数学建模数学建模简介共53页文档
数学建模介绍

数学建模介绍1.1 数学模型及其分类数学建模作为用数学方法解决问题的第一步,它与数学本身有着同样悠久的历史。
一个羊倌看着他的羊群进入羊圈,为了确信他的羊没有丢失,他在每只羊进入羊圈时,则在旁边放一颗小石子,如果每天羊全部入圈而他那堆小石子刚好全部放完,则表示他的羊和以前一样多。
究竟羊倌数的是石子还是羊,那是毫无区别的,因为羊的数目同石子的数目彼此相等。
这实际上就使石子与羊“联系”起来,建立了一个使石子与羊一一对应的数学模型。
(1)什么是数学模型人们在认识研究现实世界里的客观对象时,常常不是直接面对那个对象的原形,有些是不方便,有些甚至是不可能直接面对原形,因此,常常设计、构造它的各种各样的模型。
如各式各样的玩具模型、展览厅里的三峡大坝模型、化学上的分子结构模型等。
这些模型都是人们为了一定目的,对客观事物的某一部分进行简化、抽象、提炼出来的原形替代物,集中反映了原形中人们需要的那一部分特征,因而有利于人们对客观对象的认识。
数学模型也是反映客观对象特征的,只不过它刻画的是事物在数量方面的特征或数学结构及其变化规律。
数学模型是人们为了认识客观对象在数量方面的特征、定量地分析对象的内在规律、用数学的语言和符号去近似地刻画要研究的那一部分现象时,所得到的一个数学表述。
建立数学模型的过程称为数学建模。
(2) 数学模型的重要作用进入20世纪以来,数学以空前的广度和深度向一切领域渗透,作为数学的应用,数学建模也越来越受到人们的重视。
在一般工程技术领域,数学模型仍是工程技术人员定量研究有关工程技术问题的重要工具;而随着数学与其他学科领域诸如经济、人口、生态、地质等所谓非物理领域的渗透,一些交叉学科如计量经济学、人口控制论、数学生态学、数学地质学等应运而生;计算机的发展给数学及作为数学应用的数学建模带来了前所未有的机遇和挑战。
计算机改变了人类的生活方式、思考方式和研究方式,极大地提高了人们的计算能力、搜索和分析海量数据和信息的能力。
数学建模简介

中国大学生建模竞赛题目汇集
2011年赛题 • (A)城市表层土壤重金属污染分析 • (B)交巡警服务平台的设置与调度 • (C)企业退休职工养老金制度的改革 • (D)天然肠衣搭配问题 2012年赛题 • (A)葡萄酒的评价 • (B)太阳能小屋的设计 • (C)脑卒中发病环境因素分析及干预
四、我校数学建模协会简介及 成果
徐州工程学院数学建模协会成立于2003年10月,它是 由本校对数学建模有共同爱好且有一定基础的学生 发起成立学习型社团组织,协会由数理学院院长李 苏北担任长期顾问,以姜英姿,赵建强等老师为核心 的多位优秀老师担任指导老师,并同时接受校院两级 团委的指导。
建模协会活动
模型构成
xk~第k次渡河前此岸的商人数 yk~第k次渡河前此岸的随从数 sk=(xk , yk)~过程的状态 xk, yk=0,1,2,3; k=1,2,
S ~ 允许状态集合
S={(x , y) x=0, y=0,1,2,3; x=3, y=0,1,2,3; x=y=1,2} uk, vk=0,1,2; uk~第k次渡船上的商人数 vk~第k次渡船上的随从数 k=1,2, dk=(uk , vk)~决策 D={(u , v) u+v=1, 2} ~允许决策集合 sk+1=sk+(-1)kdk ~状态转移律
年 1625 1830 1930 1960 1974 1987 1999 人口(亿) 5 10 20 30 40 50 60
中国人口增长概况
年 1908 人口(亿) 3
1933 1953 1964 1982 1990 1995 4.7 6 7 10.1 11.3 12
控制人口过快增长
研究人口变化规律
Logistic模型在经济领域中的应用(如耐用消费品的售量)
数学建模概述(李福乐)

一、数学建模概述1.1 什么是数学建模通常我们把现实问题的一个模拟称为模型,如交通图、地质图、航空模型等。
利用数学的语言、公式、图、表、或符号等来模拟现实的模型称为数学模型。
我们知道,对于一个现实问题的研究,一般不需要甚至不可能直接研究现实问题的本身,而是研究模拟该现实问题的模型。
举个简单例子:某司机欲把某货物从甲地运往已地,应如何选择运输路线使总路程最短?该司机不会开着车去试探,而是利用交通图来确定自己的行车路线。
从这个简单的例子中我们可以看到数学建模的重要性。
1.2 数学建模包含哪些步骤数学建模主要包含模型建立、求解以及对结果的分析与检验等步骤。
模型建立 模拟现实问题建立数学模型,不仅要有一定的数学知识与技巧,还要有敏锐的洞察力与理解力,善于抓住问题的内在联系,作出合理的假设与简化,找出影响问题的各种因素及其相互关系。
建立数学模型,不仅要有一定的数学知识与技巧,还要具备其他学科的一些知识,另外还要有一定的编程能力。
一般来说,模型建立的方法不止一种。
如最短路线问题,可以用图论方法,也可以用线性规划方法,有时还可用动态规划的方法。
模型求解 在建立模型之后,就要求解模型,给出有效的计算方法。
例如旅行推销员问题:一个推销员要到n 个城市去推销,如何安排行程?如果用简单的组合算法,其计算步骤是!n 的倍数,随着n 的增大,计算量之大以至无法得到结果。
如30n ,即使以每秒以2410步的速度来计算,也需要8年多,况且现在的计算机还没有达到上述速度。
结果的分析与检验 有些问题需要对解的现实意义作出解释,检验模型的正确性,并对模型的稳定性进行分析。
如种群的相互竞争问题需要对解的现实意义作出解释,并对模型的稳定性进行分析。
二、基本知识微分方程在科技、工程、经济管理、生态、环境、人口、交通等各个领域中有着广泛的应用。
大量的实际问题需要用微分方程来描述。
首先,我们要对实际研究现象作具体分析,然后利用已有规律、或者模拟,或近似的得到各种因素变化率之间的关系,从而建立一个微分方程。
数学建模简介

数学建模
建立数学模型的全过程 (包括表述、求解、解释、检验等)
18
数学模型的分类
分类标准
对某个实际问题 了解的深入程度 模型中变量的特 征 建模中所用的数 学方法
具体类别
白箱模型、灰箱模型、黑箱模型 连续型模型、离散型模型或确定性 模型、随机型模型等
初等模型、微分方程模型、差分方 程模型、优化模型等
数学建模
第一讲 概述
主要内容
• 1.什么是数学模型? • 2.如何数学建模?
• 3.为什么数学建模?
2
1.什么是数学模型?
• 数学 • 模型
• 数学模型
3
1、圆形蜘蛛网是一个简单漂 亮的数学创造 2、蜂巢
自 然 离 不 开 数 学
3、在矿物结构中,可以找到许多更为奇妙的空间图形
4
问题/应用 核磁共振成像技术(MRI) 计算机辅助成像(CAT) 空中交通管制 积分几何 控制论
类似这样的问题,后来被统称为“一笔画”问题。 作为一笔画,应该只有一个起点和一个终点,而其它点只能是通过点.
图中四个节点A、B、C、D都是奇节点。所以,这是一个不可行 的一笔画问题。
17
什么是数学模型、数学建模
数学模型 • 一般地说,数学模型可以描述为,对于现实世
界的一个 特定对象,为了一个特定目的 ,根据 特有的内在规律 ,做出一些必要的 简化假设 , 运用适当的数学工具,得到的一个数学结构。
模 型 假 设 针对问题特点和建模目的 作出合理的、简化的假设
在合理与简化之间作出折中
用数学的语言、符号描述问题 发挥想像力 使用类比法
29
模 型 构 成
尽量采用简单的数学工具
数学建模的一般步骤
数学建模介绍PPT课件

•对任意的,有f()、 g()
•至少有一个为0,
16
本问题归为证明如下数学命题: 数学命题:(本问题的数学模型)
已知f()、 g()都是的非负连续函数,对任意的 ,有f() g()=0,且f(0) >0、 g(0)=0 ,则有存在0, 使f(0)= g(0)=0
模型求解 证明:将椅子旋转90°,对角线AC与BD互换,由 f(0)>0、 g(0)=0 变为f(/2) =0、 g(/2) >0
的解答
解
释
数学模型 的解答
12
实践
理论
实践
表述 求解 解释 验证
根据建模目的和信息将实际问题“翻译”成 数学问题 选择适当的数学方法求得数学模型的解答
将数学语言表述的解答“翻译”回实际对 象 用现实对象的信息检验得到的解答
13
4、建模实例:
例1、椅子能在不平的地面上放稳吗?
• 模型假设 • 1、椅子的四条腿一样长,椅子脚与地面
• 要学习数学建模,应该了解如下与数学建模 有关的概念:
3
• 原型(Prototype)
• 人们在现实世界里关心、研究、或从事生产、 管理的实际对象称为原形。原型有研究对象、 实际问题等。
• 模型(Model)
• 为某个目的将原型的某一部分信息进行简缩、 提炼而构成的原型替代物称为模型。模型有 直观模型、物理模型、思维模型、计算模型、 数学模型等。
• 一个原型可以有多个不同的模型。
4
数学模型:
由数字、字母、或其他数学符号组成、描 述实际对象数量规律的数学公式、图形或算 法称为数学模型
数学建模:
建立数学模型的全过程 (包括表述、求解、解释、检验等)
5
数学建模简介

实际 3.9 5.3 7.2 9.6 12.9 17.1
23.2 31.4 38.6 50.2 62.9 76.0 92.0
106.5 123.2 131.7 150.7 179.3 204.0 226.5
室 内 T1
d
l
d
室 外 T2
Q1
墙 室 内 T1 室 外 T2
建 单位时间单位面积传导的热量 模 Q ~单位时间单位面积传导的热量
温差, 材料厚度 材料厚度, 热传导系数 ∆T~温差 d~材料厚度 k~热传导系数 温差 热传导定律
材料均匀, 材料均匀,热传导系数为常数
2d
∆T Q = k d
Q2
墙
机理分析没有统一的方法, 机理分析没有统一的方法,主要通过实例研究 (Case Studies)来学习。以下建模主要指机理分析。 来学习。 来学习 以下建模主要指机理分析。
2 数学建模实例
背景
2.1 人口预报问题
世界人口增长概况
1625 1830 1930 1960 1974 1987 1999 年 人口(亿 10 20 30 40 50 60 人口 亿) 5 中国人口增长概况 1908 1933 1953 1964 1982 1990 1995 2000 年 人口(亿 人口 亿) 3.0 4.7 6.0 7.2 10.3 11.3 12.0 13.0 研究人口变化规律 控制人口过快增长
模型建立
用数学语言把椅子位置和四只脚着地的关系表示出来 地面为连续曲面 椅子在任意位置 至少三只脚着地 f(θ) , g(θ)是连续函数 是 对任意θ, f(θ), g(θ) 至少一个为0 至少一个为
数学建模(数学分支)

建模背景
数学技术
建模应用
近半个多世纪以来,随着计算机技术的迅速发展,数学的应用不仅在工程技术、自然科学等领域发挥着越来 越重要的作用,而且以空前的广度和深度向经济、管理、金融、生物、医学、环境、地质、人口、交通等新的领 域渗透,所谓数学技术已经成为当代高新技术的重要组成部分。
数学模型(Mathematical Model)是一种模拟,是用数学符号、数学式子、程序、图形等对实际课题本质 属性的抽象而又简洁的刻画,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展 提供某种意义下的最优策略或较好策略。数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现 实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。这种应用知识从实际课题中抽象、提 炼出数学模型的过程就称为数学建模(Mathematical Modeling)。
应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步。建立数学模 型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。要通过调查、收集数据资料,观察和 研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的 理论和方法去分析和解决问题。这就需要深厚扎实的数学基础、敏锐的洞察力和想象力、对实际问题的浓厚兴趣 和广博的知识面。数学建模是联系数学与实际问题的桥梁,是数学在各个领域广泛应用的媒介,是数学科学技术 转化的主要途径。数学建模在科学技术发展中的重要作用越来越受到数学界和工程界的普遍重视,它已成为现代 科技工作者必备的重要能力之一。
为了适应科学技术发展的需要和培养高质量、高层次科技人才,数学建模已经在大学教育中逐步开展,国内 外越来越多的大学正在进行数学建模课程的教学和参加开放性的数学建模竞赛,将数学建模教学和竞赛作为高等 院校的教学改革和培养高层次的科技人才的一个重要方面,许多院校正在将数学建模与教学改革相结合,努力探 索更有效的数学建模教学法和培养面向21世纪的人才的新思路,与我国高校的其它数学类课程相比,数学建模具 有难度大、涉及面广、形式灵活,对教师和学生要求高等特点,数学建模的教学本身是一个不断探索、不断创新、 不断完善和提高的过程。为了改变过去以教师为中心、以课堂讲授为主、以知识传授为主的传统教学模式,数学 建模课程指导思想是:以实验室为基础、以学生为中心、以问题为主线、以培养能力为目标来组织教学工作。
1数学建模简介

数学建模简介
徐州工业职业技术学院数学教研室
数学教育,既应该让学生掌握准确快捷的计算 方法和严密的逻辑推理,也需要培养学生用数学工 具分析解决问题的意识和能力, 数学建模课是加强 用数学解决问题的一种尝试。
数学建模课程是20世纪80年代初进入我国大学 的。1987年,只有少数几所高校的数学系开设这门 课程。1992年开始由教育部高教司和中国工业与应 用数学学会举办的、每年一届的全国大学生数学建 模竞赛,得到广大同学的热烈欢迎,成为我国高校 规模最大的课外科技活动,促进了数学建模教学的 发展。目前开设这门课程的学校已有几百所。
问题4:能否在8×8的方格表各个空格中分别填写1、 2、3这三个数中的任一个,使得每行、每列及对角 线的和都不相同?为什么?
分析:直接填写,情况太多太复 杂,难以下手,我们考察极端情 况。在所有的可能组合中,最大 的和是几?最小的和是几?然后 求出一共有多少个不同的和。 解答:如图所示,因为每行、每列及对角线上的数 都是8个,所以8个数的和最小值是1×8=8,最大值 是3×8=24,总共17个不同的和。而由题意可知, 每行、每列及对角线上的和应有8+8+2=18个,所以 要想使每行、每列及对角线上的18个和都不相同是 办不到的。
2、数学模型
数学模型是对于现实世界的一个特定对象,一个 特定目的,根据特有的内在规律,做出一些必要的假 设,运用适当的数学工具,得到一个数学结构。
简单地说:就是反映客观对象或系统的某种特征 的本质的数学表达式(或是用数学术语对部分现实世 界的描述),即用数学式子(如函数、图形、代数方 程、微分方程、积分方程、差分方程等)来描述(表 述、模拟)所研究的客观对象或系统在某一方面的存 在规律。