大学生数学建模竞赛介绍
数学建模国赛奖项设置

数学建模国赛奖项设置一、数学建模国赛简介全国数学建模竞赛(以下简称为数学建模国赛)是我国面向高校大学生的一项重要数学竞赛活动。
该竞赛旨在培养大学生的创新意识、团队协作精神和实际问题解决能力,已经成为全国高校数学教育的重要组成部分。
二、奖项设置及等级数学建模国赛奖项设置分为以下几个等级:1.全国一等奖:获奖比例约为5%;2.全国二等奖:获奖比例约为10%;3.全国三等奖:获奖比例约为15%;4.各省一等奖、二等奖、三等奖:获奖比例分别为各省参赛队伍的1%、2%和3%。
此外,各赛区还会设立优秀奖、组织奖等奖项。
三、获奖比例与奖金设置全国一等奖、二等奖、三等奖的获奖队伍将获得相应的奖金奖励,具体金额会因赛事年度和赛区不同而有所调整。
各省奖项的奖金设置同理。
四、参赛对象与组别划分数学建模国赛参赛对象为全国高校在校本科生、研究生。
竞赛分为两个组别:本科组和高职高专组。
每个参赛队伍由三名选手组成,选手可以跨专业、跨年级、跨学校组合。
五、竞赛流程与时间安排数学建模国赛通常分为预赛和决赛两个阶段。
预赛阶段,参赛队伍需在规定时间内完成一篇论文,论述自己对给定问题的建模分析和解决方案。
决赛阶段,参赛队伍需根据组委会提供的题目,在规定时间内完成论文。
六、如何提高获奖几率1.积累基础知识:熟练掌握数学、编程、统计等基本技能;2.注重团队协作:明确分工,保持良好的沟通与协作;3.培养创新意识:多参加课外学术活动,锻炼自己的创新思维;4.参加模拟竞赛:提前熟悉竞赛流程,提高应对能力;5.注重时间管理:合理规划比赛时间,保证论文质量。
通过以上措施,相信大家在数学建模国赛中取得优异成绩的可能性会大大提高。
全国数学建模大赛主要内容

全国数学建模大赛主要内容全国数学建模大赛是中国高校数学建模领域的最高级别竞赛活动,每年举办一次。
该比赛旨在培养学生的数学建模能力和创新思维,提高他们解决实际问题的能力。
下面将介绍全国数学建模大赛的主要内容。
一、报名与组队全国数学建模大赛的参赛队伍由3名本科生组成,每个学校可以组织多支队伍参赛。
学校根据学生的兴趣和专业特长,组成队伍并报名参赛。
报名时需要填写队员的个人信息和学校信息,并提交相关的报名费用。
二、比赛题目全国数学建模大赛的比赛题目由组委会统一发布,每年题目都不相同。
比赛题目通常是实际问题,涉及多个学科领域,如物理、经济、环境等。
参赛队伍需要在规定的时间内,根据题目要求,使用数学建模的方法和技巧,进行问题分析和求解。
三、比赛时间与形式全国数学建模大赛通常在一年的某个时间段内进行,比赛时间一般为48小时。
比赛分为两个阶段,第一阶段是问题分析和建模阶段,第二阶段是模型求解和结果分析阶段。
参赛队伍需要在规定的时间内完成问题的分析、建模、求解,并撰写相应的报告。
四、比赛评分与评委全国数学建模大赛的评分由专业评委组成的评委团进行。
评委根据参赛队伍提交的报告,对问题的分析、建模、求解过程和结果进行评价,给出相应的得分。
评分标准主要包括问题的分析逻辑、建模方法与技巧的运用、模型的合理性、结果的准确性等。
五、结果公布与奖项全国数学建模大赛的结果通常在比赛结束后的一段时间内公布。
根据参赛队伍的得分,评选出一等奖、二等奖、三等奖和优秀奖等奖项。
同时,还会评选出最佳组织奖、最佳创新奖和最佳应用奖等特殊奖项。
六、比赛的意义和影响全国数学建模大赛是中国高校数学建模领域的最高级别竞赛,对推动数学建模教育和研究具有重要意义。
通过参赛,学生可以锻炼自己的数学建模能力,提高解决实际问题的能力,培养创新思维和团队合作精神。
同时,比赛也为学术界和工业界提供了一批有潜力的人才。
总结:全国数学建模大赛是中国高校数学建模领域最高级别的竞赛活动,通过比赛提高学生的数学建模能力和创新思维。
2020msc 数学主题分类

2020msc 数学主题分类【最新版】目录1.2020msc 数学竞赛简介2.数学主题分类的意义3.2020msc 数学竞赛的主题分类4.各主题分类的涉及领域和重要性正文【2020msc 数学竞赛简介】2020msc 数学竞赛,全称为 2020 年全国大学生数学建模竞赛,是由中国数学会主办的一项面向全国大学生的数学建模竞赛活动。
该竞赛旨在激发大学生学习数学的积极性,提高其运用数学知识解决实际问题的综合能力,培养创新精神及合作意识。
【数学主题分类的意义】数学主题分类是指将数学问题按照其涉及的领域和知识体系进行归类的过程。
数学主题分类的意义在于帮助参赛选手更好地理解题目,快速找到解题思路,以及提高解题效率。
此外,数学主题分类还有助于评委对参赛作品进行公正、公平的评阅。
【2020msc 数学竞赛的主题分类】2020msc 数学竞赛的主题分类主要包括以下几个方面:1.代数与数论:涉及代数结构、线性代数、群论、环论、域论、数论等领域。
2.分析与微分方程:包括实分析、复分析、微积分、常微分方程、偏微分方程等内容。
3.几何与拓扑:涉及几何学、拓扑学、空间解析几何、微分几何、代数几何等领域。
4.概率与统计:包括概率论、数理统计、随机过程、马尔科夫链等内容。
5.计算数学与控制论:涉及数值计算、符号计算、最优化方法、控制论等方面。
6.信息与编码:包括计算机图形学、图像处理、信息论、编码理论等内容。
7.运筹与优化:涉及运筹学、线性规划、整数规划、动态规划、图论与组合优化等方面。
【各主题分类的涉及领域和重要性】各主题分类在数学领域中具有重要的地位和广泛的应用。
例如,代数与数论是数学的基础,分析与微分方程是解决实际问题的重要工具,几何与拓扑有助于加深对空间结构的认识,概率与统计为数据分析和风险管理提供理论支持,计算数学与控制论在科学计算和工程技术中发挥关键作用,信息与编码为数据传输和信息安全提供保障,运筹与优化有助于提高资源配置和决策效率。
大学生数学建模

第2章大学生数学建模竞赛简介大学生数学建模竞赛在20世纪八十年代产生于美国。
我国应用数学家在国际交流中,深感美国的高科技水平及先进的大学教育理念对国家发展进步所起的推动作用,便积极呼吁、发起、组织中国的大学生数学建模竞赛,1996年,由教育部高教司和中国工业与应用数学学会共同主办了首届全国大学生数学建模竞赛,为我国一年一度的大学生数学建模竞赛拉开了序幕。
§2.1 数学建模竞赛的兴起1.Putnam(普特南)数学竞赛Putnam(普特南)家族几代人都擅长数学,关心数学教育,竞赛的首创者是William Lowell Putnam,他曾在美国著名的哈佛大学数学系任职(后来当过校长),1921年撰文论述仿照奥林匹克运动会举办大学生数学竞赛的好处,得到他的妻兄、哈佛大学校长A.L.洛厄尔的支持,在20世纪20年代末举办过几次校际竞赛作为实验。
1935年逝世,他的遗孀秉承其遗志,设立了一笔12.5万美元的普特南基金会,并命他的两个儿子执行,这件事得到他们全家的挚友、著名美国数学家G.D.伯克霍夫的支持,伯克霍夫认为,再没有一门学科比数学更易于通过考试来测定能力的了。
G.D.伯克霍夫起草了竞赛的四项规定:①遵照普特南的遗愿,各校应派代表队参加,以集体成绩为自己的学校争取荣誉,代表队由三人组成,另外还可派个别选手参加,这对于派不出三个高水平学生组成代表队的一些较小的学校尤为相宜。
②由美国数学会管理,该协会是美国大学数学教师的专业组织,不但名正言顺,而且便于动员和组织各校参加竞赛。
③给优胜队及个人颁发奖金和予以荣誉鼓励。
④给个人第一名提供在哈佛大学攻读“普特南研究学位”和奖学金。
首届普特南数学竞赛于1938年4月16日在哈佛大学举行, 1943年~1945年因第2次世界大战暂停了3届,到1946年第6届又恢复了,这时已由G.D.伯克霍夫之子B伯克霍夫经管此事,竞赛的组织也越来越完善,迄今已举行了70届,每年有数百所大学,数千名大学生参加,许多这一活动造优胜者,后来成为著名的科学家、数学家和企业家。
全国大学生数学建模竞赛简介

全国大学生数学建模竞赛简介“全国大学生数学建模竞赛”从1992年开始每年举办一次,它是由教育部高等教育司与中国工业与应用数学学会共同举办的,是目前面向全国高等院校的一项规模最大的学生课外科技竞赛活动, 也是教育部高教司正式主办的仅有的两项学科竞赛之一。
其目的在于激励学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际问题的综合能力,鼓励广大学生踊跃参加课外科技活动,开拓知识面,培养创造精神及合作意识,推动大学数学教学体系、教学内容和方法的改革。
“全国大学生数学建模竞赛”的题目一般是由工程技术、管理科学中的实际问题简化加工而成,没有现成的答案,没有固定的求解方法,没有指定的参考书,没有规定的数学工具与手段,也没有已经成型的数学问题,从建立数学模型开始就要求同学们自己进行思考和研究。
这就可能让同学们亲身去体验一下数学应用于相关学科之中时的创造或发现过程,培养他们的创造精神、意识和能力,取得在课堂里和书本上所无法代替的宝贵经验。
此外,“全国大学生数学建模竞赛”的题目一般没有事先设定的标准答案,竞赛评奖以假设的合理性、建模的创造性、结果的正确性和文字表述的清晰性为主要标准,充分体现参赛者的聪明才智和创造精神。
每组的赛题有两道,参赛者任选其一。
从几年来的赛题来看,这些题目涉及到许多领域的非常实际的问题,如98年的两道赛题分别是“投资的收益和风险”和“灾情巡视路线”,前者给出若干种股票、债券的收益率、交易费和预测的风险损失,要求制定一种投资方案,使总收益尽量大而整体风险尽量小,后者给出某县的乡村公路示意图,要求在路程最短、各巡视组均衡等不同条件下设计最优巡视路线。
再如 2003年的“SARS的传播”、“露天矿生产的车辆安排”、“抢渡长江”;2004年的“奥运会临时超市网点设计”、“电力市场的输电阻塞管理”、“饮酒驾车”、“公务员招聘”;2005年的“长江水质的评价和预测”、“DVD在线租赁”、“雨量预报方法的评价”——每一道题都紧扣当前社会热点,很有时代意义。
数学建模国赛奖项设置

数学建模国赛奖项设置摘要:一、数学建模国赛简介1.赛事背景2.赛事目的二、奖项设置概述1.等级及数量2.评选标准三、具体奖项介绍1.特等奖2.一等奖3.二等奖4.三等奖四、获奖意义及对参赛者的激励1.对个人能力的肯定2.对未来发展的帮助3.对团队协作的认可正文:一、数学建模国赛简介数学建模国赛,全称全国大学生数学建模竞赛,是我国高校中最具影响力的数学竞赛之一。
该赛事始于1992 年,由教育部主管,每年举办一次,旨在激发大学生的创新意识,培养运用数学方法和计算机技术解决实际问题的能力。
二、奖项设置概述数学建模国赛设有多项奖项,以表彰在竞赛中表现突出的团队。
奖项分为特等奖、一等奖、二等奖和三等奖四个等级,具体数量根据每年参赛队伍的数量和质量而定。
评选标准主要根据参赛论文的创新性、实用性、完整性以及建模过程的合理性等方面进行综合评价。
三、具体奖项介绍1.特等奖:特等奖是数学建模国赛中最高的荣誉,一般设立1-2 个名额。
获得特等奖的团队需要具备出色的创新能力,对问题有深刻理解,建模过程清晰、严谨,论文具有很高的实用价值。
2.一等奖:一等奖是数学建模国赛中较高层次的奖项,一般设立10 个左右的名额。
获得一等奖的团队需要具备较高的创新能力和实用性,建模过程较为严谨,论文质量较高。
3.二等奖:二等奖是数学建模国赛中层次较高的奖项,一般设立30 个左右的名额。
获得二等奖的团队需要具备一定创新能力和实用性,建模过程较为完整,论文质量较好。
4.三等奖:三等奖是数学建模国赛中层次较低的奖项,一般设立80 个左右的名额。
获得三等奖的团队需要具备基本创新能力,建模过程较为完整,论文质量尚可。
四、获奖意义及对参赛者的激励数学建模国赛获奖不仅是对个人能力的肯定,也是对团队协作的认可。
对于获奖者来说,这不仅是一份荣誉,更是对未来发展的助力。
首先,获奖者可以在求职、升学等方面获得一定优势,增加竞争力。
其次,获奖者在比赛中锻炼的团队协作、创新思维、实际操作等能力将对未来的科研和工作产生积极影响。
数学建模竞赛宣传资料

全国大学生数学建模竞赛为进一步支持、鼓励更多学生参加全国大学生数学建模竞赛,提高学生实践能力和综合素质,现将该项赛事有关情况介绍如下:1、全国大学生数学建模竞赛简介全国大学生数学建模竞赛是教育部高等教育司和中国工业与应用数学学会共同主办的面向全国大学生的学科竞赛,其目的在于激励学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际问题的综合能力,鼓励广大学生踊跃参加课外科技活动,开拓知识面,培养创造精神及合作意识,推动大学数学教学体系、教学内容和方法的改革。
该项竞赛也是目前我国高校参赛学校和参赛人数最多的竞赛。
竞赛宗旨:创新意识,团队精神,重在参与,公平竞争。
竞赛指导原则:扩大受益面,保证公平性,推动教学改革,提高竞赛质量,扩大国际交流,促进科学研究。
2、学校组织形式历年来,学校设立专项经费,积极组织学生参加此项竞赛,取得了一定的成绩。
该项竞赛活动由教务处主办,数学与统计学院承办,相关学院协办,实行总教练负责制。
总教练负责教练队员的组成、参赛学生的组队、学生的培训安排等日常管理。
每年春季前半学期,由教务处牵头,组织相关学院学生办公室宣传动员更多二、三年级学生积极选修《数学建模技巧》及《数学实验》两门全校性选修课程。
4月,由数学与统计学院组织校级数学建模竞赛,遴选优秀学生进行专题培训。
8月,对参赛学生进行集中培训。
9月份,竞赛开始后根据具体题目再确定各教练指导的学生队,每个教练负责指导4个队左右。
11月份,重庆赛区组委会公布成绩。
3、获奖学生奖励办法(1)学生参加该项竞赛,获奖学生除获得竞赛组委会颁发的获奖证书外,还将获得一定的奖金,标准参照学校有关文件。
(2)学生在校期间参加数学建模竞赛,获得国家或重庆市一、二等奖可免修一定数量学分,其中获得国家级奖项可免修4学分,获得重庆市级奖项可免修2学分,免修课程可分别在人才培养计划中公共选修课程、学科选修课程、专业选修课程或集中实践环节部分,但各部分不得超过2学分。
全国大学生数学建模竞赛介绍(全校讲座)

•测试分析
•二者结合
机理分析没有统一的方法,主要通过实例研究 (Case Studies)来学习。以下建模主要指机理分析。
数学建模的一般步骤
模型准备 模型检验 模型应用 模型假设 模型分析 模型构成 模型求解
模 型 准 备
了解实际背景
搜集有关信息
明确建模目的
掌握对象特征
形成一个 比较清晰 的‘问题’
实践
理论
实践
数学建模比赛的由来
1985年美国出现了一种叫做MCM的一年一度大大 学生数学模型竞赛 我国自1989年起陆续有高校参加美国大学生数学建 模竞赛
1992年起我国开始举办自己的大学生数学建模竞赛
数学建模比赛的由来
国家教育部组织的全国大学生学科竞赛之一
2011 年,全国33个省/市/自治区(包括香港和澳门
双层玻璃的功效
足球比赛的场次安排 原子弹爆炸的能量估计
正规战与游击战
单层玻璃窗与双层玻璃窗
问题背景:
1945年7月
16日上午5时24
分,美国科学 家在新墨西哥
州阿拉莫戈夫
的“三一”试 验场内的一个 30米高的铁塔 上进行试验, 试爆了全球第 一颗原子弹。
模型准备
Taylor知道,爆炸是能量的释放过程,在一点上
?二者结合用机理分析建立模型结构用测试分析确定模型参数数学建模的一般步骤模型准备模型假设模型构成模型求解模型分析模型检验模型应用了解实际背景明确建模目的搜集有关信息掌握对象特征形成一个比较清晰的问题针对问题特点和建模目的作出合理的简化的假设在合理与简化之间作出折中用数学的语言符号描述问题发挥想像力使用类比法尽量采用简单的数学工具数学建模的一般步骤模型求解各种数学方法软件和计算机技术如结果的误差分析统计分析模型对数据的稳定性分析模型分析模型检验与实际现象数据比较检验模型的合理性适用性模型应用数学建模的一般步骤数学建模的全过程现实对象的信息数学模型现实对象的解答数学模型的解答表述求解解释验证归纳演绎表述求解解释验证根据建模目的和信息将实际问题翻译成数学问选择适当的数学方法求得数学模型的解答将数学语言表述的解答翻译回实际对象用现实对象的信息检验得到的解答实践理论实践1985年美国出现了一种叫做mcm的一年一度大大学生数学模型竞赛我国自1989年起陆续有高校参加美国大学生数学建模竞赛1992年起我国开始举办自己的大学生数学建模竞赛国家教育部组织的全国大学生学科竞赛之一2011年全国33个省市自治区包括香港和澳门特区及新加坡和澳大利亚的1251所院校19490个队5万8千多名大学生参加了本项竞赛分析问题的能力建模能力强调学习能力资料搜索能力论文写作能力数学知识
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 数学建模竞赛 强度大,综合素质提高
• 数学建模 思想进化,能力提高
数学建模的应用
• 名画的保存 • 油画的识别 • 博物馆的安全
数学建模论文基本格式 -1
大学生数学建模竞赛介绍
全国大学生数学建模竞赛
• 全国大学生数学建模竞赛创办于1992年79所院校的314 队参加 ,每年一届,目前已成为全国高校规模最大的 基础性学科竞赛,也是世界上规模最大的数学建模竞赛。
竞赛主办单位及合作机构 主办: 中国工业与应用数学学会
合作伙伴及独家冠名赞助商: 高等教育出版社
1 深圳杯数学建模夏令营 2 华南泰迪杯全国大学生数据挖掘竞赛 3 MathorCup全球数学建模挑战赛联赛 4 数学中国数学建模网络挑战赛
2014全国数学建模竞赛题目 2015美国数学建模竞赛题目
2014全国数学建模竞赛题目 A题 嫦娥三号软着陆轨道设计与控制策略 B题 创意平板折叠桌 C题 生猪养殖场的经营管理 D题 储药柜的设计
全国大学生数学建模竞赛
• 高等教育出版社从2002年起冠名赞助全国大学生 数学建模竞赛,并在竞赛中设立“高教社杯” (每年竞赛本科组、专科组各一个队)
• MathWorks公司2009年起赞助全国大学生数学建模 竞赛,并在竞赛中设立Matlab创新奖(每年竞赛 本科组、专科组各一个队)
• IBM(中国)公司2013年赞助全国大学生数学建模 竞赛,并在竞赛中设立IBM SPSS创新奖(每年竞 赛本科组、专科组各一个队)
2014 OUTSTANDING WINNERS
• THE SIX OUTSTANDING WINNERS OF THE CONTINUOUS MCM (A) PROBLEM ARE: • Shanghai Jiaotong University, China • Tsinghua Universityy, China — INFORMS & Ben Fusaro Award • Nanjing University, China • Zhejiang University, China— SIAM Prize Recipient • Beijing Normal University, China • Tufts University, MA — MAA Prize Recipient • THE SEVEN OUTSTANDING WINNERS OF THE DISCRETE MCM (B) PROBLEM ARE: • Chongqing University, China • University of International Business and Economics, China • Southeast University, China • Huazhong University of Science and Technology, China — Frank Giordano Award • Southwest University for Nationalities, China — SIAM Prize Recipient • College of Information Science and Engineering; Northeastern University, China • NC School of Science and Mathematics, NC — INFORMS & MAA Prize Recipient • THE SIX OUTSTANDING WINNERS OF THE INTERDISCIPLINARY ICM (C) PROBLEM ARE: • Southeast Univet • National University of Defense Technology, China • Central University of Finance and Economics, China • Xidian University, China • Tsinghua University, China (2)
Networks • ICM PROBLEM E: Are we heading towards a thirsty planet? • ICM PROBLEM F: Modeling Refugee Immigration Policies
第一届“五山湖杯”数学建模竞赛
• 2011 A题 你在福布斯全球富豪榜的位置 • 2011 B题 高层建筑的电梯安排 • 2011 C题 真假银元的鉴定方法 • 2011 D题 环球旅游的路线设计
ICM Problem D (operations research/network science) ICM Problem E (environmental science) ICM Problem F (policy) • Mark your calendars the 2016 MCM/ICM dates are set for January 28 – February 1, 2016
第二届“五山湖杯”数学建模竞赛
• 2012 A 杨振宁教授和李政道教授谁更聪明 • 2012 B 广州地铁线路的优化和规划 • 2012 C 千里走京沪,选飞机还是高铁 • 2012 D 一次性筷子的使用与森林保护
• 只有数学建模才能解决 • /
数学建模竞赛与数学建模
合作伙伴及支持机构: 美国COMAP公司
•
(美国MCM/ICM主办机构)
赞助商: 迈斯沃克软件 (北京) 有限公司
合作网站: 中国大学生在线网站
一次参赛,终生受益! 数学建模概论课程
全国大学生数学建模竞赛
• 2013年,来自全国33个省/市/自治区(包括香港和澳门特区)及新加坡、 印度和马来西亚的1326所院校、23339个队(其中本科组19892队、专 科组3447队)、70000多名大学生报名参加本项竞赛。
• 2014年,来自全国33个省/市/自治区(包括香港和澳门特区)及新加坡、 美国的1338所院校、25347个队(其中本科组22233队、专科组3114 队)、7万多名大学生报名参加本项竞赛。
• 2015年,来自全国33个省/市/自治区(包括香港和澳门特区)及新加坡 和美国的1326所院校、28574个队(其中本科组25558队、专科组3016 队)、85000名大学生报名参加本项竞赛。
2016 MCM and ICM
• Each team may choose any one of the six problem choices and should submit a solution to only one problem.
• MCM Problem A (continuous) MCM Problem B (discrete) MCM Problem C (data insights)
国内外数学建模资源和活动
1 全国大学生数学建模竞赛:/ 2 美国大学生数学建模竞赛:/ 3 中国数学建模网:/ 4 校苑数模 /mcm.php/ 5 数学中国网站 /
2015全国数学建模竞赛题目 2016美国数学建模竞赛题目
2015全国数学建模竞赛题目 2015 A题 太阳影子定位 2015 B题 “互联网+”时代的出租车资源配置 2015 C题 月上柳梢头 2015 D题 众筹筑屋规划方案设计
2016 MCM&ICM Problems • MCM PROBLEM A: A Hot Bath • MCM PROBLEM B: Space Junk • MCM PROBLEM C: The Goodgrant Challenge • ICM Problem D: Measuring the Evolution and Influence in Society’s Information
2015 OUTSTANDING WINNERS
• THE FIVE OUTSTANDING WINNERS OF THE CONTINUOUS MCM (A) PROBLEM ARE: • Northwestern Polytechnical University, China • State University of New York, University at Buffalo, NY — MAA Prize Recipient • Chongqing University, China — SIAM Prize RecipientCentral South University, China — Ben Fusaro Award • University of Adelaide, Australia — INFORMS Prize Recipient • THE FIVE OUTSTANDING WINNERS OF THE DISCRETE MCM (B) PROBLEM ARE: • University of Colorado Boulder, CO — SIAM Prize Recipient & Two Sigma Scholarship Award • Bethel University, MN — MAA Prize Recipient & Frank Giordano Award • University of Colorado Boulder, CO • Colorado College, CO — INFORMS Prize Recipient • Tsinghua University, China • THE FIVE OUTSTANDING WINNERS OF THE INTERDISCIPLINARY ICM (C) PROBLEM ARE: • Xidian University, China • Shanghai Jiao Tong University, China • Xi'an Jiaotong University, China — Leonhard Euler Award • Tsinghua University, China • National University of Defense Technology, China • Also winning as a FINALIST is: • University of Colorado Denver, CO — INFORMS Prize Recipient • THE FOUR OUTSTANDING WINNERS OF THE INTERDISCIPLINARY ICM (D) PROBLEM ARE: • NC School of Science and Mathematics, NC — INFORMS Prize Recipient • Xi'an Jiaotong University, China • Humboldt State University, CA — Rachel Carson Award & Two Sigma Scholarship Award • Zhejiang University, China