实验微分方程(基础实验)

合集下载

微分方程基础练习题(简易型)含答案解析

微分方程基础练习题(简易型)含答案解析

微分方程基础练习题(简易型)含答案解析题目1. 解微分方程 $\frac{dy}{dx} = 3x^2 + 2x$,其中 $y(0)=1$。

2. 解微分方程 $\frac{dy}{dx} + y = x$,其中 $y(0)=1$。

3. 解微分方程 $\frac{dy}{dx} - 2y = -4$。

4. 解微分方程 $\frac{dy}{dx} + 9y = \sin x$。

答案解析1. 对微分方程两边同时积分,得到 $y = x^3+x+c$,其中$c$ 为任意常数。

由 $y(0)=1$ 可求出 $c=1$,所以 $y=x^3+x+1$。

2. 首先解齐次方程 $\frac{dy}{dx} + y = 0$,得到 $y=Ce^{-x}$,其中 $C$ 为任意常数。

对于非齐次方程 $\frac{dy}{dx} + y = x$,设其特解为 $y=ax+b$,代入方程得到 $a=\frac{1}{2}$,$b=\frac{1}{2}$。

因此通解为 $y=Ce^{-x}+\frac{1}{2}x+\frac{1}{2}$。

由 $y(0)=1$ 可得到 $C=\frac{1}{2}$,所以 $y=\frac{1}{2}(2e^{-x}+x+1)$。

3. 对微分方程两边同时积分,得到 $y = Ce^{2x}+2$,其中$C$ 为任意常数。

4. 首先解齐次方程 $\frac{dy}{dx} + 9y = 0$,得到 $y=Ce^{-9x}$,其中 $C$ 为任意常数。

对于非齐次方程 $\frac{dy}{dx} + 9y= \sin x$,由于 $\sin x$ 不是指数函数 $e^{kx}$ 的线性组合,所以采用常数变易法,设其特解为 $y=A\sin x + B\cos x$,代入方程得到 $A=-\frac{1}{82}$,$B=\frac{9}{82}$。

因此通解为 $y=Ce^{-9x}-\frac{1}{82}\sin x+\frac{9}{82}\cos x$。

医用高等数学第五章微分方程基础5.5

医用高等数学第五章微分方程基础5.5
例 假定药物以恒定的速率 k0 进行静脉滴注,
试求体内药量随时间的变化规律。
返回
解 把机体设想为一个同质单元,并假
定药物在体内按一级速率过程消除,消除 的速率常数为 k0这样的一室模型如图所示。
k0
k
设静脉滴注时刻 t 体内的药量为 x(t) , 则有以下数学模型:
dx
dt k0 kx
返回
返回
三、流行病数学模型
这里举一个最简单的一类流行病学模型------无移除的流行病模型。这里假定
(1)感染通过一个团体成员之间的接触而传 播,感染者不因死亡、痊愈或隔离而被移除;
(2)团体是封闭的,总人数为N,开始时不 妨只有一个感染者;
(3)团体中各成员之间的接触机会均等,因
此易感者转为感染者的变化率与当时的易感人
解 得x
r
k r kx0 e rt
x0
返回
r
k
t 0时, x r
k
x0
0
t
分析:
上式称为自然生长方程,也称 logistic方程,它 表达自然环境中生物种群的生长有着重要的意义. 式中的图形为S形曲线,称为logistic曲线。
返回
二、药物动力学模型
药物动力学是一门研究药物、毒物及其代 谢物在机体内的吸收、分布、代谢和排谢过程 不定量规律的科学,这里仅以一室模型为例, 说明微分在这方面的应用。
第五节 微分方程在医学上的应用
随着整个科学技术的数学化,现代医学也加 快了向数学化发展的速度。普遍地、有效地应 用数学方法来解决医学科研中的问题,提示其 中的数量规律性,已成为现代医学发展的潮流。 这种提示医学问题中各变量之间关系的解析式, 称为数学模型。而微分方程是建立数学模型时 应用最为广泛的工具之一。下面我们举几个例 子,初步说明现代医学定量分析研究的方法和 一些途径。

《微积分》课程教学大纲.

《微积分》课程教学大纲.

《微积分》课程教学大纲学 时 数:126学 分 数:7适用专业:经济类本科执 笔:吴赣昌 编写日期:2006年6月课程的性质、目的和任务 本课程是高等学校经济类本科各专业学生的一门必修的重要基础理论课,它是为培养我国社会主义现代化建设所需要的高质量建设人才服务的。

是为培养我国社会主义现代化建设所需要的高质量建设人才服务的。

通过本课程的学习,要使学生获得一元函数微积分学、多元函数微积分学、无穷级数、常微分方程与差分方程等方面的基本概念、基本理论和基本运算技能,为后续课程的学习奠定必要的数学基础。

为后续课程的学习奠定必要的数学基础。

在课程的教学过程中,要通过各个教学环节逐步培养学生的抽象思维能力、逻辑推理能力、空间想象能力、数学运算能力、综合解题能力、数学建模与实践能力以及自学能力。

能力以及自学能力。

课程教学的主要内容与基本要求一、函数、极限与连续 主要内容:函数的概念及其表示法,函数的有界性、单调性、周期性和奇偶性;反函数、复合函数和隐函数,基本初等函数的性质及其图形特征,初等函数,简单应用问题的函数关系的建立;常用经济函数;数列极限与函数极限的定义和性质,函数的左、右极限,无穷小与无穷大;无穷小的比较;极限的四则运算;极限存在的两个准则和两个重要极限; 连续函数的概念,函数间断点的分类;初等函数的连续性,闭区间上连续函数的性质(最大值最小值定理和介值定理)。

基本要求:1、理解函数的概念,掌握函数的表示法;、理解函数的概念,掌握函数的表示法;2、了解函数的有界性、单调性、周期性与奇偶性;、了解函数的有界性、单调性、周期性与奇偶性;3、理解复合函数、反函数、隐函数和分段函数的概念;、理解复合函数、反函数、隐函数和分段函数的概念;4、掌握基本初等函数的性质及其图形,理解初等函数的概念;、掌握基本初等函数的性质及其图形,理解初等函数的概念;5、会建立简单应用问题的函数关系,熟悉几种常用经济函数;、会建立简单应用问题的函数关系,熟悉几种常用经济函数;6、了解数列极限和函数极限(包括左、右极限)的概念;、了解数列极限和函数极限(包括左、右极限)的概念;7、了解无穷小的概念和基本性质,掌握无穷小的阶的比较方法。

微分方程在日常实际中的应用

微分方程在日常实际中的应用

微分方程在实际中的应用——以学习物理化学为例函数是客观事物的内部联系在数量方面的反映,利用函数关系又可以对客观事物的规律性进行研究,因此如何寻找出所需要的函数关系,在实践中具有重要意义。

在许多问题中,往往不能直接找出所需要的函数关系,但是根据问题所提供的情况,有时可以列出含有未知函数及其导数的关系式,如dy/dx=2x、ds/dt=0.4 ,这样的关系就是所谓微分方程,。

一般的、凡是表示未知函数、未知函数的导数与自变量之间的关系的方程,叫做微分方程。

如果一个微分方程中出现的未知函数只含一个自变量,这个方程叫做常微分方程,也简称微分方程。

如果一个微分方程中出现多元函数的偏导数,或者说如果未知函数和几个变量有关,而且方程中出现未知函数对几个变量的导数,那么这种微分方程就是偏微分方程。

20世纪以来,随着大量的边缘科学诸如电磁流体力学、化学流体力学、动力气象学、海洋动力学、地下水动力学等等的产生和发展,也出现不少新型的微分方程(特别是方程组)。

70年代随着数学向化学和生物学的渗透,出现了大量的反应扩散方程。

从“求通解”到“求解定解问题”数学家们首先发现微分方程有无穷个解。

常微分方程的解会含有一个或多个任意常数,其个数就是方程的阶数。

偏微分方程的解会含有一个或多个任意函数,其个数随方程的阶数而定。

总之,力学、天文学、几何学等领域的许多问题都导致微分方程。

在当代,甚至许多社会科学的问题亦导致微分方程,如人口发展模型、交通流模型……。

因而微分方程的研究是与人类社会密切相关的。

牛顿研究天体力学和机械力学的时候,利用了微分方程这个工具,从理论上得到了行星运动规律。

后来,法国天文学家勒维烈和英国天文学家亚当斯使用微分方程各自计算出那时尚未发现的海王星的位置。

这些都使数学家更加深信微分方程在认识自然、改造自然方面的巨大力量。

微分方程的理论逐步完善的时候,利用它就可以精确地表述事物变化所遵循的基本规律,只要列出相应的微分方程,有了解方程的方法。

2013年下学期数学实验作业

2013年下学期数学实验作业

数学实验与数学建模实验报告学院:专业班级:姓名:学号:完成时间:2014 年1 月6日实验一 图形的画法1. 做出下列函数的图像:(1))2sin()(22--=x x x x y ,22≤≤-x (分别用plot 、fplot ) (2)22/9/251x y +=(用参数方程)(3) 在同一图形窗口中,画出四幅不同图形(用subplot 命令):1cos()y x =,2sin(/2)y x pi =-,23cos()y x x pi =-,sin()4x y e =(]2,0[π∈x )2 作出极坐标方程为)cos 1(2t r -=的曲线的图形.3 作出极坐标方程为10/t e r =的对数螺线的图形.4 绘制螺旋线⎪⎩⎪⎨⎧===t z t y t x ,sin 4,cos 4在区间[0,π4]上的图形.在上实验中,显示坐标轴名称。

5 作出函数22y x xye z ---=的图形.6 作出椭球面1194222=++z y x 的图形.(该曲面的参数方程为,cos ,sin sin 3,cos sin 2u z v u y v u x === (ππ20,0≤≤≤≤v u ).)7 作双叶双曲面13.14.15.1222222-=-+z y x 的图形.(曲面的参数方程是,csc 3.1,sin cot 4.1,cos cot 5.1u z v u y v u x ===其中参数πππ<<-≤<v u ,20时对应双叶双曲面的一叶, 参数πππ<<-<≤-v u ,02时对应双叶双曲面的另一叶.)8 作出圆环v z u v y u v x sin 7,sin )cos 38(,cos )cos 38(=+=+=,(πππ22/,2/30≤≤≤≤v u )的图形.9 作出球面22222=++z y x 和柱面1)1(22=+-y x 相交的图形.10 作出锥面222z y x =+和柱面1)1(22=+-y x 相交的图形.11用动画演示由曲线],0[,sin π∈=z z y 绕z 轴旋转产生旋转曲面的过程. (该曲线绕z 轴旋转所得旋转曲面的方程为,sin 222z y x =+ 其参数方程为])2,0[],,0[(,,sin sin ,cos sin ππ∈∈===u z z z u z y u z x ) 12. 画出变上限函数⎰xdt t t 02sin 及其导函数的图形.13.迪卡尔曲线)03(13,1333222=-++=+=axy y x tat y t at x 14.蔓叶线)(1,1322322x a x y tat y t at x -=+=+= 15.摆线)cos 1(),sin (t b y t t a x -=-=16.内摆线(星形线))(sin ,cos 32323233a y x t a y t a x =+==17.圆的渐伸线(渐开线))cos (sin ),sin (cos t t t a y t t t a x -=+=18.空间螺线ct z t b y t a x ===,sin ,cos 19.阿基米德线0,≥=r a r ϕ。

实验2--微分方程(基础实验)

实验2--微分方程(基础实验)

实验2--微分方程(基础实验)119 项目四 无穷级数与微分方程实验2 微分方程(基础实验)实验目的 理解常微分方程解的概念以及积分曲线和方向场的概念,掌握利用Mathematica 求微分方程及方程组解的常用命令和方法.基本命令1. 求微分方程的解的命令DSolve对于可以用积分方法求解的微分方程和微分方程组,可用Dsolve 命令来求其通解或特解.例如,求方程023=+'+''y y y 的通解, 输入DSolve[y ''[x]+3y '[x]+2y[x]==0,y[x],x]则输出含有两个任意常数C[1]和C[2]的通解:{}{}]2[C e ]1[C e ]x [y x x 2--+→注:在上述命令中,一阶导数符号 ' 是通过键盘上的单引号 ' 输入的,二阶导数符号 '' 要输入两个单引号,而不能输入一个双引号.又如,求解微分方程的初值问题:,10,6,03400='==+'+''==x x y y y y y输入Dsolve[{y''[x]+4 y'[x]+3y[x]==0,y[0]==6, y'[0]==10},y[x],x](*大括号把方程和初始条件放在一起*)则输出{}{}x 2x 3e 148(e ]x [y +-→-2. 求微分方程的数值解的命令NDSolve对于不可以用积分方法求解的微分方程初值问题,可以用NDSolve 命令来求其特解.例如要求方程5.0,032=+='=x y x y y的近似解)5.10(≤≤x , 输入NDSolve[{y'[x]==y[x]^2+x^3,y[0]==0.5},y[x],{x,0,1.5}](*命令中的{x,0,1.5}表示相应的区间*)则输出{{y->InterpolatingFunction[{{0.,1.5}},< >]}}注:因为NDSolve 命令得到的输出是解)(x y y =的近似值. 首先在区间[0,1.5]内插入一系 列点n x x x ,,,21Λ, 计算出在这些点上函数的近似值n y y y ,,,21Λ, 再通过插值方法得到 )(x y y =在区间上的近似解.3. 一阶微分方程的方向场一般地,我们可把一阶微分方程写为),(y x f y ='的形式,其中),(y x f 是已知函数. 上述微分方程表明:未知函数y 在点x 处的斜率等于函数120f 在点),(y x 处的函数值. 因此,可在Oxy 平面上的每一点, 作出过该点的以),(y x f 为斜率 的一条很短的直线(即是未知函数y 的切线). 这样得到的一个图形就是微分方程),(y x f y ='的方向场. 为了便于观察, 实际上只要在Oxy 平面上取适当多的点,作出在这些点的函数的 切线. 顺着斜率的走向画出符合初始条件的解,就可以得到方程),(y x f y ='的近似的积分曲 线.例如, 画出0)0(,12=-=y y dxdy 的方向场. 输入<<Graphics`PlotField`g1=PlotVectorField[{1,1-y^2},{x,-3,3},{y,-2,2}, Frame->True,ScaleFunction->(1&),ScaleFactor->0.16,HeadLength->0.01,PlotPoints->{20,25}];则输出方向场的图形(图2.1), 从图中可以观察到, 当初始条件为2/10=y 时, 这个微分方程的解介于1-和1之间, 且当x 趋向于-∞或∞时, )(x y 分别趋向于1-与1.-3-2-10123-2-1012 -3-2-10123-2-112下面求解这个微分方程, 并在同一坐标系中画出方程的解与方向场的图解. 输入sol=DSolve[{y'[x]==1-y[x]^2,y[0]==0},y[x],x];g2=Plot[sol[[1,1,2]],{x,-3,3},PlotStyle->{Hue[0.1],Thickness[0.005]}];Show[g2,g1,Axes->None,Frame->True];则输出微分方程的解xxe e x y 2211)(++-=,以及解曲线与方向场的图形(图2.2). 从图中可以看到, 微分方程的解与方向场的箭头方向相吻合.实验内容用Dsolve 命令求解微分方程例2.1 (教材 例2.1) 求微分方程 22x xe xy y -=+'的通解.输入Clear[x,y];DSolve[y '[x]+2x*y[x]==x*Exp[-x^2],y[x],x]或DSolve[D[y[x],x]+2x*y[x]==x*Exp[-x^2],y[x],x]则输出微分方程的通解:121 ⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧+→--]1[C e x e 21]x [y 22x 2x 其中C[1]是任意常数.例2.2 (教材 例2.2) 求微分方程0=-+'x e y y x 在初始条件e y x 21==下的特解. 输入Clear[x,y];DSolve[{x*y ' [x]+y[x]-Exp[x]==0,y[1]==2 E},y[x],x]则输出所求特解:⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+→x e e ]x [y x 例2.3 (教材 例2.3) 求微分方程x e y y y x 2cos 52=+'-''的通解.输入DSolve[y ''[x]-2y '[x]+5y[x]==Exp[x]*Cos[2 x],y[x],x]//Simplify则输出所求通解:⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧-++→])x 2[Sin ])1[c 4x (2]x 2[Cos ])2[c 81((e 81]x [y x 例2.4 (教材 例2.4) 求解微分方程x e x y +=''2, 并作出其积分曲线.输入g1=Table[Plot[E^x+x^3/3+c1+x*c2,{x,-5,5},DisplayFunction->Identity],{c1,-10,10,5},{c2,-5,5,5}];Show[g1,DisplayFunction->$DisplayFunction]; -4-224-40-20204060图2.3例2.5 (教材 例2.5) 求微分方程组⎪⎪⎩⎪⎪⎨⎧=--=++02y x dtdy e y x dt dx t 在初始条件0,100====t t y x 下的特解.输入122Clear[x,y,t];DSolve[{x' [t]+x[t]+2 y[t]==Exp[t], y'[t] -x[t]- y[t]==0,x[0]==1,y[0]==0},{x[t],y[t]},t]则输出所求特解:⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧+-→→])t [Sin ]t [Cos e (21]t [y ],t [Cos ]t [x t例2.6 验证c y y x =+--)3305(15152是微分方程2)(42-='y x x y 的通解. 输入命令<<Graphics`PlotField`<<Graphics`ImplicitPlot`sol=(-5x^3-30y+3y^5)/15==C;g1=ImplicitPlot[sol/.Table[{C->n},{n,-3,3}],{x,-3,3}];g2=PlotVectorField[{1,x^2/(y^4-2)},{x,-3,3},{y,-3,3},Frame->True,ScaleFunction->(1&),ScaleFactor->0.16,HeadLength->0.01,PlotPoints->{20,25}];g=Show[g2,g1,Axes->None,Frame->True];Show[GraphicsArray[{g1,g2,g}]];则分别输出积分曲线如图 2.4(a), 微分方程的方向场如图 2.4(b). 以及在同一坐标系中画出积分曲线和方向场的图形如下图2.4 (c).-3-2-1123-2-112-3-2-10123-3-2-10123-3-2-10123-3-2-10123图2.4从图 2.4(c)中可以看出微分方程的积分曲线与方向场的箭头方向吻合, 且当∞→x 时, 无论初始条件是什么, 所有的解都趋向于一条直线方程.例2.7 (教材 例2.6) 求解微分方程,)1(122/5+=+-x x y dx dy 并作出积分曲线. 输入<<Graphics`PlotField`DSolve[y' [x]-2y[x]/(x+1)==(x+1)^(5/2),y[x],x]则输出所给积分方程的解为 ⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧+++→]1[C )x 1()x 1(32]x [y 22/7123 下面在同一坐标系中作出这个微分方程的方向场和积分曲线(设),3,2,1,0,1,2,3---=C 输入t=Table[2(1+x)^(7/2)/3+(1+x)^2c,{c,-1,1}];g1=Plot[Evaluate[t],{x,-1,1},PlotRange->{{-1,1},{-2,2}},PlotStyle->RGBColor[1,0,0],DisplayFunction->Identity];g2=PlotVectorField[{1,-2y/(x+1)+(x+1)^(5/2)},{x,-0.999,1},{y,-4,4},Frame->True,ScaleFunction->(1&), ScaleFactor->0.16,HeadLength->0.01,PlotPoints->{20,25},DisplayFunction->Identity];Show[g1,g2,Axes->None,Frame->True,DisplayFunction->$DisplayFunction];则输出积分曲线的图形(图2.5).-0.75-0.5-0.2500.250.50.751-1.5-1-0.50.511.52图2.5例2.8 求解微分方程,2)21(22-+='-y x y xy 并作出其积分曲线.输入命令<<Graphics`PlotField`DSolve[1-2*x*y[x]*y' [x]==x^2+(y[x])^2-2,y[x],x]则得到微分方程的解为.)2(323C y x x y ++-+= 我们在33≤≤-C 时作出积分曲线, 输入命令t1=Table[(3+Sqrt[3])Sqrt[3+24x^2-4x^4-4*c*x]/(6*x),{c,-3,3}];t2=Table[(3-Sqrt[3])Sqrt[3+24x^2-4x^4-4*c*x]/(6*x),{c,-3,3}];gg1=Plot[Evaluate[t1],{x,-3,3},PlotRange->{{-3,3},{-3,3}},PlotStyle->RGBColor[1,0,0],DisplayFunction->Identity];124gg2=Plot[Evaluate[t2],{x,-3,3},PlotRange->{{-3,3},{-3,3}},PlotStyle->RGBColor[1,0,0],DisplayFunction->Identity];g1=ContourPlot[y-x^3/3-x*(-2+y^2),{x,-3,3},{y,-3,3},PlotRange->{-3,3},Contours->7,ContourShading->False,PlotPoints->50,DisplayFunction->Identity];g2=PlotVectorField[{1,(x^2+y^2-2)/(1-2*x*y)},{x,-3,3},{y,-3,3},Frame->True,ScaleFunction->(1&),ScaleFactor->0.16,HeadLength->0.01,PlotPoints->{20,25},DisplayFunction->Identity];Show[g1,g2,Axes->None,Frame->True,DisplayFunction->$DisplayFunction];Show[gg1,gg2,g2,Axes->None,Frame->True,DisplayFunction->$DisplayFunction];则输出微分方程的向量场与积分曲线, 并输出等值线的图2.6.-3-2-10123-2-10123-2-10123-2-1123图2.6用NDSolve 命令求微积分方程的近似解例2.9 (教材 例2.7) 求初值问题:1,0)1()1(2.1=='-++=x y y xy y xy 在区间[1.2,4]上的近似解并作图.输入fl=NDSolve[{(1+x*y[x])*y[x]+(1-x*y[x])*y'[x]==0,y[1.2]==1},y,{x,1.2,4}]则输出为数值近似解(插值函数)的形式:{{y->InterpolatingFunction[{{1.2,4.}},< >]}}用Plot 命令可以把它的图形画出来.不过还需要先使用强制求值命令Evalu-ate, 输入 Plot[Evaluate[y[x]/.fl],{x,1.2,4}]则输出近似解的图形(图2.7).125 1.5 2.53 3.5410203040图2.7如果要求区间[1.2,4]内某一点的函数的近似值, 例如8.1=x y ,只要输入y[1.8]/.fl则输出所求结果{3.8341}例2.10 (教材 例2.8) 求范德波尔(Van der Pel)方程5.0,0,0)1(002-='==+'-+''==x x y y y y y y在区间[0,20]上的近似解.输入 Clear[x,y];NDSolve[{y''[x]+(y[x]^2-1)*y'[x]+y[x]==0,y[0]==0,y'[0]==-0.5},y,{x,0,20}];Plot[Evaluate[y[x]/.%],{x,0,20}]可以观察到近似解的图形(图2.8).5101520-2-112图2.8126 ⎪⎩⎪⎨⎧==+-'1)1(01sin 2y x y x y x 的数值解, 并作出数值解的图形.输入命令<<Graphics`PlotField`sol=NDSolve[{x*y'[x]-x^2*y[x]*Sin[x]+1==0,y[1]==1},y[x],{x,1,4}];f[x_]=Evaluate[y[x]/.sol];g1=Plot[f[x],{x,1,4},PlotRange->All,DisplayFunction->Identity];g2=PlotVectorField[{1,(x^2*y*Sin[x]-1)/x},{x,1,4},{y,-2,9},Frame->True,ScaleFunction->(1&),ScaleFactor->0.16,HeadLength->0.01,PlotPoints->{20,25},DisplayFunction->Identity];g=Show[g1,g2,Axes->None,Frame->True];Show[GraphicsArray[{g1,g}],DisplayFunction->$DisplayFunction];则输出所给微分方程的数值解及数值解的图2.9.1.522.533.544681 1.52 2.53 3.54-22468例2.11 (教材 例2.9) 求出初值问题⎪⎩⎪⎨⎧='==+'+''0)0(,1)0(cos sin 22y y xy x y y的数值解, 并作出数值解的图形.输入NDSolve[{y''[x]+Sin[x]^2*y'[x]+y[x]==Cos[x]^2,y[0]==1,y'[0]==0},y[x],{x,0,10}]127 Plot[Evaluate[y[x]/.%],{x,0,10}];则输出所求微分方程的数值解及数值解的图形(图2.10).2468100.20.40.60.8图2.10例2.12 (教材 例2.10) 洛伦兹(Lorenz)方程组是由三个一阶微分方程组成的方程组.这三个方程看似简单, 也没有包含复杂的函数, 但它的解却很有趣和耐人寻味. 试求解洛伦兹方程组,0)0(,4)0(,12)0()(4)()()()()(45)()()()(16)(16)(⎪⎪⎩⎪⎪⎨⎧===-='-+-='-='z y x t z t y t x t z t y t x t z t x t y t x t y t x 并画出解曲线的图形.输入Clear[eq,x,y,z]eq=Sequence[x'[t]==16*y[t]-16*x[t],y'[t]==-x[t]*z[t]-y[t]+45x[t],z'[t]==x[t]*y[t]-4z[t]];sol1=NDSolve[{eq,x[0]==12,y[0]==4,z[0]==0},{x[t],y[t],z[t]},{t,0,16},MaxSteps->10000];g1=ParametricPlot3D[Evaluate[{x[t],y[t],z[t]}/.sol1],{t,0,16},PlotPoints->14400,Boxed->False,Axes->None];则输出所求数值解的图形(图2.11(a)). 从图中可以看出洛伦兹微分方程组具有一个奇异吸引子, 这个吸引子紧紧地把解的图形“吸”在一起. 有趣的是, 无论把解的曲线画得多长, 这些曲线也不相交.128图2.11改变初值为,10)0(,10)0(,6)0(=-==z y x 输入sol2=NDSolve[{eq,x[0]==6,y[0]==-10,z[0]==10}, {x[t],y[t],z[t]},{t,0,24},MaxSteps->10000];g2=ParametricPlot3D[Evaluate[{x[t],y[t],z[t]}/.sol2],{t,0,24},PlotPoints->14400,Boxed->False,Axes->None];Show[GraphicsArray[{g1,g2}]];则输出所求数值解的图形(图2.11(b)). 从图中可以看出奇异吸引子又出现了, 它把解“吸”在某个区域内, 使得所有的解好象是有规则地依某种模式缠绕.实验习题1. 求下列微分方程的通解:(1) ;0136=+'+''y y y(2) ();024=+''+y y y(3) ;2sin 52x e y y y x =+'-''(4) .)1(963x e x y y y +=+'-''2. 求下列微分方程的特解:(1) ;15,0,029400='==+'+''==x x y y y y y(2) .1,1,02sin ='==++''==ππx x y yx y y 3. 求微分方程0cos 2)1(2=-+'-x xy y x 在初始条件10==x y 下的特解.分别求精确解和数值解)10(≤≤x 并作图.4. 求微分方程组⎪⎪⎩⎪⎪⎨⎧=--=++t t e y x dt dy e y x dt dx 235的通解.129 5. 求微分方程组⎪⎪⎩⎪⎨⎧==+-==-+==4,081,0300t t y y x dt dyxy x dt dx 的特解. 6. 求欧拉方程组324x y y x y x =-'+''的通解.7. 求方程5,0,011='==+'+''==x x y y y y x y 在区间[0,4]上的近似解.。

最新数学实验报告

最新数学实验报告

重庆大学学生实验报告实验课程名称数学实验开课实验室DS1407学院自动化年级2013 专业班自动化02班学生姓名侯刚学号20134615开课时间2014 至2015 学年第二学期数学与统计学院制开课学院、实验室:数统学院DS1407实验时间:2014年4月3日课程名称数学实验实验项目名称种群数量的状态转移——微分方程实验项目类型验证演示综合设计其他指导教师龚劬成绩√实验目的[1] 归纳和学习求解常微分方程(组)的基本原理和方法;[2] 掌握解析、数值解法,并学会用图形观察解的形态和进行解的定性分析;[3] 熟悉MATLAB软件关于微分方程求解的各种命令;[4] 通过范例学习建立微分方程方面的数学模型以及求解全过程;基础实验一、实验内容1.微分方程及方程组的解析求解法;2.微分方程及方程组的数值求解法——欧拉、欧拉改进算法;3.直接使用MATLAB命令对微分方程(组)进行求解(包括解析解、数值解);4.利用图形对解的特征作定性分析;5.建立微分方程方面的数学模型,并了解建立数学模型的全过程。

二、实验过程1.求微分方程的解析解, 并画出它们的图形,y’= y + 2x, y(0) = 1, 0<x<1;(1)求解:输入:dsolve('Dy=y+2*x','y(0)=1','x')输出:ans=-2*x-2+3*exp(x)(3)作图:输入:>> x=0:0.1:1;>> y2=-2*x-2+3*exp(x);>> plot(x,y2)输出:图表 1 方程特解图形分析:注意dsolve的用法。

2.用向前欧拉公式和改进的欧拉公式求方程y’= y - 2x/y, y(0) = 1 (0≤x≤1,h = 0.1) 的数值解,要求编写程序,并比较两种方法的计算结果,说明了什么问题?(1)求解析解输入: dsolve('Dy=y-2*x/y','y(0)=1','x')输出: ans =(2*x+1)^(1/2)(2)用向前欧拉公式和改进的欧拉公式求方程的数值解并与解析解作图比较程序:x1(1)=0;y1(1)=1;y2(1)=1;h=0.1;for k=1:10x1(k+1)=x1(k)+h;y1(k+1)=y1(k)+h*(y1(k)-2*x1(k)/y1(k));k1=y2(k)-2*x1(k)/y2(k);k2=y2(k)+h*k1-2*x1(k+1)/(y2(k)+h*k1);y2(k+1)=y2(k)+h*(k1+k2)/2;endx1,y1,y2x=0:0.1:1;y=(2*x+1).^(1/2);plot(x,y,x,y1,'o',x,y2,'+')结果:x1 =0 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 1.0000y1 =1.0000 1.1000 1.1918 1.2774 1.3582 1.4351 1.5090 1.58031.6498 1.7178 1.7848y2 =1.0000 1.0959 1.1841 1.2662 1.3434 1.4164 1.4860 1.55251.6165 1.6782 1.7379图表 2 向前欧拉公式和改进的欧拉公式所求方程数值解与解析解的比较由图可得,改进后的欧拉公式求得的数值解更贴合解析解。

导热基本定律和导热微分方程

导热基本定律和导热微分方程

2021/3/9
35
材料成型传输原理--热量传输
稳态导热: tw = const
非稳态导热: tw = f ()
例: x 0, t tw1
x , t tw2
tw1 tw2
o
x
2021/3/9
36
材料成型传输原理--热量传输
b.第二类边界条件――给定边界上的热流密度。
q s
qw
f (r, )
4.保温材料:
国家标准规定,温度低于350度时热导率小于 0.12W/(m·K) 的材料(绝热材料)。
2021/3/9
6
材料成型传输原理--热量传输
三、导热的物理本质
1.气体导热――气体分子不规则热运动导致相互碰撞的结果
气体的热导率: 气体 0.006~0.6 W (m C)
0 C : 空气 0.0244W (m C) ; 20 C : 空气 0.026 W (m C)
2021/3/9
9
材料成型传输原理--热量传输
2021/3/9
10
材料成型传输原理--热量传输
2.导电固体导热――自由电子运动、碰撞的结果(与气体类似)
金属 12~418 W (m C)
(1)纯金属的导热:依靠自由电子的迁移和晶格的振动(主 要依靠前者) 金属导热与导电机理一致;良导电体为良导热体:
t i
x
t j
y
t k
z
一维导热:qx
t x
;
qy
t y
;
qz
t z
注:傅里叶定律只适用于各向同性材料 各向同性材料:热导率在各个方向是相同的
2021/3/9
3
材料成型传输原理--热量传输
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验微分方程(基础实验)119 项目四 无穷级数与微分方程实验2 微分方程(基础实验)实验目的 理解常微分方程解的概念以及积分曲线和方向场的概念,掌握利用Mathematica 求微分方程及方程组解的常用命令和方法.基本命令1. 求微分方程的解的命令DSolve对于可以用积分方法求解的微分方程和微分方程组,可用Dsolve 命令来求其通解或特解.例如,求方程023=+'+''y y y 的通解, 输入DSolve[y ''[x]+3y '[x]+2y[x]==0,y[x],x]则输出含有两个任意常数C[1]和C[2]的通解:{}{}]2[C e ]1[C e ]x [y x x 2--+→注:在上述命令中,一阶导数符号 ' 是通过键盘上的单引号 ' 输入的,二阶导数符号 '' 要输入两个单引号,而不能输入一个双引号.又如,求解微分方程的初值问题:,10,6,03400='==+'+''==x x y y y y y输入Dsolve[{y''[x]+4 y'[x]+3y[x]==0,y[0]==6, y'[0]==10},y[x],x](*大括号把方程和初始条件放在一起*)则输出{}{}x 2x 3e 148(e ]x [y +-→-2. 求微分方程的数值解的命令NDSolve对于不可以用积分方法求解的微分方程初值问题,可以用NDSolve 命令来求其特解.例如要求方程5.0,032=+='=x y x y y的近似解)5.10(≤≤x , 输入NDSolve[{y'[x]==y[x]^2+x^3,y[0]==0.5},y[x],{x,0,1.5}](*命令中的{x,0,1.5}表示相应的区间*)则输出{{y->InterpolatingFunction[{{0.,1.5}},< >]}}注:因为NDSolve 命令得到的输出是解)(x y y =的近似值. 首先在区间[0,1.5]内插入一系 列点n x x x ,,,21Λ, 计算出在这些点上函数的近似值n y y y ,,,21Λ, 再通过插值方法得到 )(x y y =在区间上的近似解.3. 一阶微分方程的方向场一般地,我们可把一阶微分方程写为),(y x f y ='的形式,其中),(y x f 是已知函数. 上述微分方程表明:未知函数y 在点x 处的斜率等于函数120f 在点),(y x 处的函数值. 因此,可在Oxy 平面上的每一点, 作出过该点的以),(y x f 为斜率 的一条很短的直线(即是未知函数y 的切线). 这样得到的一个图形就是微分方程),(y x f y ='的方向场. 为了便于观察, 实际上只要在Oxy 平面上取适当多的点,作出在这些点的函数的 切线. 顺着斜率的走向画出符合初始条件的解,就可以得到方程),(y x f y ='的近似的积分曲 线.例如, 画出0)0(,12=-=y y dxdy 的方向场. 输入<<Graphics`PlotField`g1=PlotVectorField[{1,1-y^2},{x,-3,3},{y,-2,2}, Frame->True,ScaleFunction->(1&),ScaleFactor->0.16,HeadLength->0.01,PlotPoints->{20,25}];则输出方向场的图形(图2.1), 从图中可以观察到, 当初始条件为2/10=y 时, 这个微分方程的解介于1-和1之间, 且当x 趋向于-∞或∞时, )(x y 分别趋向于1-与1.-3-2-10123-2-1012 -3-2-10123-2-112下面求解这个微分方程, 并在同一坐标系中画出方程的解与方向场的图解. 输入sol=DSolve[{y'[x]==1-y[x]^2,y[0]==0},y[x],x];g2=Plot[sol[[1,1,2]],{x,-3,3},PlotStyle->{Hue[0.1],Thickness[0.005]}];Show[g2,g1,Axes->None,Frame->True];则输出微分方程的解xxe e x y 2211)(++-=,以及解曲线与方向场的图形(图2.2). 从图中可以看到, 微分方程的解与方向场的箭头方向相吻合.实验内容用Dsolve 命令求解微分方程例2.1 (教材 例2.1) 求微分方程 22x xe xy y -=+'的通解.输入Clear[x,y];DSolve[y '[x]+2x*y[x]==x*Exp[-x^2],y[x],x]或DSolve[D[y[x],x]+2x*y[x]==x*Exp[-x^2],y[x],x]则输出微分方程的通解:121 ⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧+→--]1[C e x e 21]x [y 22x 2x 其中C[1]是任意常数.例2.2 (教材 例2.2) 求微分方程0=-+'x e y y x 在初始条件e y x 21==下的特解. 输入Clear[x,y];DSolve[{x*y ' [x]+y[x]-Exp[x]==0,y[1]==2 E},y[x],x]则输出所求特解:⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+→x e e ]x [y x 例2.3 (教材 例2.3) 求微分方程x e y y y x 2cos 52=+'-''的通解.输入DSolve[y ''[x]-2y '[x]+5y[x]==Exp[x]*Cos[2 x],y[x],x]//Simplify则输出所求通解:⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧-++→])x 2[Sin ])1[c 4x (2]x 2[Cos ])2[c 81((e 81]x [y x 例2.4 (教材 例2.4) 求解微分方程x e x y +=''2, 并作出其积分曲线.输入g1=Table[Plot[E^x+x^3/3+c1+x*c2,{x,-5,5},DisplayFunction->Identity],{c1,-10,10,5},{c2,-5,5,5}];Show[g1,DisplayFunction->$DisplayFunction]; -4-224-40-20204060图2.3例2.5 (教材 例2.5) 求微分方程组⎪⎪⎩⎪⎪⎨⎧=--=++02y x dtdy e y x dt dx t 在初始条件0,100====t t y x 下的特解.输入122Clear[x,y,t];DSolve[{x' [t]+x[t]+2 y[t]==Exp[t], y'[t] -x[t]- y[t]==0,x[0]==1,y[0]==0},{x[t],y[t]},t]则输出所求特解:⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧+-→→])t [Sin ]t [Cos e (21]t [y ],t [Cos ]t [x t例2.6 验证c y y x =+--)3305(15152是微分方程2)(42-='y x x y 的通解. 输入命令<<Graphics`PlotField`<<Graphics`ImplicitPlot`sol=(-5x^3-30y+3y^5)/15==C;g1=ImplicitPlot[sol/.Table[{C->n},{n,-3,3}],{x,-3,3}];g2=PlotVectorField[{1,x^2/(y^4-2)},{x,-3,3},{y,-3,3},Frame->True,ScaleFunction->(1&),ScaleFactor->0.16,HeadLength->0.01,PlotPoints->{20,25}];g=Show[g2,g1,Axes->None,Frame->True];Show[GraphicsArray[{g1,g2,g}]];则分别输出积分曲线如图 2.4(a), 微分方程的方向场如图 2.4(b). 以及在同一坐标系中画出积分曲线和方向场的图形如下图2.4 (c).-3-2-1123-2-112-3-2-10123-3-2-10123-3-2-10123-3-2-10123图2.4从图 2.4(c)中可以看出微分方程的积分曲线与方向场的箭头方向吻合, 且当∞→x 时, 无论初始条件是什么, 所有的解都趋向于一条直线方程.例2.7 (教材 例2.6) 求解微分方程,)1(122/5+=+-x x y dx dy 并作出积分曲线. 输入<<Graphics`PlotField`DSolve[y' [x]-2y[x]/(x+1)==(x+1)^(5/2),y[x],x]则输出所给积分方程的解为 ⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧+++→]1[C )x 1()x 1(32]x [y 22/7123 下面在同一坐标系中作出这个微分方程的方向场和积分曲线(设),3,2,1,0,1,2,3---=C 输入t=Table[2(1+x)^(7/2)/3+(1+x)^2c,{c,-1,1}];g1=Plot[Evaluate[t],{x,-1,1},PlotRange->{{-1,1},{-2,2}},PlotStyle->RGBColor[1,0,0],DisplayFunction->Identity];g2=PlotVectorField[{1,-2y/(x+1)+(x+1)^(5/2)},{x,-0.999,1},{y,-4,4},Frame->True,ScaleFunction->(1&), ScaleFactor->0.16,HeadLength->0.01,PlotPoints->{20,25},DisplayFunction->Identity];Show[g1,g2,Axes->None,Frame->True,DisplayFunction->$DisplayFunction];则输出积分曲线的图形(图2.5).-0.75-0.5-0.2500.250.50.751-1.5-1-0.50.511.52图2.5例2.8 求解微分方程,2)21(22-+='-y x y xy 并作出其积分曲线.输入命令<<Graphics`PlotField`DSolve[1-2*x*y[x]*y' [x]==x^2+(y[x])^2-2,y[x],x]则得到微分方程的解为.)2(323C y x x y ++-+= 我们在33≤≤-C 时作出积分曲线, 输入命令t1=Table[(3+Sqrt[3])Sqrt[3+24x^2-4x^4-4*c*x]/(6*x),{c,-3,3}];t2=Table[(3-Sqrt[3])Sqrt[3+24x^2-4x^4-4*c*x]/(6*x),{c,-3,3}];gg1=Plot[Evaluate[t1],{x,-3,3},PlotRange->{{-3,3},{-3,3}},PlotStyle->RGBColor[1,0,0],DisplayFunction->Identity];124gg2=Plot[Evaluate[t2],{x,-3,3},PlotRange->{{-3,3},{-3,3}},PlotStyle->RGBColor[1,0,0],DisplayFunction->Identity];g1=ContourPlot[y-x^3/3-x*(-2+y^2),{x,-3,3},{y,-3,3},PlotRange->{-3,3},Contours->7,ContourShading->False,PlotPoints->50,DisplayFunction->Identity];g2=PlotVectorField[{1,(x^2+y^2-2)/(1-2*x*y)},{x,-3,3},{y,-3,3},Frame->True,ScaleFunction->(1&),ScaleFactor->0.16,HeadLength->0.01,PlotPoints->{20,25},DisplayFunction->Identity];Show[g1,g2,Axes->None,Frame->True,DisplayFunction->$DisplayFunction];Show[gg1,gg2,g2,Axes->None,Frame->True,DisplayFunction->$DisplayFunction];则输出微分方程的向量场与积分曲线, 并输出等值线的图2.6.-3-2-10123-2-10123-2-10123-2-1123图2.6用NDSolve 命令求微积分方程的近似解例2.9 (教材 例2.7) 求初值问题:1,0)1()1(2.1=='-++=x y y xy y xy 在区间[1.2,4]上的近似解并作图.输入fl=NDSolve[{(1+x*y[x])*y[x]+(1-x*y[x])*y'[x]==0,y[1.2]==1},y,{x,1.2,4}]则输出为数值近似解(插值函数)的形式:{{y->InterpolatingFunction[{{1.2,4.}},< >]}}用Plot 命令可以把它的图形画出来.不过还需要先使用强制求值命令Evalu-ate, 输入 Plot[Evaluate[y[x]/.fl],{x,1.2,4}]则输出近似解的图形(图2.7).125 1.5 2.53 3.5410203040图2.7如果要求区间[1.2,4]内某一点的函数的近似值, 例如8.1=x y ,只要输入y[1.8]/.fl则输出所求结果{3.8341}例2.10 (教材 例2.8) 求范德波尔(Van der Pel)方程5.0,0,0)1(002-='==+'-+''==x x y y y y y y在区间[0,20]上的近似解.输入 Clear[x,y];NDSolve[{y''[x]+(y[x]^2-1)*y'[x]+y[x]==0,y[0]==0,y'[0]==-0.5},y,{x,0,20}];Plot[Evaluate[y[x]/.%],{x,0,20}]可以观察到近似解的图形(图2.8).5101520-2-112图2.8126 ⎪⎩⎪⎨⎧==+-'1)1(01sin 2y x y x y x的数值解, 并作出数值解的图形.输入命令<<Graphics`PlotField`sol=NDSolve[{x*y'[x]-x^2*y[x]*Sin[x]+1==0,y[1]==1},y[x],{x,1,4}];f[x_]=Evaluate[y[x]/.sol];g1=Plot[f[x],{x,1,4},PlotRange->All,DisplayFunction->Identity];g2=PlotVectorField[{1,(x^2*y*Sin[x]-1)/x},{x,1,4},{y,-2,9},Frame->True,ScaleFunction->(1&),ScaleFactor->0.16,HeadLength->0.01,PlotPoints->{20,25},DisplayFunction->Identity];g=Show[g1,g2,Axes->None,Frame->True];Show[GraphicsArray[{g1,g}],DisplayFunction->$DisplayFunction];则输出所给微分方程的数值解及数值解的图2.9.1.522.533.544681 1.52 2.53 3.54-22468例2.11 (教材 例2.9) 求出初值问题⎪⎩⎪⎨⎧='==+'+''0)0(,1)0(cos sin 22y y xy x y y的数值解, 并作出数值解的图形.输入NDSolve[{y''[x]+Sin[x]^2*y'[x]+y[x]==Cos[x]^2,y[0]==1,y'[0]==0},y[x],{x,0,10}]127 Plot[Evaluate[y[x]/.%],{x,0,10}];则输出所求微分方程的数值解及数值解的图形(图2.10).2468100.20.40.60.8图2.10例2.12 (教材 例2.10) 洛伦兹(Lorenz)方程组是由三个一阶微分方程组成的方程组.这三个方程看似简单, 也没有包含复杂的函数, 但它的解却很有趣和耐人寻味. 试求解洛伦兹方程组,0)0(,4)0(,12)0()(4)()()()()(45)()()()(16)(16)(⎪⎪⎩⎪⎪⎨⎧===-='-+-='-='z y x t z t y t x t z t y t x t z t x t y t x t y t x 并画出解曲线的图形.输入Clear[eq,x,y,z]eq=Sequence[x'[t]==16*y[t]-16*x[t],y'[t]==-x[t]*z[t]-y[t]+45x[t],z'[t]==x[t]*y[t]-4z[t]];sol1=NDSolve[{eq,x[0]==12,y[0]==4,z[0]==0},{x[t],y[t],z[t]},{t,0,16},MaxSteps->10000];g1=ParametricPlot3D[Evaluate[{x[t],y[t],z[t]}/.sol1],{t,0,16},PlotPoints->14400,Boxed->False,Axes->None];则输出所求数值解的图形(图2.11(a)). 从图中可以看出洛伦兹微分方程组具有一个奇异吸引子, 这个吸引子紧紧地把解的图形“吸”在一起. 有趣的是, 无论把解的曲线画得多长, 这些曲线也不相交.128图2.11改变初值为,10)0(,10)0(,6)0(=-==z y x 输入sol2=NDSolve[{eq,x[0]==6,y[0]==-10,z[0]==10}, {x[t],y[t],z[t]},{t,0,24},MaxSteps->10000];g2=ParametricPlot3D[Evaluate[{x[t],y[t],z[t]}/.sol2],{t,0,24},PlotPoints->14400,Boxed->False,Axes->None];Show[GraphicsArray[{g1,g2}]];则输出所求数值解的图形(图2.11(b)). 从图中可以看出奇异吸引子又出现了, 它把解“吸”在某个区域内, 使得所有的解好象是有规则地依某种模式缠绕.实验习题1. 求下列微分方程的通解:(1) ;0136=+'+''y y y(2) ();024=+''+y y y(3) ;2sin 52x e y y y x =+'-''(4) .)1(963x e x y y y +=+'-''2. 求下列微分方程的特解:(1) ;15,0,029400='==+'+''==x x y y y y y(2) .1,1,02sin ='==++''==ππx x y yx y y 3. 求微分方程0cos 2)1(2=-+'-x xy y x 在初始条件10==x y 下的特解.分别求精确解和数值解)10(≤≤x 并作图.4. 求微分方程组⎪⎪⎩⎪⎪⎨⎧=--=++t t e y x dt dy e y x dt dx 235的通解.129 5. 求微分方程组⎪⎪⎩⎪⎨⎧==+-==-+==4,081,0300t t y y x dt dyxy x dt dx 的特解. 6. 求欧拉方程组324x y y x y x =-'+''的通解.7. 求方程5,0,011='==+'+''==x x y y y y x y 在区间[0,4]上的近似解.。

相关文档
最新文档