微分方程模型——数学建模真题解析

合集下载

数学建模第三章微分方程模型

数学建模第三章微分方程模型

3-7 香烟过滤嘴的作用机理(2)
精选ppt课件
51
3-7 香烟过滤嘴的作用机理(3)
精选ppt课件
52
3-7 香烟过滤嘴的作用机理(4)
精选ppt课件
53
3-7 香烟过滤嘴的作用机理(5)
精选ppt课件
54
3-7 香烟过滤嘴的作用机理(6)
精选ppt课件
55
3-7 香烟过滤嘴的作用机理(7)
精选ppt课件
39
3-6 疾病传播的机理分析模型(2)
精选ppt课件
40
3-6 疾病传播的机理分析模型(3)
精选ppt课件
41
3-6 疾病传播的机理分析模型(4)
精选ppt课件
42
3-6 疾病传播的机理分析模型(5)
精选ppt课件
43
3-6 疾病传播的机理分析模型(6)
精选ppt课件
44
3-6 疾病传播的机理分析模型(7)
精选ppt课件
45
3-6 疾病传播的机理分析模型(8)
精选ppt课件
46
3-6 疾病传播的机理分析模型(9)
精选ppt课件
47
3-6 疾病传播的机理分析模型(10)
精选ppt课件
48
3-6 疾病传播的机理分析模型(11)
精选ppt课件
49
3-7 香烟过滤嘴的作用机理(1)
精选ppt课件
50
69
3-10 赤道上空通讯卫星颗数的确定(1)
精选ppt课件
70
3-10 赤道上空通讯卫星颗数的确定(2)
精选ppt课件
71
3-10 赤道上空通讯卫星颗数的确定(3)
精选ppt课件

微分方程模型(数学建模)

微分方程模型(数学建模)
利用模拟近似法建模
3
2019年1月8日
开普勒三大定律:
《数学的实践与认识》 2005.12
• 太阳系每一颗行星的轨道皆以太阳为一 焦点的椭圆;
• 行星的向径在单位时间扫过的面积是一 个常数;
• 行星运动周期之平方与平均距离之立方 成正比。
4
2019年1月8日
动态 模型
• 描述对象特征随时间(空间)的演变过程 • 分析对象特征的变化规律 • 预报对象特征的未来性态 • 研究控制对象特征的手段 • 根据函数及其变化率之间的关系确定函数 • 根据建模目的和问题分析作出简化假设 • 按照内在规律或用类比法建立微分方程
5 2019年1月8日
微分 方程 建模
一、微分方程建模的思想和方法
当我们用微观的眼光观察实际问题时一般遵循如下的模式
净变化率=输入率-输出率
(1)根据已知规律:利用数学、物理、力学、化学等经 过实践检验的规律和定理; (2)利用微元法 (3)利用模拟近似法:在社会科学、生物学、医学、经 济学的学科中一些现象的规律性我们不太清楚,需要在不 同的假设下去模拟实际现象。如此建立的模型从数学上求 解或分析后再与实际对比,观察看这个模型是否能够模拟、 近似这些现象。
现代战争的特点是多兵种的协同作战,根据不 同兵种的特点,在不同的区域参加战斗,都对战争的 结果产生一定的影响.
20 2019年1月8日
战争的预测与评估问题
1.问题的提出 现在要求建立数学模型讨论的问题: (1) 分析研究引起军备竞赛的因素,并就诸多 因素之间的相互关系进行讨论; (2) 在多兵种的作战条件下,对作战双方的战 势进行评估分析. (3)分析研究作战双方的兵力消耗,并预测初 始总兵力和战斗力变化对作战结果的影响。

数学建模实验答案微分方程模型

数学建模实验答案微分方程模型

实验07 微分方程模型(2学时)(第5章 微分方程模型)1.(验证)传染病模型2(SI 模型)p136~138传染病模型2(SI 模型):0(1),(0)dik i i i i dt =-= 其中,i (t )是第t 天病人在总人数中所占的比例。

k 是每个病人每天有效接触的平均人数(日接触率)。

i 0是初始时刻(t =0)病人的比例。

1.1 画~dii dt曲线图p136~138取k =0.1,画出i dt di ~的曲线图,求i 为何值时dtdi达到最大值,并在曲线图上标注。

参考程序:提示:fplot, fminbnd, plot, text, title, xlabel1)画曲线图用fplot函数,调用格式如下:fplot(fun,lims)fun必须为一个M文件的函数名或对变量x的可执行字符串。

若lims取[xmin xmax],则x轴被限制在此区间上。

若lims取[xmin xmax ymin ymax],则y轴也被限制。

本题可用fplot('0.1*x*(1-x)',[0 1.1 0 0.03]);2)求最大值用求解边界约束条件下的非线性最小化函数fminbnd,调用格式如下:x=fminbnd('fun',x1,x2)fun必须为一个M文件的函数名或对变量x的可执行字符串。

返回自变量x在区间x1<x<x2上函数取最小值时的x值。

本题可用x=fminbnd('-0.1*x*(1-x)',0,1)y=0.1*x*(1-x)3)指示最大值坐标用线性绘图函数plot,调用格式如下:plot(x1,y1, '颜色线型数据点图标', x2,y2, '颜色线型数据点图标',…)本题可用hold on; %在上面的同一张图上画线(同坐标系)plot([0,x],[y,y],':',[x,x],[0,y],':');4)图形的标注使用文本标注函数text,调用格式如下:格式1text(x,y,文本标识内容, 'HorizontalAlignment', '字符串1')x,y给定标注文本在图中添加的位置。

数学建模微分方程模型

数学建模微分方程模型

我国是世界第一人口大国,地球上每九 个人中就有二个中国人,在20世纪的一段 时间内我国人口的增长速度过快,如下表:
年 1908 1933 4.7 1953 6.0 1964 7.2 1982 10.3 1990 11.3 2000 12.95
人口(亿)3.0
有效地控制人口的增长,不仅是使我国全面进 入小康社会、到21世纪中叶建成富强民主文明的社 会主义国家的需要,而且对于全人类社会的美好理 想来说,也是我们义不容辞的责任。
1.人口模型
问题的提出 假设和定义 模型的建立 分析和求解 结论和讨论

1 问题的提出
人口问题是当今世界上最令人关注的问题之一, 一些发展中国家的人口出生率过高,越来越威胁着 人类的正常生活,有些发达国家的自然增长率趋于 零,甚至变为负数,造成劳动力紧缺,也是不容忽 视的问题。另外,在科学技术和生产力飞速发展的 推动下,世界人口以空前的规模增长,统计数据显 示:
模型的缺点
缺点:当t→∞时,I(t) → n,这表示所有的人最
终都将成为病人,这一点与实际情况不 符合
原因:这是由假设〔1)所导致,没有考虑病人可
以治愈及病人病发身亡的情况。 思考题:考虑有病人病发身亡的情况,再对模型 进行修改。
模型三 有些传染病(如痢疾)愈后免疫力很低,还有可能再
次被传染而成为病人。 模型假设: (1)健康者和病人在总人数中所占的比例分别为s(t)、i(t), 则: s(t)+i(t)=1 (2)一个病人在单位时间内传染的人数与当时健康人数成 正比,比例系数为k (3)病人每天治愈的人数与病人总数成正比,比例系数为 μ(称日治愈率),病人治愈后成为仍可被感染的健康者, 称1/ μ为传染病的平均传染期(如病人数保持10人,每 天治愈2人, μ =1/5,则每位病人平均生病时间为 1/ μ =5天)。

数学建模-微分方程模型-饮酒驾车问题

数学建模-微分方程模型-饮酒驾车问题

和 x0 ,将体重 70kg 的某人在快速喝下 2 瓶啤酒之后一段时间内他血液中酒精含量的
测量值进行处理后,得到附录 1 所示的 y0 0 时的一组数据,并采用非线性最小二乘法 拟合算法对系数进行求解,得出参数如下。 x0 5193
=2.00796
=0.1855
同时可以看到,每瓶啤酒含酒精量为 2596.5mg。 所以,得出的血液中酒精含量关于时间的函数如下。
0.1855 t e 2.00756t ) 2860.78604(e y (t ) 0.1855( t 6) 2860.8028e 2.00756(t 6) 3800.7595e
0t 6 6 t 12
利用 matlab 对以上模型进行求解。 图 3 大李血液中酒精含量随时间变化图像
y (t ) ( y0 +5721.57208)e 0.1855t 5721.57208e 2.00796t
拟合效果如图。 图 1 函数的拟合效果
图 2 残差分析图
残差分析图
600 500 400 300 200 100 0 10 11 12 13 14 15 0.5 1.5 2.5 3.5 0.25 ‐100 ‐200 ‐300 ‐400 残差 0.75 4.5 16 1 2 3 4 5 6 7 8 9
时刻为 t 时胃肠道中的酒精含量。
y (t ) 时刻为 t 时血液中的酒精含量。


胃肠道中的酒精进入血液的转移率与胃肠道中酒精量的比值。 血液中的酒精的排除率与血液中酒精量的比值。
五、模型的建立与求解
5.1 问题一 根据题目叙述,大李的实际情况符合快速饮酒的模型。为了确定函数中的系数 ,

数学建模 微分方程模型讲解

数学建模 微分方程模型讲解

量在初始阶段的增长情况比较相符。
(2)由(3—19)式推得,t=0 时显然 x=0,这一结果自然与
事实不符。产生这一错误结果的原因在于我们假设产品是自然推
销的,然而,在最初产品还没卖出之时,按照自然推销的方式,
便不可能进行任何推销。事实上,厂家在产品销售之初,往往是
通过广告、宣传等各种方式来推销其产品的。
? 1. 新产品推销模型 ? 一种新产品问世,经营者自然要关心产
品的卖出情况。下面我们根据两种不同 的假设建立两种推销速度的模型。
模型 A 假设产品是以自然推销的方式卖出,换句话说,被卖出的产品
实际上起着宣传的作用, 吸引着未来购买的消费者。 设产品总数与时刻 t 的关
系为 x(t), 再假设每一产品在单位时间内平均吸引 k 个顾客,则 x(t) 满足微
样,从根本上解决了模型 A 的不足。 由(3—20)式易看出, dx ? 0 ,即 x(t) 是关于时刻 t 的单调增
dt
加函数,实际情况自然如此,产品的卖出量不可能越卖越少。另外,
对(3—20)式两端求导,得
d 2x dt 2
?
k(M
?
2 x)
dx dt
故令 d 2x
dt 2
?
0 ,得到 x(t0 ) ?
Nm N0
)e? n
易看出,当t→? 时,当N(t) →Nm。这个模型称为Logistic 模型,其结果 经过计算发现与实际情况比较吻合。上面所画的是 Logistic 模型的的图形。
你也可从这个图形中,观察到微分方程解的某些性态。
捕鱼问题
在鱼场中捕鱼,捕的鱼越多,所获得的经济效益越大。但捕捞的鱼过多,
根据上面的假设,我们建立模型
dS ? P ? A(t) ? ??1 ? S (t) ?? ? ? S(t )

数学建模,第三章-微分方程模型

数学建模,第三章-微分方程模型

8小时20分-2小时57分=5小时23分
即死亡时间大约在下午5:23,因此张某不能被 排除在嫌疑犯之外。
理学院
3.2 目标跟踪模型
例1 饿狼追兔问题 黑 龙 现有一直兔子,一只狼,兔子位于狼的正西100米处,假 江 科 设兔子与狼同时发现对方并一起起跑,兔子往正北60米处的 技 巢穴跑,而狼在追兔子,已知兔子、狼是匀速跑且狼的速度 学 是兔子的2倍。兔子能否安全回到巢穴? 整理得到下述模型: 院 解:设狼的行走轨迹为y=f(x),则有:
理பைடு நூலகம்院
本章将通过一些最简单的实例来说明微分方程建模的 一般方法。在连续变量问题的研究中,微分方程是十分常 用的数学工具之一。
在许多实际问题中,当直接导出变量之间的函数关系 较为困难,但导出包含未知函数的导数或微分的关系式较 为容易时,可用建立微分方程模型的方法来研究该问题,
黑 龙 江 科 技 学 院 数 学 建 模
数 学 建 模
B
60
2 2xf' ' x 1 f' x y' x 0 , y 0 100 x 100 解得狼的行走轨迹为: 100 0 100 (0,h) 0, f' f 假设在某一时刻,兔子跑到 处,而狼在 (x,y)处,则有:
理学院
y y0 g e
g
车间空气中CO2浓度y 与时间t的数学模型
黑 龙 江 科 技 学 院 数 学 建 模
3.4 学习模型
一般认为,对一项技术工作,开始学得较快,但随着学 得越来越多时,内容也越来越复杂,学员学得就会越来越慢。
员学习的速度,则随y的增长而下降。
dy 设y%表示已经掌握了这项工作的百分数, dt

06第6章 微分方程建模习题解答

06第6章  微分方程建模习题解答
给出方程(6.3)的初始条件
(6.3)
x t 0 0 ,
dx v0 , dt t 0
(6.4)
于是,刹车距离就是直到速度 v 0 时汽车驶过的距离。 首先,求解二阶微分方程(6.3) ,对(6.3)式从 0 到 t 积分,再利用初始条件 (6.4) ,得到
dx gt v0 , dt dx 在 v0 的条件下对(6.5)式从 0 到 t 积分,得 dt t 0 1 x gt 2 v0t . 2 dx 在式(6.5)式中令 0 ,得到刹车所用的时间 dt v t0 0 , g
Q q(l , t )dt , T l1 / u .
0
T
(6.7)
下面分 4 步计算 Q 。 i)求 t 0 瞬间由烟雾携带的毒物单位时间内通过 x 处的数量 q( x,0) 。由假设 4 中关于 v u 的假定,可以认为香烟点燃处 x 0 静止不动。 为简单起见, 记 q( x,0) q( x) , 考察 ( x, x x ) 一段香烟, 毒物通过 x 和 x x 处的流量分别是 q( x) 和 q( x x) ,根据守恒定律这两个流量之差应该等于这一段未 点燃的烟草或过滤嘴对毒物的吸收量,于是由假设 2、4 有
w( x, t t ) w( x, t ) b
令 t 0 并将(6.11) , (6.12)式代入得
b ( x ut ) w abu w(ut , t )e v , v t w( x,0) w . 0
q( x, t ) t , v
(6.14)
2 2
dx dx dy 由于 1 5v0 ,即 0 ,所以 dt dt dx
dt 1 dy 1 , dx 5v0 dx
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动力学: 牛顿第二定律 能量守恒定律 欧拉-拉格朗日方程 空气和水的阻力
例1:求单摆的运动:摆长L,摆锤质量m的单摆 的运动方程
(1)利用Newton定律 f=ma 得到
ml
d 2
dt 2
mg sin

d 2
dt 2
g l
sin
(2)利用能量方程建模。设=0的点为零势点

mg(l l cos ) 1 m(l )2
如果遇到我们不熟悉的问题时,应该怎么办? 答案:不要回避,到网上查一下相关的概念你就 会发现:这个不熟悉的问题可能是比较简单的!
分析:上网查一下热传导,我们可以了解到:热的 传导从温度高的地方向温度低的地方传导,单位时 间传送的热量与温差T成正比,与两个热源的距 离成反比。即
Q k T d
对于两个固定热源,距离d是常数,则
h h ds
设桶的水平面积为A,孔 的面积为B,则由于质量 守恒,则
Adh=-Bds 符号反映了此消彼长。
dh h
ds
设水的流速是v则
ds vdt dh (B / A)vdt
根据能量转换关系,水失去的势能转化为动能,

mgh 1 mv2
2

v 2gh
综合得到
dh B 2gh dt A
方程)。 (2)微元法。
微分方程的稳定性理论: 对微分方程组
dx f (x) dt
若f(x0)=0,则称x0是方程组的平衡点。
如果在平衡点x0处,f(x)的Jacobi矩阵
f1 f1
x1
x2
f1
xn
Df D( f1, f2, Dx D(x1, x2 ,
, 人体重量随时间的变化w(t)。条件 给出的是 热量单位时间的变化
2500-1200-16w(t) 转换成体重为
(2500-1200-16w(t))/10000 因此得到变化关系
dw 2500120016w
dt
10000
常微分方程建模的物理方法
热传导: 牛顿冷却定律(加热定律):
例:将一只读数为25度的温度计放在室外,10分 钟后度数为30度,又过了10分钟,读数变为33度, 问室外温度是多少?
问题1:给出定解条件。 问题2:求出桶里的水流光所需时间。
练习:如果例2中的桶是漏斗形的(倒圆锥)或球形 的,计算水深的变化规律。
练习题: 1、在一所大学,某个教师每天从图书馆借出一本 书,而图书馆每周收回所借图书的10%。2年后, 这个教师手中有大约多少本图书馆的书? 2、某学院的教育基金,最初投资P元,以后按利 率r的连续复利增长。另外,每年在基金开算的时 间,都要投入新的资本A/年求7年的累计资金数 量。 另外,如果每年在基金开算的时间,把其中20% 用于奖学金的发放,求7年后累计资金数量。 3、一场降雪开始于中午前的某个时刻,降雪量稳 定。某人从正午12点开始清扫人行道,他的铲雪 速度(m3/小时)和路面宽度都不变,到下午2点他 扫了1000米,到下午4点又清扫了500米。雪是什 么时间开始下的?另外,如果他在下午4点开始回 头清扫,什么时间回到开始清扫的地点?
2
等式两边求导数则得到第一个方程。
例2:一只装满水的圆柱形桶,底半径3m,高6m。 底部有一个直径0.02米的孔。 (1)水多长时间可以流光? (2)如果孔在侧面,而桶放在距地面3m 的高度。求 水流喷出距离的变化规律。 解:直接利用Newton第二定律建模比较困难,我 们利用能量的转换。在流水的过程中,桶的顶部减 少的势能化为水的动能。(如图)
常微分方程的定解条件:对一个m阶常微分方程, 需要积分m次才能将解函数求出,因此需要m个定 解条件。方程组的定解条件个数是每个方程定解条 件个数之和。 定解问题分为初值问题和边值问题。 初值问题的定解条件在同一个点上,而边值问题的 定解条件在不同点上。
导数的意义:瞬时变化率 在实际上我们遇到的描述变化的词有
f2 x2
f2
xn
fn fn x1 x2
fn xn
的如平所果衡有存点特在。征某值个的特实征部值都的小实于部大0,于则0x,0是则稳x0是定不的稳平定衡的点,
稳定的平衡点的实际意义: 如果微分方程存在稳定的平衡点,设x(t)是微分方 程的解,则当t时, x(t)趋向于某个稳定的平衡 点。
微分方程解决的主要问题: (1)描述对象特征随时间(空间)的演变过程 (2)分析对象特征的变化规律 (3)预报对象特征的未来性态 (4)研究控制对象特征的手段
微分方程模型包括两个部分:方程和定解条件。 由于微分方程的求解需要借助微分的逆运算—积分, 而积分出现任意常数,因此方程的解不唯一,需要 附加条件将所求的解唯一确定下来。这样的条件称 为定解条件。
微分方程模型
常微分方程 的基本方法
微分方程基础
微分方程是含有函数及其导数的方程。 如果方程(组)只含有一个自变量(通常是时间t),则 称为常微分方程。否则称为偏微分方程。
例:下面的方程都是微分方程:
m du ku mg sin
dx
u a2 u sin x t x
微分方程的解是函数,对应一个变化过程。常微分 方程的解是随时间t变化的函数,比如一辆汽车在公 路上飞驰,一个球从空中落下等。 偏微分方程不但描述物体随时间变化发生位置的改 变,而且物体各部分之间的位置的相对变化。如水 的流动,烟雾的扩散,公路上车流的涌动等。
Q k1T
在我们的问题中,室外温度可以看做常数T0,大 于室内温度,而热量正比于温差,从而变化规律为
dT k(T T 0) dt
模型的解为 T T0 Cekt
这用里剩有下三的个两参个数条, 件其可中以T确0=定2。5。还剩两个参数,利
问题:现有4000毫升温度为10度的化学溶液,将 一个体积40毫升温度为90度的玻璃球放在溶液中。 求溶液温度的变化规律。(平均温度)
速率(物理) 增长率(经济,生物,人口等) 衰变(原子反应) 边际的(经济)
瞬时变化率的描述: 绝对增加率:单位时间增加的量。 相对增加率:单位时间增加的百分比。 变化率= 增加率-减少率
由于是瞬时的,其量的关系只有在很短的时间间 隔中才能够利用静态的方法分析。(微元法)
微分方程的建模方法: (1)利用导数的意义,建立含有导数的方程(微分
例:对Logistic方程,
dx rx(1 x )
dt
N
它有两个平衡点 x=0和x=N。其中x=0是不稳定的 平衡点,x=N是稳定的平衡点。
例1:某人的食量是2500卡/天。其中1200卡用于基 本的新陈代谢。在健身训练中,他每公斤体重所消 耗的热量大约是16卡/天。设以脂肪形式贮存的热 量100%有效,且1公斤脂肪含热量10000卡,分析 这个人体重的变化。
相关文档
最新文档