数学建模-微分方程模型

合集下载

数学建模实验二:微分方程模型Matlab求解与分析

数学建模实验二:微分方程模型Matlab求解与分析

实验二: 微分方程模型Matlab 求解与分析一、实验目的[1] 掌握解析、数值解法,并学会用图形观察解的形态和进行解的定性分析; [2] 熟悉MATLAB 软件关于微分方程求解的各种命令;[3] 通过范例学习建立微分方程方面的数学模型以及求解全过程; [4] 熟悉离散 Logistic 模型的求解与混沌的产生过程。

二、实验原理1. 微分方程模型与MATLAB 求解解析解用MATLAB 命令dsolve(‘eqn1’,’eqn2’, ...) 求常微分方程(组)的解析解。

其中‘eqni'表示第i 个微分方程,Dny 表示y 的n 阶导数,默认的自变量为t 。

(1) 微分方程 例1 求解一阶微分方程 21y dxdy+= (1) 求通解 输入:dsolve('Dy=1+y^2')输出:ans =tan(t+C1)(2)求特解 输入:dsolve('Dy=1+y^2','y(0)=1','x')指定初值为1,自变量为x 输出:ans =tan(x+1/4*pi)例2 求解二阶微分方程 221()04(/2)2(/2)2/x y xy x y y y πππ'''++-=='=-原方程两边都除以2x ,得211(1)04y y y x x'''++-= 输入:dsolve('D2y+(1/x)*Dy+(1-1/4/x^2)*y=0','y(pi/2)=2,Dy(pi/2)=-2/pi','x')ans =- (exp(x*i)*(pi/2)^(1/2)*i)/x^(1/2) +(exp(x*i)*exp(-x*2*i)*(pi/2)^(3/2)*2*i)/(pi*x^(1/2))试试能不用用simplify 函数化简 输入: simplify(ans)ans =2^(1/2)*pi^(1/2)/x^(1/2)*sin(x) (2)微分方程组例3 求解 d f /d x =3f +4g ; d g /d x =-4f +3g 。

数学建模-微分方程模型-饮酒驾车问题

数学建模-微分方程模型-饮酒驾车问题

和 x0 ,将体重 70kg 的某人在快速喝下 2 瓶啤酒之后一段时间内他血液中酒精含量的
测量值进行处理后,得到附录 1 所示的 y0 0 时的一组数据,并采用非线性最小二乘法 拟合算法对系数进行求解,得出参数如下。 x0 5193
=2.00796
=0.1855
同时可以看到,每瓶啤酒含酒精量为 2596.5mg。 所以,得出的血液中酒精含量关于时间的函数如下。
0.1855 t e 2.00756t ) 2860.78604(e y (t ) 0.1855( t 6) 2860.8028e 2.00756(t 6) 3800.7595e
0t 6 6 t 12
利用 matlab 对以上模型进行求解。 图 3 大李血液中酒精含量随时间变化图像
y (t ) ( y0 +5721.57208)e 0.1855t 5721.57208e 2.00796t
拟合效果如图。 图 1 函数的拟合效果
图 2 残差分析图
残差分析图
600 500 400 300 200 100 0 10 11 12 13 14 15 0.5 1.5 2.5 3.5 0.25 ‐100 ‐200 ‐300 ‐400 残差 0.75 4.5 16 1 2 3 4 5 6 7 8 9
时刻为 t 时胃肠道中的酒精含量。
y (t ) 时刻为 t 时血液中的酒精含量。


胃肠道中的酒精进入血液的转移率与胃肠道中酒精量的比值。 血液中的酒精的排除率与血液中酒精量的比值。
五、模型的建立与求解
5.1 问题一 根据题目叙述,大李的实际情况符合快速饮酒的模型。为了确定函数中的系数 ,

数学建模微分方程模型练习题

数学建模微分方程模型练习题

微分方程模型练习题
1.速度为v 的风吹在迎风面积为s 的风车上,空气密度是ρ,用量纲分析方法确定风车获得的功率P 与,
,v s ρ的关系
2.根据经验当一种新商品投入市场后,随着人们对它的拥有量的增加,其销售量()s t 成正比。

广告宣传可给销量添加一个增长速度,它与广告费()a t 成正比,但广告只能影响这种商品在市场上尚未饱和的部分(设饱和量为M )。

建立一个销量()s t 的模型。

若广告宣传只进行有限时间τ,且广告费为常数a ,问()s t 如何变化?
3.如果两个种群都能独立生存,共处时又能相互提供食物,试建立种群依存模型并讨论平衡点的稳定性,解释稳定的意义。

4.某种群最高年龄为30岁,按间隔10岁将此种群分为三组并
以10年为一时段。

若020b b ==,13b =,016p =,112p =,
0(1000,1000,1000)T N =
求:(1)10年、20年、30年后该种群按年龄分布的种群量;
(2)此种群的固有增长率1λ及相应的稳定年龄分布;
(3)指出该种群的发展趋势。

微分方程建模(溶液浓度)

微分方程建模(溶液浓度)

Vanmeegren在狱中作的画实在是质量太差,所 找理由都不能使怀疑者满意。直到20年后,1967
年,卡内基梅隆大学的科学家们用微分方程模型
解决了这一问题。
原理
著名物理学家卢瑟夫(Rutherford)指出:
物质的放射性正比于现存物质的原子数。
设 t 时刻的原子数为N (t ) ,则有
dN dt N
测定结果与分析
画名 Emmaus的信徒们 洗足 钋210衰变原子数 镭226衰变原子数
8.5 12.6
0.82 0.26
读乐谱的妇人
弹曼陀林的妇人 做花边的人 欢笑的女孩
10.3
8.2 1.5 5.2
0.3
0.17 1.4 6.0
若第一幅画是真品, t t 0 300
y 0 y (t )e
衰减(放射性/污染物的净化) “边际的”(经济学)
应注意题目的 这些词: 改变/变化/增 加/减少
如何建立微分方程?
根据规律列方程
利用数学、力学、物理、化学等学科中的定理或经过实验检验
的规律等来建立微分方程模型。

微元分析法
利用已知的定理与规律寻找微元之间的关系式,与第一种方法
不同的是对微元而不是直接对函数及其导数应用规律。
d x C 1V 1 d t C 2V 2 d t
dx C 1V 1 C 2V 2 dt x (0) x0
该模型还适用于 讨论气体的混合
以上两个简单例子的启示:
关键是建立一个 yˊ 、y、t 的方程.
可以表示为导数的最常见的量:
速率
增长(生物学/ 人口问题)
从处于放射性平衡状态的矿中提取出来时, Pb210 的绝大多数来源被切断,因而要迅速蜕变,直到 Pb210与少量的镭再度处于放射平衡,这时Pb210 的蜕变正好等于镭蜕变所补足的为止。

数学建模 四大模型总结

数学建模 四大模型总结

四类基本模型1 优化模型1.1 数学规划模型线性规划、整数线性规划、非线性规划、多目标规划、动态规划。

1.2 微分方程组模型阻滞增长模型、SARS 传播模型。

1.3 图论与网络优化问题最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。

1.4 概率模型决策模型、随机存储模型、随机人口模型、报童问题、Markov 链模型。

1.5 组合优化经典问题● 多维背包问题(MKP)背包问题:n 个物品,对物品i ,体积为i w ,背包容量为W 。

如何将尽可能多的物品装入背包。

多维背包问题:n 个物品,对物品i ,价值为i p ,体积为i w ,背包容量为W 。

如何选取物品装入背包,是背包中物品的总价值最大。

多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。

该问题属于NP 难问题。

● 二维指派问题(QAP)工作指派问题:n 个工作可以由n 个工人分别完成。

工人i 完成工作j 的时间为ij d 。

如何安排使总工作时间最小。

二维指派问题(常以机器布局问题为例):n 台机器要布置在n 个地方,机器i 与k 之间的物流量为ik f ,位置j 与l 之间的距离为jl d ,如何布置使费用最小。

二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。

● 旅行商问题(TSP)旅行商问题:有n 个城市,城市i 与j 之间的距离为ij d ,找一条经过n 个城市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。

● 车辆路径问题(VRP)车辆路径问题(也称车辆计划):已知n 个客户的位置坐标和货物需求,在可供使用车辆数量及运载能力条件的约束下,每辆车都从起点出发,完成若干客户点的运送任务后再回到起点,要求以最少的车辆数、最小的车辆总行程完成货物的派送任务。

TSP 问题是VRP 问题的特例。

● 车间作业调度问题(JSP)车间调度问题:存在j 个工作和m 台机器,每个工作由一系列操作组成,操作的执行次序遵循严格的串行顺序,在特定的时间每个操作需要一台特定的机器完成,每台机器在同一时刻不能同时完成不同的工作,同一时刻同一工作的各个操作不能并发执行。

常微分方程数学建模案例分析

常微分方程数学建模案例分析

常微分方程数学建模案例分析常微分方程是运用微积分中的概念与理论研究变化率的方程。

它是数学建模中常用的方法之一,可用于描述各种实际问题,如经济增长、生物扩散、化学反应等。

本文将通过一个关于人群传染病的数学建模案例,分析常微分方程在实际问题中的应用。

假设地有一种传染病,病毒的传播速度与感染者的接触频率有关。

现在我们要研究传染病的传播速度以及控制措施对传染病传播的影响。

为此,我们可以建立如下的数学模型:设N(t)表示时间t时刻的总人口数,而I(t)表示感染者的人口数,S(t)表示易感者的人口数。

根据该模型,易感者的人数随时间的变化率可表示为:dS/dt = -βSI其中,β表示感染率,即感染者每接触到一个易感者,会使其发病的概率。

感染者的人数随时间的变化率可表示为:dI/dt = βSI - γI其中,γ表示恢复率,即感染者每天被治愈的人数。

总人口数随时间的变化率可以通过易感者和感染者的变化率求和得到:dN/dt = dS/dt + dI/dt通过对该方程进行求解,我们可以得到感染者和易感者的人数随时间变化的解析解。

进一步,我们可以通过调节β和γ来研究不同的传播速度和控制措施对传染病传播的影响。

例如,如果β较大,表示感染率较高,此时传染速度会加快,可能导致传染病扩散的速度加快。

反之,如果β较小,表示感染率较低,传染病传播的速度会减慢。

另外,如果γ较大,表示恢复率较高,此时感染者的人数会快速减少,传染病传播的速度会减慢。

相反,如果γ较小,传染病传播的速度会加快。

通过对这些参数的调节,我们可以研究不同的控制措施对传染病传播的影响。

例如,我们可以通过降低感染率β或增加恢复率γ来减缓传染病传播的速度,从而控制疫情的爆发。

在实际应用中,常微分方程数学建模方法可以用于预测传染病的传播趋势,评估各种干预措施的效果。

此外,还可以通过引入更多的变量和参数,建立更复杂的模型,以更好地解释实际问题。

总之,常微分方程是数学建模中常用的方法之一,可以用于描述各种实际问题,如传染病的传播、经济增长等。

数学建模 微分方程模型讲解

数学建模 微分方程模型讲解

量在初始阶段的增长情况比较相符。
(2)由(3—19)式推得,t=0 时显然 x=0,这一结果自然与
事实不符。产生这一错误结果的原因在于我们假设产品是自然推
销的,然而,在最初产品还没卖出之时,按照自然推销的方式,
便不可能进行任何推销。事实上,厂家在产品销售之初,往往是
通过广告、宣传等各种方式来推销其产品的。
? 1. 新产品推销模型 ? 一种新产品问世,经营者自然要关心产
品的卖出情况。下面我们根据两种不同 的假设建立两种推销速度的模型。
模型 A 假设产品是以自然推销的方式卖出,换句话说,被卖出的产品
实际上起着宣传的作用, 吸引着未来购买的消费者。 设产品总数与时刻 t 的关
系为 x(t), 再假设每一产品在单位时间内平均吸引 k 个顾客,则 x(t) 满足微
样,从根本上解决了模型 A 的不足。 由(3—20)式易看出, dx ? 0 ,即 x(t) 是关于时刻 t 的单调增
dt
加函数,实际情况自然如此,产品的卖出量不可能越卖越少。另外,
对(3—20)式两端求导,得
d 2x dt 2
?
k(M
?
2 x)
dx dt
故令 d 2x
dt 2
?
0 ,得到 x(t0 ) ?
Nm N0
)e? n
易看出,当t→? 时,当N(t) →Nm。这个模型称为Logistic 模型,其结果 经过计算发现与实际情况比较吻合。上面所画的是 Logistic 模型的的图形。
你也可从这个图形中,观察到微分方程解的某些性态。
捕鱼问题
在鱼场中捕鱼,捕的鱼越多,所获得的经济效益越大。但捕捞的鱼过多,
根据上面的假设,我们建立模型
dS ? P ? A(t) ? ??1 ? S (t) ?? ? ? S(t )

数学建模,第三章-微分方程模型

数学建模,第三章-微分方程模型

8小时20分-2小时57分=5小时23分
即死亡时间大约在下午5:23,因此张某不能被 排除在嫌疑犯之外。
理学院
3.2 目标跟踪模型
例1 饿狼追兔问题 黑 龙 现有一直兔子,一只狼,兔子位于狼的正西100米处,假 江 科 设兔子与狼同时发现对方并一起起跑,兔子往正北60米处的 技 巢穴跑,而狼在追兔子,已知兔子、狼是匀速跑且狼的速度 学 是兔子的2倍。兔子能否安全回到巢穴? 整理得到下述模型: 院 解:设狼的行走轨迹为y=f(x),则有:
理பைடு நூலகம்院
本章将通过一些最简单的实例来说明微分方程建模的 一般方法。在连续变量问题的研究中,微分方程是十分常 用的数学工具之一。
在许多实际问题中,当直接导出变量之间的函数关系 较为困难,但导出包含未知函数的导数或微分的关系式较 为容易时,可用建立微分方程模型的方法来研究该问题,
黑 龙 江 科 技 学 院 数 学 建 模
数 学 建 模
B
60
2 2xf' ' x 1 f' x y' x 0 , y 0 100 x 100 解得狼的行走轨迹为: 100 0 100 (0,h) 0, f' f 假设在某一时刻,兔子跑到 处,而狼在 (x,y)处,则有:
理学院
y y0 g e
g
车间空气中CO2浓度y 与时间t的数学模型
黑 龙 江 科 技 学 院 数 学 建 模
3.4 学习模型
一般认为,对一项技术工作,开始学得较快,但随着学 得越来越多时,内容也越来越复杂,学员学得就会越来越慢。
员学习的速度,则随y的增长而下降。
dy 设y%表示已经掌握了这项工作的百分数, dt
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

d k ( 20) dt
dM M dt
二、微分方程的解法
积分方法,分离变量法
可分离变量的微分方程
g( y )dy f ( x )dx 可分离变量的微分方程. 4 4 dy 例如 2 x 2 y 5 y 5 dy 2 x 2dx , dx 解法 设函数 g( y ) 和 f ( x ) 是连续的,
一、运用已知物理定律 建立微分方程模型时 应用已知物理定律, 可事半功倍
例1
铀的衰变规律问题:放射性元素由于不断地
有原子放射出微粒子变成其他元素,铀的含量 不断的减少,这种现象称为衰变,由原子物理 学知道,铀的衰变速度与当时未衰变的原子的
含量M成正比,已知t=0时刻铀的含量为 M 0 ,
求在衰变过程中铀的含量M(t)随时间t的变化

T m ce
kt
, t 0,
代入条件:T (0) 60 T (3) 50 1 16 求得c=42 , k ln , 3 21 最后得 1 16
T(t)=18+42 e 3
ln
21
t
, t ≥0.
1 16 结果 :T(10)=18+42 3 ln 21 10 =25.870, e
规律。

dM 铀的衰变速度就是 M (t ) 对时间t的导数 dt

由于衰变速度与其含量成正比,可知未知函数满足 关系式: dM M (1) ( 0) 是衰变系数
dt
且初始条件 M t 0 M0 dM dt 分离变量得 M 对上式两端积分得:ln M t ln c 因此, M (t ) Cet 代入初始条件得
t
C M0
M (t ) M 0e 所以有,
这就是铀的衰变规律。
一、运用已知物理定律 例2 一个较热的物体置于室温为180c的 房间内,该物体最初的温度是600c,3分钟以后
降到500c .想知道它的温度降到300c 需要多少时 间?10分钟以后它的温度是多少?
牛顿冷却(加热)定律:将温度为T的物体 放入处于常温 m 的介质中时,T的变化速率 正比于T与周围介质的温度差. 分析:假设房间足够大,放入温度较低或较 高的物体时,室内温度基本不受影响,即室温 分布均衡,保持为m,采用牛顿冷却定律是一个 相当好的近似.
ln y x 2 C1
y Ce 为所求通解.
x2
初值问题: 求微分方程满足初始条件的解的问题.
y f ( x , y ) 一阶: y x x0 y 0
过定点的积分曲线;
y f ( x , y , y ) 二阶: y y , y y 0 0 x x x x 0 0
建立模型:设物体在冷却过程中的温度为 T(t),t≥0,
“T的变化速率正比于T与周围介质的温度差” 翻译为
dT 与 T m 成正比 dt
dT k (T m ), dt T ( 0) 60.
建立微分方程
数学语言
其中参数k >0,m=18. 求得一般解为
ln(T-m)=-k t+c,
过定点且在定点的切线的斜率为定值的积分曲线.
例2. 解初值问题
x yd x ( x 2 1 ) d y 0
y( 0 ) 1
dy x 解: 分离变量得 dx 2 yC
( C 为任意常数 )
由初始条件得 C = 1, 故所求特解为
y x 1 1
(2)
(3)
2 y 2 xdx x C 对(1)式两端积分得:
又因曲线满足条件 y |x1 2 代入(3)得C=1
因此,所求曲线的方程为
y x2 1.
回答什么是微分方程:
y ' 2x

建立关于未知变量、 未知变量的导数以及 自变量的方程
y xy ,
x y 2y 3y e ,
g( y )dy f ( x )dx
分离变量法
设函数G ( y ) 和 F ( x ) 是依次为g( y ) 和 f ( x ) 的原函 数, G ( y ) F ( x ) C 为微分方程的解.
典型例题
dy 2 xy 的通解. 例1 求解微分方程 dx dy 解 分离变量 2 xdx , y dy 2 xdx , 两端积分 y
直接求 很困难
建立变量能满足 的微分方程
哪一类问题

在工程实际问题中 “改变”、“变化”、“增加”、“减少”等关 键词提示我们注意什么量在变化. 关键词“速率”, “增长” ,“衰变” ,“边际 的” ,常涉及到导数.
常 用建 微立 分方 方法 程 运用已知物理定律 利用平衡与增长式 运用微元法 应用分析法 机理分 析法
数学建模- 微分方程模型
关晓飞 同济大学数学科学学院
一、什么是微分方程?
最最简单的例子
引例
一曲线通过点(1,2),且在该曲线任一点 若设曲线方程为 y f ( x) , (1)
M( x ,y )处的切线的斜率为2x,求该曲线的方程。

根据导数的几何意义可知未知函数满足关系式:
dy 2x dx
2
三、建立微分方程数学模型
1、简单的数学模型
2、复杂的数学模型
1、简单的数学模型
利用微分方程求实际问题中未知函数的一般步骤是: (1) 分析问题,设所求未知函数,建立微分方
程,确定初始条件;
(2) (3) 求出微分方程的通解; 根据初始条件确定通解中的任意常数,求
出微分方程相应的特解.
实际问题需寻求某个变量y 随另一变量 t 的 变化规律 :y=y(t). 建立关于未知变量、 未知变量的导数以及 自变量的方程
该物体温度降至300c 需要8.17分钟.
二. 利用平衡与增长式
许多研究对象在数量上常常表现出某种不变 的特性,如封闭区域内的能量、货币量等. 利用变量间的平衡与增长特性,可分析和建 立有关变量间的相互关系.
例1 某车间体积为12000立方米, 开始时空气中
含有0.1% 的 CO2, 为了降低车间内空气中CO2 的含量, 用一台风量为每秒2000立方米的鼓风机 通入含 0.03%的 CO2的新鲜空气, 同时以同样的 风量将混合均匀的空气排出, 问鼓风机开动6分 钟后, 车间内 CO2的百分比降低到多少?
相关文档
最新文档