微分方程数学模型

合集下载

微分方程模型(全)

微分方程模型(全)

第四步:了解问题中所涉及的原则或物理定律。
第五步:依据 第二、第三、第四步 建立微分 方程。 还有已知的对应某个 t 的 y 的值(可 能还有 y 的导数的值)就是求解微分方程所 需要的初始值。
第六步:求微分方程的解并给出问题的答案。 下面我们从易到难给出微分方程模型之应 用案例
例1 火车启动
例 1:火车启动
y ce .
kt
(2)
y( 24) 400.
初始值:
y(0) 100,
代入(2)求得: 因此:
c 100, k (ln 4) / 24.
t ln 4 / 24
y 100e
.
我们要求的是:
y(12) 100e
(12 / 24) ln 溶液浓度
如果有一个实际问题,要找一个量 y , 与另一个量 t(时间或其他变量)的关系, 这种关系涉及量 y 在每个 t 时的瞬时变化率, 而且这个瞬时变化率与量 y 与 t 的关系可以 确定,那么这样的问题通常可以通过微分 方程来解决。 利用微分方程解决这样的问题的一般 步骤如下: (分为六步)
第一步:
题目:一列火车从静止开始启动,均匀地加速,
五分钟时速度达到 300 千米。问:这段时间内 该火车行进了多少路程?
例1 火车启动
解 这个问题相对比较简单,问题与“加速”、 “速度”有关,所以与导数有关; 涉及的量为: “时间”(小时),“路程”(千米),“速 度”(千米/小时),“加速度”(常数 a );
例2 细菌增长
解 这个问题也比较简单。 问题与“增长率”有关,所以与导数有关;
涉及的量为: “时间”(小时),“细菌总数”(个), “速度”(个/小时); 有(待定)函数关系的两个量定为: 细菌总数 y ,时间 t ; 涉及的原则或物理定律: 导数=增长率.

微分方程(组)模型

微分方程(组)模型


(2) 方程③是一阶线性微分方程,通解为②当n>0时,有特解y=0.
求微分方程(组)的解析解命令: dsolve(‘方程1’, ‘方程2’,…‘方程n’, ‘初始条件’, ‘自 变量’) 符号说明:在表达微分方程时,用字母D表示求微分, D2、D3等表示求2阶、3阶等微分。任何D后所跟的 字母为因变量,自变量可以指定或由系统规则选定为 确省。 d2y
方法:
• 规律分析法:根据相关学科的定理或定律、规律(这些涉及 到某些函数变化率)建立微分方程模型,如曲线的切线性质. • 微元分析法:应用一些已知规律和定律寻求微元之间的关系式. • 近似模拟法:在社会科学、生物学、医学、经济学等学科的 实际问题中,许多现象的规律性不清楚,常常用近似模拟的 方法建立微分方程模型.
4.符号说明
• • • • • • • a---某人每天在食物中摄取的热量 b---某人每天用于新陈代谢(及自动消耗)的热量 α ---某人每天从事工作、生活每千克体重必需消耗的热量 β---某人每天从事体育锻炼每千克体重消耗的热量 w---体重(单位:千克) w0---体重的初始值 t---时间(单位:天)
若Q(x)≡0,则称为一阶线性齐次方程,一阶线性微分方程通解为 P ( x ) dx P ( x ) dx ② y ( x) e ( Q( x)e dx C )
从而可得
dz (1 n) P ( x) z (1 n)Q ( x) dx
dz dy (1 n) y n dx dx
一、微分方程模型 二、微分方程的数学形式 三、微分方程(组)的MATLAB解法 四、减肥的数学模型 五、人口增长数学模型 六、兰彻斯特(Lanchester)作战模型 七、硫磺岛战役案例

微分方程模型方法

微分方程模型方法

物理现象模型
总结词
物理现象模型是利用微分方程来描述物理现象的动态变化过程,如力学、电磁学、光学 等。
详细描述
物理现象模型可以帮助科学家深入理解物理现象的本质和规律,预测新现象和新技术的 发展。例如,通过建立微分方程来描述电磁波的传播过程,可以研究电磁波的传播规律
和特性。
05 微分方程模型的发展趋势 与挑战
人口动态模型
总结词
人口动态模型是利用微分方程来描述人 口数量随时间变化的规律,预测未来人 口规模和结构。
VS
详细描述
人口动态模型可以用来研究人口增长、出 生率、死亡率、迁移率等指标的变化趋势 ,为政策制定者提供依据,以制定合理的 计划生育政策。例如,Logistic模型是一 种常用的人口动态模型,通过建立微分方 程来描述人口数量的增长规律。
THANKS FOR WATCHING
感谢您的观看
数学软件
选择适合的数学软件,如MATLAB、 Python等,以便进行模型建立和求解。
建立微分方程模型
模型类型
根据问题类型和目标,选择合适的微分方程模型类型,如常微分方程、偏微分方 程等。
参数估计
根据收集到的数据和信息,估计模型中的参数,使模型能够更好地描述实际问题 。
03 微分方程模型的求解方法
确定研究范围
根据问题与目标,确定研究的范围和 边界条件,为建立模型提供基础。
收集数据与信息
数据来源
根据研究问题,确定合适的数据来源,如实验数据、观测数据、历史数据等。
数据处理
对收集到的数据进行预处理,包括数据清洗、缺失值处理、异常值剔除等,以 确保数据质量。
选择合适的数学工具
数学基础
根据问题类型和目标,选择合适的数 学基础,如线性代数、微积分、常微 分方程等。

第四章 微分方程数学模型

第四章 微分方程数学模型
s 0 在轨线方程中,令t知 1 s ln s0 s是[0, ]中的单根 1 1
3)、若s0
1

, 则i(t )先增加,当 s
1
1

时,i(t )达到最大
im 1

(1 ln s0 ), 然后减小趋于0, s(t ) s
若s0
1

, 则i(t )单调趋于0,(i)单调趋于s s
i0
i0
1
i
1
i
1

O
1
1

1
t
i0
O
t
O
t
1 1 i ( ) 0 1
1 1
1 ~ 阈值
1 i (t )
感染期内有效接触感染的 i0小 i(t )按S曲线增长 健康人数不超过病人数
直接求解方程,亦可得到上述结果
di i (1 i ) i dt i (0) i0

i0 i (t ) i0 t 1
1

1 ( ) t e i(t ) i 0
x s0
i0小, 0 1 s
x x ln(1 ) 0 s0 1
x x2 x ( 2)0 s0 2 s 0 1
x 2s0 ( s0
1

)
令 s0 1 , 又 较小, s0 1)
x 2
模型检验 医疗机构一般依据r(t)来统计疾病的波及人数 ,从广 义上理解,r(t)为t时刻已就医而被隔离的人数,是康 复还是死亡对模型并无影响。
代数方程组 f ( x, y ) 0, g ( x, y ) 0. 的实根x = x0, y = y0称为方程(4-3)的平衡点, 记作P0 (x0, y0). 它也是方程(4-3)的解.

第3章 微分方程模型

第3章 微分方程模型

第三章 微分方程建模在许多实际问题的研究中,要直接导出变量之间的函数关系较为困难,但要导出包含未知函数的导数或微分的关系式却较为容易,此时即可用建立微分方程模型的方法来研究实际问题。

例如,根据自由落体运动的重力加速度g 为常数及初始条件即可得出自由落体运动的公式、根据单摆的受力分析及牛顿第二定理即可得到单摆运动满足的方程等等就是典型的实例。

本章除了介绍一些来自经典力学的物理及一些几何方面的微分方程问题以外,也介绍了一些稍有不同的微分方程应用题。

这些模型研究的主要是来自于非物理领域的实际问题,对这些问题,我们将分析其特征,根据具体情况进行类比,提出假设条件并建立微分方程模型加以研究。

提出的假设条件不同,将会导出不同的微分方程。

最后还要将求解的结果与实际现象进行对比,如果差异较大还应反复修改假设建立新的模型。

因此,在这类模型中,微分方程被当成了研究问题的工具。

事实上,在连续变量问题的研究中,微分方程或微分方程组还是十分常用的数学工具之一。

§3.1 几个简单实例例3.1 (理想单摆运动的周期)本例的目的是建立理想单摆运动满足的微分方程,由该微分方程即可得出理想单摆运动的周期公式。

(图3-1)从图3-1中不难看出,小球所受的合力为 sin mg ,根据牛顿第二定律可得:θθsin mg ml -= 从而得出两阶微分方程:sin 0(0)0,(0)g l θθθθθ⎧+=⎪⎨⎪==⎩ (3.1) 这就是理想单摆运动满足的微分方程。

(3.1)是一个两阶非线性常微分方程,不容易求解。

根据微积分知识,当θ很小时,有sin θ≈θ,此时,为简单起见,我们可考察(3.1)的近似线性方程:⎪⎩⎪⎨⎧===+∙∙∙0)0(,0)0(0ϑϑϑϑϑl g (3.2)(3.2)的特征方程为02=+lg λ 对应的特征根为i lg =λ,(其中i 为虚单位),故(3.2)中的微分方程的通解为: t c t c t ωωϑcos sin )(21+=,其中lg =ω 代入初始条件,即可求得满足初始条件的微分方程问题(3.2)的解θ(t )= θ0cos ωt注意到当4T t =时,θ(t ) = 0,即可得出 24πω==T l g t 故有 l g T π2=这就是中学物理中理想单摆运动周期的近似公式。

微分方程(模型)

微分方程(模型)

dx 2 或 x 0.03 dt 100 t 这是一阶线性非齐次方程,且有初值条件 x(0) 10,;利用8.3节的公式(5),可得此 C 方程的通解:x (t ) 0.01(100 t ) (100 t ) 2 有初值条件可得C 9 10 4,所以容器内含盐 量x随时间t的变化规律为 9 10 4 x 0.01(100 t ) 2 (100 t )
微分方程模型
重庆邮电大学
数理学院
引言
微分方程模型
当我们描述实际对象的某些特性随时间(空 间)而演变的过程、分析它的变化规律、预测它 的未来形态、研究它的控制手段时。通常要建立 对象的动态模型。

在研究某些实际问题时,经常无法直接得 到各变量之间的联系,问题的特性往往会给出关 于变化率的一些关系。利用这些关系,我们可以 建立相应的微分方程模型。在自然界以及工程技 术领域中,微分方程模型是大量存在的。它甚至 可以渗透到人口问题以及商业预测等领域中去, 其影响是广泛的。
四. 悬链线方程问题
将一均匀柔软的绳索两端固定,使之仅受重力的作 用而下垂,求该绳索在平衡状态下的曲线方程(铁塔 之间悬挂的高压电缆的形状就是这样的曲线)。 解 以绳索所在的平面为xoy 平面,设绳索最低点 为y轴上的P点,如图8-1所示。考察绳索上从点p到 l 另一点Q(x,y)的一段弧 PQ ,该段弧长为 ,绳索线密 度为 l ,则这段绳索所受重力为gl 。由于绳索是软 的,
y x 2 2.
微分方程的几个应用实例
许多实际问题的解决归结为寻找变量间的函数关 系。但在很多情况下,函数关系不能直接找到,而只 能间接的得到这些量及其导数之间的关系,从而使得 微分方程在众多领域都有非常重要的应用。本节只举 几个实例来说明微分方程的应用。进一步的介绍见第 十章。 一. 嫌疑犯问题

微分方程的经典模型

微分方程的经典模型

模型分析
问题中并未出现“变化率”、“导数”这样的关键词,但要寻找的是体重 (记为W)关于时间t的函数。如果我们把体重W看作是时间t的连续可微函数, 我们就能找到一个含有的
dW 微分方程。 dt
模型假设
W0 ; 1.W ( t ) 表示 t 时刻某人的体重,并设一天开始时人的体重为 2. W ( t ) 关于 t 连续而且充分光滑;
模型建立
游击作战模型的形式:

(t) f (x, y) x (t) g(x, y) y x(0) x , y(0) y 0 0
, 由假设2、3,甲乙双方的战斗减员率分别为
f(x ,y ) c x y
g (x ,y )dxy
结合以上两表达式,并代入 c、d 的值,可得游击作战的数学模型
或被歼灭)的一方为败。因此,如果 K K0 ,则乙的兵力减少到
甲方兵力降为“零”,从而乙方获胜。同理可知, K0
K0 胜。而当
a

时,甲方获
时,双方战平。
2 2 bx ay 0 甲方获胜的充要条件为 0 0
代入a 、b 的表达式,进一步可得甲方获胜的充要条件为
2 2 r p x r p y x x 0 y y 0
模型建立 根据假设得到一般的战争模型
x ( t) f( x ,y ) x u ( t) y ( t) g ( x ,y ) y v ( t) x ( 0 )x , y ( 0 )y 0 0
正规作战模型
模型假设
1.不考虑增援,并忽略非战斗减员;
得:
其解为:
i(t) i0e
k0t
模型分析与解释
这个结果与传染病初期比较吻合,但它表明病人人数将按指数规律 无限增加,显然与实际不符

常见的微分方程模型

常见的微分方程模型

常见的微分方程模型微分方程是数学的一个重要分支,广泛应用于自然科学和工程领域。

它描述了物理现象、社会问题和自然现象的变化规律,能够帮助我们理解和预测各种现象的发展趋势。

下面将介绍一些常见的微分方程模型。

1. 一阶线性微分方程一阶线性微分方程是最简单且常见的微分方程之一。

它可以描述许多实际问题,比如放射性衰变、人口模型等。

一阶线性微分方程的一般形式可以写为dy/dt = f(t) * y + g(t),其中f(t)和g(t)是已知函数,y是未知函数。

2. 指数衰减模型指数衰减模型是描述某种变化过程的常见微分方程。

它可以用来描述放射性物质的衰变、人口增长的趋势等。

指数衰减模型的一般形式是dy/dt = -ky,其中k是常数。

这个方程表示y的变化速率与y本身成比例,且反向。

3. 扩散方程扩散方程是描述物质或能量传递过程的微分方程。

它可以用来研究热传导、扩散现象等。

扩散方程的一般形式是∂u/∂t = D ∇²u,其中u是未知函数,D是扩散系数,∇²是Laplace算子。

这个方程表示u 的变化率与u的二阶导数成正比。

4. 多体问题多体问题是描述多个物体之间相互作用的微分方程模型。

它可以用来研究天体运动、分子碰撞等问题。

多体问题的方程通常包括牛顿第二定律和对应的初始条件,如F = ma和相关的速度、位置初值条件。

5. 随机微分方程随机微分方程是考虑了随机因素的微分方程模型。

它可以用来研究金融市场的波动、生态系统的不确定性等。

随机微分方程的方程形式通常会引入一个随机项,如dy/dt = f(t, y) dt + g(t, y) dW,其中dW是布朗运动,表示随机项。

以上介绍的是一些常见的微分方程模型,它们在理论和实际应用中都具有重要的地位。

通过研究这些模型,我们可以深入理解各种现象背后的数学规律,并且为实际问题提供解决方案。

微分方程模型不仅有助于推动数学的发展,还在科学研究、工程设计和技术创新等领域中发挥着重要作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

P1
0 s
1/
s 0
s
s0 - 1/ = x2
小, s0 1
提高阈值1/ 降低 被传染人数比例 x
5.2 经济增长模型
增加生产 发展经济 增加投资 增加劳动力 提高技术
• 建立产值与资金、劳动力之间的关系
• 研究资金与劳动力的最佳分配,使投资效益最大
• 调节资金与劳动力的增长率,使经济(生产率)增长
dt
si
i
ds
dt
si
di
ds
1 1
s
i
s s0
i0
i
1s
1
i(s)(si)s ln
00
s
0
D
i(0 ) i0 , s (0 ) s0
P4
s(t)单调减相轨线的方向 im
s1/,iim t,i0
P2
P1
P3
s 满s足 0i0s1lnss 0 0 0 s S0 1/ s0
i0小
1
i(t)按S形曲线增长感健康染者期人内数有不效超接过触病感人染数的
模型2(SI模型)如何看作模型3(SIS模型)的特例
模型4
传染病有免疫性——病人治愈 后即移出感染系统,称移出者
SIR模型
假设 1)总人数N不变,病人、健康人和移
出者的比例分别为 i(t),s(t),r(t)
2)病人的日接触率 , 日治愈率, 接触数 = /
建模
区分已感染者(病人)和未感染者(健康人)
1)总人数N不变,病人和健康
人的 比例分别为 i(t),s(t)
SI 模型
2)每个病人每天有效接触人数 ~ 日
为, 且使接触的健康人致病
接触率
N [ i( t t) i( t) [ ]s ( t)N ] ( t) ti
di si
dt
s(t)i(t)1
模型1 已感染人数 (病人) i(t)
假设 • 每个病人每天有效接触
(足以使人致病)人数为
建模 i(t t) i(t)i(t) t
di i dt i(0 ) i0
i(t)i0et
t i ?
若有效接触的是病人, 则不能使病人数增加
必须区分已感染者(病 人)和未感染者(健康人)
模型2
假设
建模 s(t) i(t) r(t) 1
需建立 i(t),s(t),r(t)的两个方程
模型4
SIR模型
N [ i ( t t ) i ( t ) ] N ( t ) i ( t ) s t N ( t ) ti
N [ s ( t t) s ( t) ] N ( t) i ( t s ) t
相轨线
i(0 ) i0 , s (0 ) s0
相轨线 i ( s ) 的定义域
i(s)(s0ii0)s1lnss0
D { s ,i( )s 0 ,i 0 ,s i 1 } 1
在D内作相轨线 i ( s )
的图形,进行分析
D 0
s
1
模型4 相轨线 i ( s ) 及其分析
SIR模型
di
1. 道格拉斯(Douglas)生产函数
产值 Q(t)
资金 K(t) 劳动力 L(t) 技术 f(t) = f0
Q (t)f0F (K (t)L ,(t))F为待定函数
1. 道格拉斯(Douglas)生产函数
静态模型 Q (K ,L )f0F (K ,L )
每个劳动 力的产值
z
Q L
每个劳动 力的投资
的估计
提高 r0
s0i0r01
s 0
i 0
s1lnss 0
0
忽略i 0
群体免疫
lns0 lns
s0 s
模型4
被传染人数的估计
SIR模型
记被传染人数比例 xs0s
s0 i0 s1lnss 0 0 i0 0, s0 1
x 1ln1( x)0
s0
i
x<<s0 x(1s012sx02)0
x2s0(s0 1)
di
dt
i (1 i )
i ( 0 ) i0
模型2
di dt
i (1 i )
Logistic 模型
i
i ( 0 ) i0
1
1/2
i0
0
tm
t
t=tm, di/dt 最大
i(t)
1
1
1 i0
1et
t m
1
ln
1 i
0
1
tm~传染病高潮到来时刻 t i 1?
(日接触率) tm
~ 日接触率 1/ ~感染期
/ ~ 一个感染期内每个病人的
有效接触人数,称为接触数。
模型3
di/dt
dii(1i)i /
dt
i
dii[i(11)]
dt
i
>1
i0
>1
1
1-1/
i0 di/dt < 0
0
1-1/ 1 i
i0
0
i()
1
1
,
1
0,
1
t0
t
接触数 =1 ~ 阈值
1i(t)
第五章 微分方程模型
5.1 传染病模型 5.2 经济增长模型 5.3 正规战与游击战 5.4 药物在体内的分布与排除 5.5 香烟过滤嘴的作用 5.6 人口预测和控制 5.7 烟雾的扩散与消失 5.8 万有引力定律的发现
动态 模型
• 描述对象特征随时间(空间)的演变过程 • 分析对象特征的变化规律 • 预报对象特征的未来性态 • 研究控制对象特征的手段
di
dt
si i
ds
dt
si
无法求出 i(t),s(t)
的解析解
i(0 ) i0 , s (0 ) s0
在相平面 s~i 上
研究解的性质
i0s01(通r常 (0)r0很小)
模型4
SIR模型
di
dt
si
i
ds
dt
si
消去dt
/
di
ds
1 1
s
i s s 0 i 0
病人可以治愈!
模型3
传染病无免疫性——病人治愈成 为健康人,健康人可再次被感染ห้องสมุดไป่ตู้SIS 模型
增加假设 3)病人每天治愈的比例为 ~日治愈率
建模 N [ i ( t t ) i ( t ) ] N ( t ) i ( t ) s t N ( t ) t
di dt
i(1 i)
i
i(0) i0
1s
P1: s0>1/ i(t)先升后降至 0 P2: s0<1/ i(t)单调降至0
传染病蔓延 1/ 传染病不蔓延 ~阈

模型4
预防传染病蔓延的手段
SIR模型
传染病不蔓延的条件——s0<1/ • 提高阈值 1/ 降低 (=/)
,
(日接触率) 卫生水平
(日治愈率) 医疗水平
• 降低 s0
微分 方程 建模
• 根据函数及其变化率之间的关系确定函数 • 根据建模目的和问题分析作出简化假设 • 按照内在规律或用类比法建立微分方程
问题
5.1 传染病模型
• 描述传染病的传播过程 • 分析受感染人数的变化规律 • 预报传染病高潮到来的时刻 • 预防传染病蔓延的手段
• 按照传播过程的一般规律, 用机理分析方法建立模型
相关文档
最新文档