数学建模微分方程建模
数学建模实验二:微分方程模型Matlab求解与分析

实验二: 微分方程模型Matlab 求解与分析一、实验目的[1] 掌握解析、数值解法,并学会用图形观察解的形态和进行解的定性分析; [2] 熟悉MATLAB 软件关于微分方程求解的各种命令;[3] 通过范例学习建立微分方程方面的数学模型以及求解全过程; [4] 熟悉离散 Logistic 模型的求解与混沌的产生过程。
二、实验原理1. 微分方程模型与MATLAB 求解解析解用MATLAB 命令dsolve(‘eqn1’,’eqn2’, ...) 求常微分方程(组)的解析解。
其中‘eqni'表示第i 个微分方程,Dny 表示y 的n 阶导数,默认的自变量为t 。
(1) 微分方程 例1 求解一阶微分方程 21y dxdy+= (1) 求通解 输入:dsolve('Dy=1+y^2')输出:ans =tan(t+C1)(2)求特解 输入:dsolve('Dy=1+y^2','y(0)=1','x')指定初值为1,自变量为x 输出:ans =tan(x+1/4*pi)例2 求解二阶微分方程 221()04(/2)2(/2)2/x y xy x y y y πππ'''++-=='=-原方程两边都除以2x ,得211(1)04y y y x x'''++-= 输入:dsolve('D2y+(1/x)*Dy+(1-1/4/x^2)*y=0','y(pi/2)=2,Dy(pi/2)=-2/pi','x')ans =- (exp(x*i)*(pi/2)^(1/2)*i)/x^(1/2) +(exp(x*i)*exp(-x*2*i)*(pi/2)^(3/2)*2*i)/(pi*x^(1/2))试试能不用用simplify 函数化简 输入: simplify(ans)ans =2^(1/2)*pi^(1/2)/x^(1/2)*sin(x) (2)微分方程组例3 求解 d f /d x =3f +4g ; d g /d x =-4f +3g 。
数学建模第三章微分方程模型

3-7 香烟过滤嘴的作用机理(2)
精选ppt课件
51
3-7 香烟过滤嘴的作用机理(3)
精选ppt课件
52
3-7 香烟过滤嘴的作用机理(4)
精选ppt课件
53
3-7 香烟过滤嘴的作用机理(5)
精选ppt课件
54
3-7 香烟过滤嘴的作用机理(6)
精选ppt课件
55
3-7 香烟过滤嘴的作用机理(7)
精选ppt课件
39
3-6 疾病传播的机理分析模型(2)
精选ppt课件
40
3-6 疾病传播的机理分析模型(3)
精选ppt课件
41
3-6 疾病传播的机理分析模型(4)
精选ppt课件
42
3-6 疾病传播的机理分析模型(5)
精选ppt课件
43
3-6 疾病传播的机理分析模型(6)
精选ppt课件
44
3-6 疾病传播的机理分析模型(7)
精选ppt课件
45
3-6 疾病传播的机理分析模型(8)
精选ppt课件
46
3-6 疾病传播的机理分析模型(9)
精选ppt课件
47
3-6 疾病传播的机理分析模型(10)
精选ppt课件
48
3-6 疾病传播的机理分析模型(11)
精选ppt课件
49
3-7 香烟过滤嘴的作用机理(1)
精选ppt课件
50
69
3-10 赤道上空通讯卫星颗数的确定(1)
精选ppt课件
70
3-10 赤道上空通讯卫星颗数的确定(2)
精选ppt课件
71
3-10 赤道上空通讯卫星颗数的确定(3)
精选ppt课件
电磁场的数学建模与解答技巧

电磁场的数学建模与解答技巧电磁场是电荷和电流所产生的相互作用效应,它在工程学、物理学以及计算机模拟中都扮演着重要角色。
为了更好地理解和分析电磁场,数学建模和解答技巧是必不可少的。
本文将从电磁场的数学建模入手,介绍几种常用的数学建模方法,并给出解答技巧的实例。
一、电磁场的数学建模方法之一:微分方程微分方程是描述电磁场的一种常用数学工具。
通常,通过麦克斯韦方程组可以得到电磁场满足的偏微分方程。
对于静电场,可以使用拉普拉斯方程描述,表示为:∇²ϕ = -ρ/ε₀其中ϕ是电势,ρ是电荷密度,ε₀是真空介电常数。
对于静磁场,则可以使用斯托克斯方程描述,表示为:∇×B = μ₀J其中B是磁感应强度,J是电流密度,μ₀是真空磁导率。
通过求解这些微分方程,可以得到电磁场的分布情况。
二、电磁场的数学建模方法之二:有限元法有限元法是一种常用的数值解法,可用于求解任意形状的电磁场问题。
该方法将电磁场区域划分为有限个小单元,并在每个小单元内以多项式函数逼近电磁场的分布。
通过建立离散的代数方程组,并求解该方程组,可以得到电磁场的近似解。
三、电磁场的数学建模方法之三:有限差分法有限差分法是一种离散方法,通过将连续的电磁场问题转化为离散的代数问题进行求解。
该方法将连续的电磁场区域划分为网格,并在每个网格节点上进行逼近。
通过近似微分算子,将偏微分方程转化为差分方程,并通过迭代求解差分方程得到电磁场的解。
四、电磁场解答技巧实例为了更好地展示电磁场解答技巧,以下给出一个实例。
考虑一个带有一根无限长直导线的无限大平面问题。
已知导线的电流密度为I,求解该情况下的磁场分布。
根据安培环路定理,可以得到这个问题的微分方程为:∇×B = μ₀Iδ(x)δ(y)ez其中δ表示狄拉克δ函数,ez表示z轴方向上的单位向量。
通过对微分方程进行求解,可以得到在导线周围的磁场强度为:B = μ₀I/2πr其中r表示距导线的径向距离。
数学建模课程内容

2
微分 3. 运用这些规律列出方程和定解条件。 HOW? 方程 建模 采用如下一种或多种方法进行微分方程建模:
(i)按规律直接列方程 —— 在数学、力学、物理、化学等学科
中许多自然现象所满足的规律已为人们所熟悉,并直接由微分方程所描述。
(ii)微元分析法与任意区域上取积分的方法——自然
假设
建模
区分已感染者(病人)和未感染者(健康人)
1)总人数N不变,病人和健康
人的 比例分别为 i(t), s(t)
SI 模型
2)每个病人每天有效接触人数
为, 且使接触的健康人致病 ~ 日接触率
N[i(t t) i(t)] [s(t)]Ni(t)t
di si
dt
s(t) i(t) 1
di dt
传染病蔓延 1/σ ~
传染病不蔓延 阈值
14
模型4 SIR模型 预防传染病蔓延的手段
传染病不蔓延的条件——s0<1/ • 提高阈值 1/ 降低 (=/)
,
(日接触率) 卫生水平
(日治愈率) 医疗水平
• 降低 s0
的估计
提高 r0
s0 i0 r0 1
s0
i0
s
1
ln s s0
27
上图中,共有三条曲线,代表三个 状态参数随时间变化的图形
上图中只出现一条曲线,此曲线代表以 三个状态参数为坐标、以时间为参数的 一条三维空间中的曲线
28
小提示: 要观看Lorenz 混沌方程随时间而变的动画, 可在MATLAB 命令窗口下执行"lorenz"命令。
29
界中也有许多现象所满足的规律是通过变量的微元之间的关系式来表达的。 可是通过微元分析法,利用已知的规律建立一些变量(自变量与未知函数) 的微元之间的关系式,然后再通过取极限的方法得到微分方程,或等价地 通过任意区域上取积分的方法来建立微分方程。
常微分方程数学建模案例分析

常微分方程数学建模案例分析常微分方程是运用微积分中的概念与理论研究变化率的方程。
它是数学建模中常用的方法之一,可用于描述各种实际问题,如经济增长、生物扩散、化学反应等。
本文将通过一个关于人群传染病的数学建模案例,分析常微分方程在实际问题中的应用。
假设地有一种传染病,病毒的传播速度与感染者的接触频率有关。
现在我们要研究传染病的传播速度以及控制措施对传染病传播的影响。
为此,我们可以建立如下的数学模型:设N(t)表示时间t时刻的总人口数,而I(t)表示感染者的人口数,S(t)表示易感者的人口数。
根据该模型,易感者的人数随时间的变化率可表示为:dS/dt = -βSI其中,β表示感染率,即感染者每接触到一个易感者,会使其发病的概率。
感染者的人数随时间的变化率可表示为:dI/dt = βSI - γI其中,γ表示恢复率,即感染者每天被治愈的人数。
总人口数随时间的变化率可以通过易感者和感染者的变化率求和得到:dN/dt = dS/dt + dI/dt通过对该方程进行求解,我们可以得到感染者和易感者的人数随时间变化的解析解。
进一步,我们可以通过调节β和γ来研究不同的传播速度和控制措施对传染病传播的影响。
例如,如果β较大,表示感染率较高,此时传染速度会加快,可能导致传染病扩散的速度加快。
反之,如果β较小,表示感染率较低,传染病传播的速度会减慢。
另外,如果γ较大,表示恢复率较高,此时感染者的人数会快速减少,传染病传播的速度会减慢。
相反,如果γ较小,传染病传播的速度会加快。
通过对这些参数的调节,我们可以研究不同的控制措施对传染病传播的影响。
例如,我们可以通过降低感染率β或增加恢复率γ来减缓传染病传播的速度,从而控制疫情的爆发。
在实际应用中,常微分方程数学建模方法可以用于预测传染病的传播趋势,评估各种干预措施的效果。
此外,还可以通过引入更多的变量和参数,建立更复杂的模型,以更好地解释实际问题。
总之,常微分方程是数学建模中常用的方法之一,可以用于描述各种实际问题,如传染病的传播、经济增长等。
常微分方程数学建模案例分析

常微分方程数学建模案例分析假设我们要研究一个简单的生物系统:一种细菌的生长过程。
我们知道,细菌的生长通常可以描述为以指数速度增长的过程。
为了建立一个数学模型,我们首先需要确定一些基本假设和已知信息。
基本假设:1.我们假设细菌的生长速度与细菌的数量成正比。
2.我们假设细菌的死亡速率与细菌的数量成正比。
已知信息:1.我们已经知道在初始时刻,细菌的数量为N0个。
2.我们已经知道在初始时刻的细菌数量的增长速率为r个/单位时间。
3.我们已经知道在初始时刻的细菌数量的死亡速率为d个/单位时间。
接下来,我们将建立一个常微分方程模型来描述细菌数量的变化。
假设t表示时间,N(t)表示时间t时刻的细菌数量,则我们可以得到以下微分方程:dN/dt = rN - dN这个方程的含义是,细菌数量的变化率等于细菌的增长速率减去细菌的死亡速率。
如果我们将细菌的增长速率和死亡速率设为常数r和d,则上述方程可以进一步简化为:dN/dt = (r-d)N解这个微分方程,我们可以得到细菌数量随时间变化的函数N(t)。
根据初值条件N(0)=N0,我们可以求解该方程并得到解析解:N(t) = N0 * exp((r-d)t)上述解析解告诉我们,细菌数量随时间以指数速度增长。
这与我们的基本假设相符。
然而,对于复杂的系统,往往很难获得精确的解析解。
在这种情况下,我们可以使用数值方法来求解微分方程。
常见的数值方法包括欧拉法、改进的欧拉法和四阶龙格-库塔法等。
这些方法基于近似计算的原理,通过迭代逼近解。
在我们的细菌生长模型中,我们可以使用数值方法来计算细菌数量随时间的变化。
我们可以选择欧拉法,它是一种简单而直观的数值方法。
欧拉法的迭代公式为:N(t+h)=N(t)+h*(r-d)N(t)其中,N(t)是在时间t时刻的细菌数量,N(t+h)是在时间(t+h)时刻的细菌数量,h是时间间隔。
我们可以选择一个足够小的时间间隔h,并迭代使用欧拉法来计算细菌数量的近似解。
常微分方程在数学建模中的应用

常微分方程在数学建模中的应用首先是物理方面。
在物理学中,常微分方程广泛应用于描述运动、波动、电磁学、量子力学等问题。
例如,牛顿第二定律可以用常微分方程的形式表示为:\[m \frac{{d^2x}}{{dt^2}} = F(x,t)\]其中m为质量,x为位置,t为时间,F(x,t)为力。
这个方程可以用来描述物体的运动。
另一个例子是振动方程,可以通过常微分方程来描述弹簧振子、简谐振动等。
生物方面是另一个常见的应用领域。
生物学中经常需要对生物体的增长、衰退、群体动态等问题进行建模。
而常微分方程可以很好地描述这些问题。
例如,布鲁塞尔方程是描述细菌群体增长的常微分方程模型。
该模型使用了增长速率与细菌种群密度之间的关系。
通过求解布鲁塞尔方程,我们可以预测细菌的增长趋势,并为控制细菌的增长提供依据。
此外,常微分方程还可以在生物学中应用于描述神经网络、生物化学反应等。
经济方面也是常微分方程的应用领域之一、经济学中的一些重要问题,如经济增长、通货膨胀、利率变动等,都可以通过常微分方程进行建模和分析。
例如,Solow增长模型是描述经济增长的常微分方程模型。
该模型考虑了资本积累和技术进步对经济增长的影响。
通过求解Solow增长模型,我们可以分析经济增长的稳定状态、长期趋势和影响经济增长的因素。
除了物理、生物和经济学,常微分方程还可以在其他领域中应用。
例如,环境科学中可以通过常微分方程描述污染物的传输和扩散过程;工程学中可以应用常微分方程来描述振动、控制系统等问题。
此外,计算机科学中的数值方法也广泛应用于求解常微分方程的数值解。
总而言之,常微分方程在数学建模中的应用非常广泛,涵盖了物理、生物、经济等多个领域。
通过对常微分方程的求解和分析,我们可以获得有关问题的定量结论,并为问题的解决和决策提供支持。
数学建模 微分方程模型讲解

量在初始阶段的增长情况比较相符。
(2)由(3—19)式推得,t=0 时显然 x=0,这一结果自然与
事实不符。产生这一错误结果的原因在于我们假设产品是自然推
销的,然而,在最初产品还没卖出之时,按照自然推销的方式,
便不可能进行任何推销。事实上,厂家在产品销售之初,往往是
通过广告、宣传等各种方式来推销其产品的。
? 1. 新产品推销模型 ? 一种新产品问世,经营者自然要关心产
品的卖出情况。下面我们根据两种不同 的假设建立两种推销速度的模型。
模型 A 假设产品是以自然推销的方式卖出,换句话说,被卖出的产品
实际上起着宣传的作用, 吸引着未来购买的消费者。 设产品总数与时刻 t 的关
系为 x(t), 再假设每一产品在单位时间内平均吸引 k 个顾客,则 x(t) 满足微
样,从根本上解决了模型 A 的不足。 由(3—20)式易看出, dx ? 0 ,即 x(t) 是关于时刻 t 的单调增
dt
加函数,实际情况自然如此,产品的卖出量不可能越卖越少。另外,
对(3—20)式两端求导,得
d 2x dt 2
?
k(M
?
2 x)
dx dt
故令 d 2x
dt 2
?
0 ,得到 x(t0 ) ?
Nm N0
)e? n
易看出,当t→? 时,当N(t) →Nm。这个模型称为Logistic 模型,其结果 经过计算发现与实际情况比较吻合。上面所画的是 Logistic 模型的的图形。
你也可从这个图形中,观察到微分方程解的某些性态。
捕鱼问题
在鱼场中捕鱼,捕的鱼越多,所获得的经济效益越大。但捕捞的鱼过多,
根据上面的假设,我们建立模型
dS ? P ? A(t) ? ??1 ? S (t) ?? ? ? S(t )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
r s xm
x r ( x) r (1 ) xm
阻滞增长模型(Logistic模型)
dx rx dt
dx/dt
dx x r ( x) x rx(1 ) dt xm
x xm xm/2 x0
0
xm/2
xm x
0
t
x (t )
xm xm rt 1 ( 1)e x0
0
s(t)单调减相轨线的方向
1
s 1 / , i im t , i 0
s s满足 s0 i0 s ln 0 s0
im
P1 P3
0
s
S0
1 / s0
1s
P1: s0>1/ i(t)先升后降至0 P2: s0<1/ i(t)单调降至0
传染病蔓延 传染病不蔓延
模型4
假设
传染病有免疫性——病人治愈 后即移出感染系统,称移出者
SIR模型
1)总人数N不变,病人、健康人和移 出者的比例分别为 i(t ), s(t ), r (t )
2)病人的日接触率 , 日治愈率, 接触数 = / 建模
s(t ) i(t ) r (t ) 1
需建立
忽略i0
ln s0 ln s s0 s
模型4
被传染人数的估计
记被传染人数比例 x s0 s
SIR模型
1 x s x ln(1 ) 0 s0 i0 s ln 0 s0 s0 i0 0, s0 1
1
x<<s0
x x(1 2 )0 s0 2s0
实际为281.4 (百万)
模型应用——预报美国2010年的人口 加入2000年人口数据后重新估计模型参数 r=0.2490, xm=434.0 x(2010)=306.0
Logistic 模型在经济领域中的应用(如耐用消费品的售量)
• 年龄分布对于人口预测的重要性
• 只考虑自然出生与死亡,不计迁移
0
1-1/
1 i
1 , 1 1 i ( ) 0, 1
t
0
t
接触数 =1 ~ 阈值
1 i(t )按S形曲线增长 感染期内有效接触感染的 i0 小 健康者人数不超过病人数
模型2(SI模型)如何看作模型3(SIS模型)的特例
1 i (t )
1 di ds s 1 i s s i0
0
相轨线
相轨线 i (s) 的定义域
s i ( s ) ( s0 i0 ) s ln s0
i
1
1
D {( s, i ) s 0, i 0, s i 1}
在D内作相轨线 i (s) 的图形,进行分析
• 对象仍是动态过程,而建模目的是研究时 间充分长以后过程的变化趋势 ——平衡状 态是否稳定。 • 不求解微分方程,而是用微分方程稳定性 理论研究平衡状态的稳定性。
产量模型 假设
x(t) ~ 渔场鱼量
• 无捕捞时鱼的自然增长服从 Logistic规律 x x(t ) f ( x) rx(1 ) N r~固有增长率, N~最大鱼量 • 单位时间捕捞量与渔场鱼量成正比 h(x)=Ex, E~捕捞强度
阻滞增长模型(Logistic模型)
人口增长到一定数量后,增长率下降的原因: 资源、环境等因素对人口增长的阻滞作用 且阻滞作用随人口数量增加而变大 假设 r是x的减函数
r ( x) r sx (r, s 0)
r~固有增长率(x很小时)
xm~人口容量(资源、环境能容纳的最大数量)
r ( xm ) 0
•根据规律列方程
方法
•微元分析法 •模拟近似法
4.1 人口预测和控制 4.2 传染病模型
4.3 捕鱼业的持续收获
4.1
背景
人口预测和控制
世界人口增长概况
年 1625 1830 1930 1960 1974 1987 1999 人口(亿) 5 10 20 30 40 50 60 中国人口增长概况 年 1908 1933 1953 1964 1982 1990 1995 2000 人口(亿) 3.0 4.7 6.0 7.2 10.3 11.3 12.0 13.0 研究人口变化规律 控制人口过快增长
传染病无免疫性——病人治愈成 为健康人,健康人可再次被感染 SIS 模型 3)病人每天治愈的比例为
~日治愈率
N[i(t t ) i(t )] Ns(t )i(t )t Ni(t )t
di i (1 i ) i dt i (0) i0
~ 日接触率
1/ ~感染期
/
~ 一个感染期内每个病人的
有效接触人数,称为接触数。
模型3
di/dt
di i (1 i ) i dt i
>1
i0
1-1/
di 1 i[i (1 )] / dt
>1
i
1
di/dt < 0
i0 0 i0
建模
s(t ) i (t ) e(t ) r (t ) 1
建立 i ( t ), s( t ), e( t ), r ( t ) 方程
模型5
SEIR模型
ds d t si d e si e dt di e i dt dr d t i i ( 0 ) i 0 , s ( 0 ) s0 , e ( 0 ) e 0
1/~ 阈值
模型4
预防传染病蔓延的手段
SIR模型
传染病不蔓延的条件——s0<1/ • 提高阈值 1/ 降低 (=/)
,
(日接触率) 卫生水平 (日治愈率) 医疗水平
• 降低 s0
s0 i0 r0 1
提高 r0
群体免疫
的估计
1
s s0 i0 s ln 0 s0
无法求出 i(t ), s(t )
的解析解 在相平面 s ~ i 上
研究解的性质
i0 s0 1 (通常r (0) r0很小)
模型4
di dt si i ds si dt i (0) i0 , s (0) s0
SIR模型
消去dt /
建模
捕捞情况下 渔场鱼量满足
记 F ( x) f ( x) h( x)
x x(t ) F ( x) rx(1 ) Ex N
• 不需要求解x(t), 只需知道x(t)稳定的条件
一阶微分方程的平衡点及其稳定性 x F (x) (1) 一阶非线性(自治)方程
常用的计算公式
k年后人口
今年人口 x0, 年增长率 r
xk x0 (1 r )
k
指数增长模型——马尔萨斯提出 (1798)
基本假设 : 人口(相对)增长率 r 是常数
x(t) ~时刻t的人口
dx rx, x(0) x0 dt
x(t t ) x(t ) rt x(t )
Logistic 模型
1 1 t 1 1 e i 0
1
t
t=tm, di/dt 最大
tm~传染病高潮到来时刻
1 t m ln 1 i 0 t i 1 ?
病人可以治愈!
(日接触ห้องสมุดไป่ตู้) tm
模型3
增加假设 建模
离散:Leslie 人口发展方程
4.2 传染病模型
问题
• 描述传染病的传播过程 • 分析受感染人数的变化规律
• 预报传染病高潮到来的时刻
• 预防传染病蔓延的手段
• 按照传播过程的一般规律, 用机理分析方法建立模型
模型1
假设 建模
已感染人数 (病人) i(t)
• 每个病人每天有效接触 (足以使人致病)人数为
0
D
s
1
模型4
相轨线 i (s) 及其分析
SIR模型
di i 1 si i di dt 1 s ds s 1 1 i( s) ( s0 i0 ) s ln s0 ds si i s s i0 dt D P4 i (0) i0 , s (0) s0 P2
SI 模型
~日
接触率
建模
N[i(t t ) i(t )] [s(t )]Ni (t )t
di si dt
s(t ) i(t ) 1
di i (1 i ) dt i (0) i0
模型2
i 1 1/2 i0 0 tm
di i (1 i ) dt i (0) i0 i (t )
x(t ) x0 e
rt
x(t ) x0 (e ) x0 (1 r )
r t
t
随着时间增加,人口按指数规律无限增长
指数增长模型的应用及局限性
• 与19世纪以前欧洲一些地区人口统计数据吻合 • 适用于19世纪后迁往加拿大的欧洲移民后代
• 可用于短期人口增长预测
• 不符合19世纪后多数地区人口增长规律 • 不能预测较长期的人口增长过程 19世纪后人口数据 人口增长率r不是常数(逐渐下降)
i(t t ) i(t ) i(t )t
di i dt i (0) i0
i(t ) i0 e
t
t i ?
必须区分已感染者(病 人)和未感染者(健康人)
若有效接触的是病人, 则不能使病人数增加
模型2
假设
区分已感染者(病人)和未感染者(健康人) 1)总人数N不变,病人和健康 人的 比例分别为 i(t ), s(t ) 2)每个病人每天有效接触人数 为, 且使接触的健康人致病