数学建模微分方程模型
数学建模实验二:微分方程模型Matlab求解与分析

实验二: 微分方程模型Matlab 求解与分析一、实验目的[1] 掌握解析、数值解法,并学会用图形观察解的形态和进行解的定性分析; [2] 熟悉MATLAB 软件关于微分方程求解的各种命令;[3] 通过范例学习建立微分方程方面的数学模型以及求解全过程; [4] 熟悉离散 Logistic 模型的求解与混沌的产生过程。
二、实验原理1. 微分方程模型与MATLAB 求解解析解用MATLAB 命令dsolve(‘eqn1’,’eqn2’, ...) 求常微分方程(组)的解析解。
其中‘eqni'表示第i 个微分方程,Dny 表示y 的n 阶导数,默认的自变量为t 。
(1) 微分方程 例1 求解一阶微分方程 21y dxdy+= (1) 求通解 输入:dsolve('Dy=1+y^2')输出:ans =tan(t+C1)(2)求特解 输入:dsolve('Dy=1+y^2','y(0)=1','x')指定初值为1,自变量为x 输出:ans =tan(x+1/4*pi)例2 求解二阶微分方程 221()04(/2)2(/2)2/x y xy x y y y πππ'''++-=='=-原方程两边都除以2x ,得211(1)04y y y x x'''++-= 输入:dsolve('D2y+(1/x)*Dy+(1-1/4/x^2)*y=0','y(pi/2)=2,Dy(pi/2)=-2/pi','x')ans =- (exp(x*i)*(pi/2)^(1/2)*i)/x^(1/2) +(exp(x*i)*exp(-x*2*i)*(pi/2)^(3/2)*2*i)/(pi*x^(1/2))试试能不用用simplify 函数化简 输入: simplify(ans)ans =2^(1/2)*pi^(1/2)/x^(1/2)*sin(x) (2)微分方程组例3 求解 d f /d x =3f +4g ; d g /d x =-4f +3g 。
微分方程的经典模型

模型分析
问题中并未出现“变化率”、“导数”这样的关键词,但要寻找的是体重 (记为W)关于时间t的函数。如果我们把体重W看作是时间t的连续可微函数, 我们就能找到一个含有的
dW 微分方程。 dt
模型假设
W0 ; 1.W ( t ) 表示 t 时刻某人的体重,并设一天开始时人的体重为 2. W ( t ) 关于 t 连续而且充分光滑;
模型建立
游击作战模型的形式:
,
(t) f (x, y) x (t) g(x, y) y x(0) x , y(0) y 0 0
, 由假设2、3,甲乙双方的战斗减员率分别为
f(x ,y ) c x y
g (x ,y )dxy
结合以上两表达式,并代入 c、d 的值,可得游击作战的数学模型
或被歼灭)的一方为败。因此,如果 K K0 ,则乙的兵力减少到
甲方兵力降为“零”,从而乙方获胜。同理可知, K0
K0 胜。而当
a
时
时,甲方获
时,双方战平。
2 2 bx ay 0 甲方获胜的充要条件为 0 0
代入a 、b 的表达式,进一步可得甲方获胜的充要条件为
2 2 r p x r p y x x 0 y y 0
模型建立 根据假设得到一般的战争模型
x ( t) f( x ,y ) x u ( t) y ( t) g ( x ,y ) y v ( t) x ( 0 )x , y ( 0 )y 0 0
正规作战模型
模型假设
1.不考虑增援,并忽略非战斗减员;
得:
其解为:
i(t) i0e
k0t
模型分析与解释
这个结果与传染病初期比较吻合,但它表明病人人数将按指数规律 无限增加,显然与实际不符
数学建模-微分方程模型-饮酒驾车问题

和 x0 ,将体重 70kg 的某人在快速喝下 2 瓶啤酒之后一段时间内他血液中酒精含量的
测量值进行处理后,得到附录 1 所示的 y0 0 时的一组数据,并采用非线性最小二乘法 拟合算法对系数进行求解,得出参数如下。 x0 5193
=2.00796
=0.1855
同时可以看到,每瓶啤酒含酒精量为 2596.5mg。 所以,得出的血液中酒精含量关于时间的函数如下。
0.1855 t e 2.00756t ) 2860.78604(e y (t ) 0.1855( t 6) 2860.8028e 2.00756(t 6) 3800.7595e
0t 6 6 t 12
利用 matlab 对以上模型进行求解。 图 3 大李血液中酒精含量随时间变化图像
y (t ) ( y0 +5721.57208)e 0.1855t 5721.57208e 2.00796t
拟合效果如图。 图 1 函数的拟合效果
图 2 残差分析图
残差分析图
600 500 400 300 200 100 0 10 11 12 13 14 15 0.5 1.5 2.5 3.5 0.25 ‐100 ‐200 ‐300 ‐400 残差 0.75 4.5 16 1 2 3 4 5 6 7 8 9
时刻为 t 时胃肠道中的酒精含量。
y (t ) 时刻为 t 时血液中的酒精含量。
胃肠道中的酒精进入血液的转移率与胃肠道中酒精量的比值。 血液中的酒精的排除率与血液中酒精量的比值。
五、模型的建立与求解
5.1 问题一 根据题目叙述,大李的实际情况符合快速饮酒的模型。为了确定函数中的系数 ,
数学建模微分方程模型练习题

微分方程模型练习题
1.速度为v 的风吹在迎风面积为s 的风车上,空气密度是ρ,用量纲分析方法确定风车获得的功率P 与,
,v s ρ的关系
2.根据经验当一种新商品投入市场后,随着人们对它的拥有量的增加,其销售量()s t 成正比。
广告宣传可给销量添加一个增长速度,它与广告费()a t 成正比,但广告只能影响这种商品在市场上尚未饱和的部分(设饱和量为M )。
建立一个销量()s t 的模型。
若广告宣传只进行有限时间τ,且广告费为常数a ,问()s t 如何变化?
3.如果两个种群都能独立生存,共处时又能相互提供食物,试建立种群依存模型并讨论平衡点的稳定性,解释稳定的意义。
4.某种群最高年龄为30岁,按间隔10岁将此种群分为三组并
以10年为一时段。
若020b b ==,13b =,016p =,112p =,
0(1000,1000,1000)T N =
求:(1)10年、20年、30年后该种群按年龄分布的种群量;
(2)此种群的固有增长率1λ及相应的稳定年龄分布;
(3)指出该种群的发展趋势。
数学建模 四大模型总结

四类基本模型1 优化模型1.1 数学规划模型线性规划、整数线性规划、非线性规划、多目标规划、动态规划。
1.2 微分方程组模型阻滞增长模型、SARS 传播模型。
1.3 图论与网络优化问题最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。
1.4 概率模型决策模型、随机存储模型、随机人口模型、报童问题、Markov 链模型。
1.5 组合优化经典问题● 多维背包问题(MKP)背包问题:n 个物品,对物品i ,体积为i w ,背包容量为W 。
如何将尽可能多的物品装入背包。
多维背包问题:n 个物品,对物品i ,价值为i p ,体积为i w ,背包容量为W 。
如何选取物品装入背包,是背包中物品的总价值最大。
多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。
该问题属于NP 难问题。
● 二维指派问题(QAP)工作指派问题:n 个工作可以由n 个工人分别完成。
工人i 完成工作j 的时间为ij d 。
如何安排使总工作时间最小。
二维指派问题(常以机器布局问题为例):n 台机器要布置在n 个地方,机器i 与k 之间的物流量为ik f ,位置j 与l 之间的距离为jl d ,如何布置使费用最小。
二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。
● 旅行商问题(TSP)旅行商问题:有n 个城市,城市i 与j 之间的距离为ij d ,找一条经过n 个城市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。
● 车辆路径问题(VRP)车辆路径问题(也称车辆计划):已知n 个客户的位置坐标和货物需求,在可供使用车辆数量及运载能力条件的约束下,每辆车都从起点出发,完成若干客户点的运送任务后再回到起点,要求以最少的车辆数、最小的车辆总行程完成货物的派送任务。
TSP 问题是VRP 问题的特例。
● 车间作业调度问题(JSP)车间调度问题:存在j 个工作和m 台机器,每个工作由一系列操作组成,操作的执行次序遵循严格的串行顺序,在特定的时间每个操作需要一台特定的机器完成,每台机器在同一时刻不能同时完成不同的工作,同一时刻同一工作的各个操作不能并发执行。
常微分方程数学建模案例分析

常微分方程数学建模案例分析常微分方程是运用微积分中的概念与理论研究变化率的方程。
它是数学建模中常用的方法之一,可用于描述各种实际问题,如经济增长、生物扩散、化学反应等。
本文将通过一个关于人群传染病的数学建模案例,分析常微分方程在实际问题中的应用。
假设地有一种传染病,病毒的传播速度与感染者的接触频率有关。
现在我们要研究传染病的传播速度以及控制措施对传染病传播的影响。
为此,我们可以建立如下的数学模型:设N(t)表示时间t时刻的总人口数,而I(t)表示感染者的人口数,S(t)表示易感者的人口数。
根据该模型,易感者的人数随时间的变化率可表示为:dS/dt = -βSI其中,β表示感染率,即感染者每接触到一个易感者,会使其发病的概率。
感染者的人数随时间的变化率可表示为:dI/dt = βSI - γI其中,γ表示恢复率,即感染者每天被治愈的人数。
总人口数随时间的变化率可以通过易感者和感染者的变化率求和得到:dN/dt = dS/dt + dI/dt通过对该方程进行求解,我们可以得到感染者和易感者的人数随时间变化的解析解。
进一步,我们可以通过调节β和γ来研究不同的传播速度和控制措施对传染病传播的影响。
例如,如果β较大,表示感染率较高,此时传染速度会加快,可能导致传染病扩散的速度加快。
反之,如果β较小,表示感染率较低,传染病传播的速度会减慢。
另外,如果γ较大,表示恢复率较高,此时感染者的人数会快速减少,传染病传播的速度会减慢。
相反,如果γ较小,传染病传播的速度会加快。
通过对这些参数的调节,我们可以研究不同的控制措施对传染病传播的影响。
例如,我们可以通过降低感染率β或增加恢复率γ来减缓传染病传播的速度,从而控制疫情的爆发。
在实际应用中,常微分方程数学建模方法可以用于预测传染病的传播趋势,评估各种干预措施的效果。
此外,还可以通过引入更多的变量和参数,建立更复杂的模型,以更好地解释实际问题。
总之,常微分方程是数学建模中常用的方法之一,可以用于描述各种实际问题,如传染病的传播、经济增长等。
数学建模 微分方程模型讲解

量在初始阶段的增长情况比较相符。
(2)由(3—19)式推得,t=0 时显然 x=0,这一结果自然与
事实不符。产生这一错误结果的原因在于我们假设产品是自然推
销的,然而,在最初产品还没卖出之时,按照自然推销的方式,
便不可能进行任何推销。事实上,厂家在产品销售之初,往往是
通过广告、宣传等各种方式来推销其产品的。
? 1. 新产品推销模型 ? 一种新产品问世,经营者自然要关心产
品的卖出情况。下面我们根据两种不同 的假设建立两种推销速度的模型。
模型 A 假设产品是以自然推销的方式卖出,换句话说,被卖出的产品
实际上起着宣传的作用, 吸引着未来购买的消费者。 设产品总数与时刻 t 的关
系为 x(t), 再假设每一产品在单位时间内平均吸引 k 个顾客,则 x(t) 满足微
样,从根本上解决了模型 A 的不足。 由(3—20)式易看出, dx ? 0 ,即 x(t) 是关于时刻 t 的单调增
dt
加函数,实际情况自然如此,产品的卖出量不可能越卖越少。另外,
对(3—20)式两端求导,得
d 2x dt 2
?
k(M
?
2 x)
dx dt
故令 d 2x
dt 2
?
0 ,得到 x(t0 ) ?
Nm N0
)e? n
易看出,当t→? 时,当N(t) →Nm。这个模型称为Logistic 模型,其结果 经过计算发现与实际情况比较吻合。上面所画的是 Logistic 模型的的图形。
你也可从这个图形中,观察到微分方程解的某些性态。
捕鱼问题
在鱼场中捕鱼,捕的鱼越多,所获得的经济效益越大。但捕捞的鱼过多,
根据上面的假设,我们建立模型
dS ? P ? A(t) ? ??1 ? S (t) ?? ? ? S(t )
数学建模,第三章-微分方程模型

8小时20分-2小时57分=5小时23分
即死亡时间大约在下午5:23,因此张某不能被 排除在嫌疑犯之外。
理学院
3.2 目标跟踪模型
例1 饿狼追兔问题 黑 龙 现有一直兔子,一只狼,兔子位于狼的正西100米处,假 江 科 设兔子与狼同时发现对方并一起起跑,兔子往正北60米处的 技 巢穴跑,而狼在追兔子,已知兔子、狼是匀速跑且狼的速度 学 是兔子的2倍。兔子能否安全回到巢穴? 整理得到下述模型: 院 解:设狼的行走轨迹为y=f(x),则有:
理பைடு நூலகம்院
本章将通过一些最简单的实例来说明微分方程建模的 一般方法。在连续变量问题的研究中,微分方程是十分常 用的数学工具之一。
在许多实际问题中,当直接导出变量之间的函数关系 较为困难,但导出包含未知函数的导数或微分的关系式较 为容易时,可用建立微分方程模型的方法来研究该问题,
黑 龙 江 科 技 学 院 数 学 建 模
数 学 建 模
B
60
2 2xf' ' x 1 f' x y' x 0 , y 0 100 x 100 解得狼的行走轨迹为: 100 0 100 (0,h) 0, f' f 假设在某一时刻,兔子跑到 处,而狼在 (x,y)处,则有:
理学院
y y0 g e
g
车间空气中CO2浓度y 与时间t的数学模型
黑 龙 江 科 技 学 院 数 学 建 模
3.4 学习模型
一般认为,对一项技术工作,开始学得较快,但随着学 得越来越多时,内容也越来越复杂,学员学得就会越来越慢。
员学习的速度,则随y的增长而下降。
dy 设y%表示已经掌握了这项工作的百分数, dt
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
我国是世界第一人口大国,地球上每九 个人中就有二个中国人,在20世纪的一段 时间内我国人口的增长速度过快,如下表:
年 1908 1933 4.7 1953 6.0 1964 7.2 1982 10.3 1990 11.3 2000 12.95
人口(亿)3.0
有效地控制人口的增长,不仅是使我国全面进 入小康社会、到21世纪中叶建成富强民主文明的社 会主义国家的需要,而且对于全人类社会的美好理 想来说,也是我们义不容辞的责任。
1.人口模型
问题的提出 假设和定义 模型的建立 分析和求解 结论和讨论
1 问题的提出
人口问题是当今世界上最令人关注的问题之一, 一些发展中国家的人口出生率过高,越来越威胁着 人类的正常生活,有些发达国家的自然增长率趋于 零,甚至变为负数,造成劳动力紧缺,也是不容忽 视的问题。另外,在科学技术和生产力飞速发展的 推动下,世界人口以空前的规模增长,统计数据显 示:
模型的缺点
缺点:当t→∞时,I(t) → n,这表示所有的人最
终都将成为病人,这一点与实际情况不 符合
原因:这是由假设〔1)所导致,没有考虑病人可
以治愈及病人病发身亡的情况。 思考题:考虑有病人病发身亡的情况,再对模型 进行修改。
模型三 有些传染病(如痢疾)愈后免疫力很低,还有可能再
次被传染而成为病人。 模型假设: (1)健康者和病人在总人数中所占的比例分别为s(t)、i(t), 则: s(t)+i(t)=1 (2)一个病人在单位时间内传染的人数与当时健康人数成 正比,比例系数为k (3)病人每天治愈的人数与病人总数成正比,比例系数为 μ(称日治愈率),病人治愈后成为仍可被感染的健康者, 称1/ μ为传染病的平均传染期(如病人数保持10人,每 天治愈2人, μ =1/5,则每位病人平均生病时间为 1/ μ =5天)。
模型二
设t时刻健康人数为S(t).
模型假设: (1)总人数为n,I(t)十S(t)=n
(2)一人得病后,久治不愈,且在传染期内不
会死亡。 (3)一个病人在单位时间内传染的人数与当时 健康的人数成正比,比例系数为k(称之为 传染系数)
模型改进
dI .I ( kS (t ) t ) dt I (0) I 0
模型的建立
di dt ksi i ds ksi dt i (0) i0 s (0) s0
i ( t )与s ( t )无解释解。从相轨线定性分析
相轨线
s i ( s0 i0 ) s ln s0 1
相轨线(s,i)
返回
这个模型可以与19世纪以前欧洲一些地区的 人口统计数据很好地吻合,但是当后来人们用它 与19世纪的人口资料比较时,却发现了相当大的 差异。人们还发现,迁往加拿大的法国移民后代 的人口比较符合指数增长模型。而同一血统的法 国本土居民人口的增长却与指数模型大相径庭。
2.5 模型修改
分析表明,以上这些现象的主要原因是随着 人口的增长,自然资源,环境条件等因素对人口 增长的限制作用越来越显著。人口较少时,人口 的自然增长率基本上是常数,而当人口增加到一 定数量以后,这个增长率就要随着人口的增加而 减少。因此,我们将对指数模型关于净相对增长 率是常数的基本假设进行修改。
模型一
模型假设:
(1)一人得病后,久治不愈,人在传染
期内不会死亡。
(2)单位时间内每个病人传染人数为常
数k。 为什么假设不会死亡? (因为死亡后便不会再传播疾病,因 而可认为此时已退出系统)
模型建立:
I(t)——表示t时刻病人的数量,时间:天 则:I(t+Δt)—I( t)=k0I(t) Δ t 于是模型如下:
例子分析
1、翻译或转化:
2、配备物理单位:
3、建立表达式: 4、确定条件:
1、“每天”:体重的变化=输入一输出 其中输入指扣除了基本新陈代谢之后的净重量 吸收;输出是进行健身训练时的消耗(WPE). 2、上述陈述更好的表示结构式: 体重的变化/天=净吸收量/天一WPE/天 其中: 净吸收量/天=10467 – 5038 =5429(焦/天) 净输出量/天=69(焦/公斤· 天)×W/(公斤 =69W(焦/天) dw w (公斤/天) 3、体重的变化/天=
dt
一、建模步骤
3、配备物理单位: 在建模中应注意每一项采用同样的物理单位. 4、确定条件: 这些条件是关于系统在某一特定时刻或边界
上的信息,它们独立于微分方程而成立,用以确
定有关的常数。为了完整充分地给出问题的数学 陈述,应将这些给定的条件和微分方程一起列出。
关于建模步骤的一个例子
例1:某人的食量是10467焦/天,其中5038焦/ 天用于基本的新陈代谢(即自动消耗)。在 健身训练中,他所消耗的热量大约是69焦/ 公斤•天乘以他的体重 (公斤). 假设以脂肪形 式贮藏的热量100%地有效, 而1公斤脂肪合热量41868焦。试研究此人的体重 随时间变 化的规律.
阈值1/σ的意义
1、减小传染期接触数σ ,即提高阈值l/ σ ,使得
s0 ≤1/ σ(即σ ≤1/ s0),传染病就不会蔓延。
2、配备物理单位:
3、建立表达式: 4、确定条件:
单位匹配
有些量是用能量(焦)的形式给出的,而另外 一些量是用重量的形式(公斤)给出,考虑单位
的匹配,利用
例子分析
1、翻译或转化:
2、配备物理单位:
3、建立表达式: 4、确定条件:
建立表达式
三、建模实例
问题分析
不同类型传染病的传播过程有不同的特点。 故不从医学的角度对各种传染病的传播过程一 一进行分析,而是按一般的传播机理建立模型. 由于传染病在传播的过程涉及因素较多, 在分析问题的过程中,不可能通过一次假设建 立完善的数学模型. 思路是:先做出最简单的假设,对得出的 结果进行分析,针对结果中的不合理之处,逐 步修改假设,最终得出较好的模型。
返回
这个模型称为Logistic模型,其结果 经过计算发现与实际情况比较吻合。
图:
N
Nm
N0
0
t
三、建模实例
2.传染病模型
问题的提出 假设和定义 模型的建立 分析和求解 结论和讨论
问题提出
本世纪初,瘟疫常在世界上某地流行,随着 人类文明的不断进步,很多疾病,诸如天花、霍 乱已经得到有效的控制.然而,即使在今天,一 些贫穷的发展中国家,仍出现传染病流行的现象, 医疗卫生部门的官员与专家所关注的问题是: (1)感染上疾病的人数与哪些因素有关 (2)如何预报传染病高潮的到来.
阈值σ=k/μ的意义
一个病人在平均传染期内传染的人数与当时
健康的人数成正比,比例系数为σ
1 1 1 i(t ) 0 1
lim
i
模型的意义
(t , i (t))图
(1)当σ≤1时,指传染期内被传染的人数不超过当时健康的 人数。病人在总人数中所占的比例i(t)越来越小,最终 趋于零。 (2)当σ >l时,i(t)最终以1-1/ σ为极限; (3)当σ增大时,i(∞)也增大,是因为随着传染期内被传染 人数占当时健康人数的比例的增加,当时的病人数所占 比例也随之上升
dI k0 I (t ) dt I ( 0) I 0
模型的解:
I (t ) I 0ek0t
举个实例
最初只有1个病人,1个病人一天可传染1个人
模型的缺点
问题:随着时间的推移,病人的数目将无限增加, 这一点与实际情况不符. 原因:当不考虑传染病期间的出生、死亡和迁移 时,一个地区的总人数可视为常数。因此 k0应为时间t的函数。在传染病流行初期, k0较大,随着病人的增多,健康人数减少, 被传染的机会也减少,于是k0将变小。 模型修改的关键: k0的变化规律
1、按变化规律直接列方程,如: 利用人们熟悉的力学、数学、物理、化学等 学科中的规律,如牛顿第二定律,放射性物质的 放射规律等。对某些实际问题直接列出微分方程. 2、模拟近似法,如: 在生物、经济等学科中,许多现象所满足的 规律并不很清楚,而且现象也相当复杂,因而需 根据实际资料或大量的实验数据,提出各种假设, 在一定的假设下,给出实际现象所满足的规律, 然后利用适当的数学方法得出微分方程。
认识人口数量的变化规律,建立人口模型, 作出较准确的预报,是有效控制人口增长的前 提,下面介绍两个最基本的人口模型。
2. 模型1 (Malthus模型) 18世纪末,英国人Malthus在研究了百余年的 人口统计资料后认为,在人口自然增长的过程中, 净相对增长率(出生率减去死亡率为净增长率) 是常数。
模型的建立
假设2、3得:
di N kNs(t )i(t ) Ni (t ) dt i(0) i0
将假设1代入,可得模型:
di ki(1 i) i dt i(0) i0
模型的解:
k k 1 ( k ) t 1 ( ) ] k [e i0 k k i (t ) (kt 1 ) 1 k i0
图中箭头表示了随着时间t的增加s(t)和i(t)的变化趋向
相轨线分析结果
1、不论初始条件s0、i0如何.病人终将消失。
2、最终未被感染的健康者的比例是s∞,图中
可看出是在(0,1/ σ)内的单根。
3、若s0 >1/ σ,则i(t)先增加,当s=1/ σ时,i(t)达到
最大。
4、若s0 ≤1/ σ ,则i(t)单调减小至零
微分方程模型
引言
在研究某些实际问题时,经常无法直接得到各变
量之间的联系,问题的特性往往会给出关于变化率 的一些关系。利用这些关系,我们可以建立相应的 微分方程模型。在自然界以及工程技术领域中,微 分方程模型是大量存在的。它甚至可以渗透到人口 问题以及商业预测等领域中去,其影响是广泛的。