存在非极性共价键
C.离子晶体中可能含有共价键
D.金属晶体的熔点和沸点都很高
3.(2015·湖北黄石9月调研)晶体硼的结构如右图所示。
已知晶体硼结构单元是由硼原子组成的正二十面体,其中有20个等边三角形的面和一定数目的顶点,每个顶点上各有1个B原子。
下列有关说法不正确的是()
A.每个硼分子含有12个硼原子
B.晶体硼是空间网状结构
C.晶体硼中键角是60°
D.每个硼分子含有30个硼硼单键
4.冰晶石(Na3AlF6)是离子化合物,由两种微粒构成,冰晶石晶胞结构如图所示,“”位于大立方体顶点和面心,“”位于大立方体的12条棱的中点和8个小立方体的体心,那么大立方体的体心处“”所代表的微粒是________(填具体的微粒符号)。
5.某离子晶体的晶胞结构如图所示。
试回答下列问题:
(1)晶体中每一个Y同时吸引着________个X,每个X同时吸引着________个Y,该晶体的化学式是________________。
(2)晶体中在每个X周围与它最接近且距离相等的X共有________个。
(3)晶体中距离最近的2个X与一个Y形成的夹角(∠XYX)为__________。
二、晶胞中的综合计算
6.(2017·成都七中高三上10月阶段测试)已知单质钒的晶胞为,则V 原子的配位数是__________,假设晶胞的边长为d cm,密度为ρg·cm-3,则钒的相对原子质量为______________。
7.(2017·临汾一中高三上学期期中)K2S的晶胞结构如图所示。
其中K+的配位数为________,S2-的配位数为________;若晶胞中距离最近的两个S2-核间距为a cm,则K2S晶体的密度为________ g·cm-3(列出计算式,不必计算出结果)。
8.(2016·华中师大附中高三5月月考)NaH的晶胞如图,则NaH晶体中阳离子的配位数是
________;设晶胞中阴、阳离子为刚性球体且恰好相切,求阴、阳离子的半径比r(-) r(+)=
________。
答案精析
1.A [金属晶体中只有阳离子,没有阴离子;因每个Si 与相邻4个O 以共价键相结合,故1 mol SiO 2中含有4 mol Si —O 键;金刚石在一定条件下可以与O 2反应生成CO 2。
] 2.C 3.B 4.Na +
解析 黑球的个数是8×18+6×12=4,白球的个数为12×1
4+8=11,而Na 3AlF 6中钠离子与
AlF 3-
6的个数比是3∶1,所以钠离子应是12个,所以图中▽应代表Na +。
5.(1)4 8 XY 2或(Y 2X) (2)12 (3)109°28′
解析 (1)此结构虽不符合晶胞“无隙并置”,但仍可用此立方结构单元计算晶体组成。
每个最小立方单元中只有1个Y ,且每个Y 同时吸引4个X ,而X 处于顶点上为8个立方单元所共有,即每个X 同时吸引8个Y 。
在每个该立方单元中含X :18×4=1
2(个),含Y 1个,则化
学式为XY 2或Y 2X 。
(2)在一个立方单元中,每个X 与它的距离最接近的X 有3个,则每个X 周围有3×8
2=12(个)(每个面为两个立方单元共有)。
(3)在此立方单元中,Y 与4个X 形成
正四面体结构,故键角为109°28′。
6.8 1
2
ρd 3N A
解析 根据晶胞图可知,每个矾原子周围距离最近的有8个矾原子,所以矾的配位数为8,每个晶胞中含有的矾原子数为1+8×18=2,晶胞的体积为d 3cm 3,根据ρ=2M
N A V ,可知,钒的
相对原子质量M =12ρVN A =1
2ρd 3N A 。
7.4 8
4×110N A ·(2a )3[或4×1106.02×1023·(2a )3
]
解析 K 2S 的晶胞中,每个K +
周围等距最近的S 2-
有4个,所以K +
的配位数为4,每个S 2
-
周围等距最近的K +
有8个,所以S 2-
的配位数为8。
晶胞中距离最近的两个S 2-
核间距为a cm ,为每个面对角线距离的一半,则晶胞的边长为2a cm ,故K 2S 晶体的密度为ρ=m V =
4×110N A (2a )3[或4×110
6.02×1023·(2a )3]。
8.6 0.414(或2-1)
解析 NaH 的晶胞与氯化钠的相似,则NaH 晶体中阳离子的配位数是6;NaH 晶体中阴阳离
子的半径和为晶胞边长a (如图
)的一半即a
2
,钠离子的半径为对角
线的14,即为24a ,氢负离子的半径为12a -24a ,所以H -半径与Na +
半径之比为r (-)r (+)=
12a -24a
2
4a =0.414。