数学建模简介

合集下载

数学建模简介及数学建模常用方法

数学建模简介及数学建模常用方法

数学建模简介及数学建模常用方法数学建模,简单来说,就是用数学的语言和方法来描述和解决实际问题的过程。

它就像是一座桥梁,将现实世界中的复杂问题与数学的抽象世界连接起来,让我们能够借助数学的强大工具找到解决问题的有效途径。

在我们的日常生活中,数学建模无处不在。

比如,当我们规划一次旅行,考虑路线、时间和费用的最优组合时;当企业要决定生产多少产品才能实现利润最大化时;当交通部门设计道路规划以减少拥堵时,这些背后都有着数学建模的身影。

那么,数学建模具体是怎么一回事呢?数学建模首先要对实际问题进行观察和分析,明确问题的关键所在,确定需要考虑的因素和变量。

然后,根据这些因素和变量,运用数学知识建立相应的数学模型。

这个模型可以是一个方程、一个函数、一个图表,或者是一组数学关系。

接下来,通过对模型进行求解和分析,得到理论上的结果。

最后,将这些结果与实际情况进行对比和验证,如果结果不符合实际,就需要对模型进行修正和改进,直到得到满意的结果。

数学建模的过程并不是一帆风顺的,往往需要不断地尝试和调整。

但正是这种挑战,让数学建模充满了魅力和乐趣。

接下来,让我们了解一下数学建模中常用的一些方法。

第一种常用方法是线性规划。

线性规划是研究在一组线性约束条件下,如何使一个线性目标函数达到最优的数学方法。

比如说,一个工厂要生产两种产品,每种产品需要不同的资源和时间,而工厂的资源和时间是有限的,那么如何安排生产才能使利润最大呢?这时候就可以用线性规划来解决。

第二种方法是微分方程模型。

微分方程可以用来描述一些随时间变化的过程,比如人口的增长、传染病的传播、物体的运动等。

通过建立微分方程,并求解方程,我们可以预测未来的发展趋势,从而为决策提供依据。

第三种是概率统计方法。

在很多情况下,我们面临的问题具有不确定性,比如市场需求的波动、天气的变化等。

概率统计方法可以帮助我们处理这些不确定性,通过收集和分析数据,估计概率分布,进行假设检验等,为决策提供风险评估和可靠性分析。

数学建模数学建模简介

数学建模数学建模简介

数学建模的一般步骤
实际问题
抽象、简化、假设 确定变量、参数
建立数学模型并数学、数值地求解、确定参数
用实际问题的实测数据等来检验该数学模 型
不符合实际
符合实际
交付使用,从而可产生经济、社会效益
数学模型(Mathematical Model)
• 数学模型是对于现实世界的一个特定对象, 一个特定目的,根据特有的内在规律,做出 一些必要的假设,运用适当的数学工具,得 到一个数学结构。
A 2001
B A 2002 B A 2003 B A 2004 B
血管的三维重建 公交车调度
车灯线光源的优化设计 彩票中的数学
非典型肺炎的传染和控制 露天矿生产的车辆安排 奥运会临时超市网点设计 电力市场的输电阻塞管理
2005 2006 2007 2008
A
长江水质的评价和预测
B
DVD 在线租赁
年份 1992 1993 1994 1995 1996 1997 1998 1999 -2009
省(市、自治区)数 10 16 21 23 25 26 26 26 33
院校数 79 101 196 259 337 373 400 460
1137
队数 314 420 867 1234 1683 1874 2103 2657 15042(12272 +2770)
• 全国高校规模最大的课外科技活动 • 1999年开始设立大专组的竞赛
竞赛内容:题目由工程技术、管理科学中的实际问 题简化而成,没有事先设定的标准答案,但留有充 分余地供参赛者发挥其聪明才智和创造精神。
竞赛形式:三名大学生组成一队,可以自由地收集 资料、调查研究,使用计算机、互联网和任何软件, 在三天时间内分工合作完成一篇论文。

数学建模简介

数学建模简介

●模型求解和分析
在模型构成中建立的数学模型可以采用解方程、推理、图 解、计算机模拟、定理证明等各种传统的和现代的数学方法对 其进行求解,其中有些可以用计算机软件来做这些工作。建模 的目的是解释自然现象、寻找规律以解决实际问题。要达到此 目的,还要对获得结果进行数学上的分析,如分析变量之间的 依赖关系和稳定状况等,这一过程称为模型求解与分析。
( x y) 30 750 ( x y) 50 750
实际上方程组就是上述航行问题的数学模型。列 出方程组,原问题已转化为纯粹的数学问题。方程的 解x=20km/h、y=5km/h,最终给出了航行问题的答案。
大家都做过数学应用题,比如说“树上有十只鸟,开枪打死一 只,还剩几只?”,这样的问题就是一道数学应用题,正确答案应 该是0只。这样的题同样是数学建模题,不过答案就不重要了,重 要是过程。 真正的数学建模选手会这样回答这道题。 “是无声手枪吗?”“您确定那只鸟真的被打死啦?” “树上的鸟里有没有聋子?”“有没有关在笼子里的?” “边上还有没有其他的树,树上还有没有其他鸟?” “有没有残疾的或饿的飞不动的鸟?”“算不算怀孕肚子里的小 鸟?”“打鸟的人眼有没有花?保证是十只?” “有没有傻的不怕死的?”“会不会一枪打死两只?” “所有的鸟都可以自由活动吗?”“如果您的问题没有骗人,打死 的鸟要是挂在树上没掉下来,那么就剩一只,如果掉下来,就一只 不剩。”
分析:设甲桶中有x个红球,乙桶中有y个蓝球,因为对
甲桶来说,甲桶中的蓝球数加上乙桶中的蓝球
数等于10000,所以
10000-x+y=10000
即 x=y
故甲桶中的红球和乙桶中的蓝球一样多。
问题2、哥哥和妹妹分别在离家2km和1km且方向相反的两 所学校上学,每天同时放学后分别以4km/h和2km/h的速度 步行回家。一小狗以6km/h的速度由男孩处奔向女孩,又 从女孩处奔向男孩,如此往返直至回到家中,问小狗奔跑 了多少路程?

数学建模

数学建模
材料均匀,热传导系数为常数 Q ~单位时间单位面积传导的热量 T~温差, d~材料厚度, k~热传导系数 记双层玻璃窗传导的热量Q1 记单层玻璃窗传导的热量Q2 热量传播只有传导,没有对流
室 内 T1
d
l
d
室 外 T2
Q1

室 内 T1
2d
室 外 T2
Q2

Ta~内层玻璃的外侧温度 Tb~外层玻璃的内侧温度 k1~玻璃的热传导系数 k2~空气的热传导系数
乙安全线
y0 0 x
y1 y0 0
y=f ( x)
y0 y f ( x) y0 x
x0
P(xm,ym)甲 安 x=g(y) 全 区 x1 x
P~平衡点(双方最少导弹数)
精细 模型
x<y x=y
乙方残存率 s ~甲方一枚导弹攻击乙方一个 基地,基地未被摧毁的概率。 甲方以 x攻击乙方 y个基地中的 x个, sx个基地未摧毁,y–x个基地未攻击。 y0=sx+y–x y0=sy y= y0+(1-s)x y=y0 / s
• (4)模型求解:利用获取的数据资料,对模 型的所有参数做出计算(估计)。 • (5)模型分析:对所得结果进行数学的分析。 • (6)模型检验:将模型分析结果与实际情形 进行比较,以此来验证模型的准确性、合 理性和适用性。如果模型与实际较吻合, 则要对计算结果给出其实际含义,并进行 解释。如果模型与实际吻合较差,则应该 修改假设,再次重复建模过程。 • (7)模型应用:应用方式因问题的性质和建 模的目的而异
0
x0
x
甲方的被动防御也会使双方军备竞赛升级。
模型解释
• 甲方将固定核导弹基地改进为可移动发射架 乙安全线y=f(x)不变

数学建模简介

数学建模简介

中国大学生建模竞赛题目汇集
2011年赛题 • (A)城市表层土壤重金属污染分析 • (B)交巡警服务平台的设置与调度 • (C)企业退休职工养老金制度的改革 • (D)天然肠衣搭配问题 2012年赛题 • (A)葡萄酒的评价 • (B)太阳能小屋的设计 • (C)脑卒中发病环境因素分析及干预
四、我校数学建模协会简介及 成果
徐州工程学院数学建模协会成立于2003年10月,它是 由本校对数学建模有共同爱好且有一定基础的学生 发起成立学习型社团组织,协会由数理学院院长李 苏北担任长期顾问,以姜英姿,赵建强等老师为核心 的多位优秀老师担任指导老师,并同时接受校院两级 团委的指导。
建模协会活动
模型构成
xk~第k次渡河前此岸的商人数 yk~第k次渡河前此岸的随从数 sk=(xk , yk)~过程的状态 xk, yk=0,1,2,3; k=1,2,
S ~ 允许状态集合
S={(x , y) x=0, y=0,1,2,3; x=3, y=0,1,2,3; x=y=1,2} uk, vk=0,1,2; uk~第k次渡船上的商人数 vk~第k次渡船上的随从数 k=1,2, dk=(uk , vk)~决策 D={(u , v) u+v=1, 2} ~允许决策集合 sk+1=sk+(-1)kdk ~状态转移律
年 1625 1830 1930 1960 1974 1987 1999 人口(亿) 5 10 20 30 40 50 60
中国人口增长概况
年 1908 人口(亿) 3
1933 1953 1964 1982 1990 1995 4.7 6 7 10.1 11.3 12
控制人口过快增长
研究人口变化规律
Logistic模型在经济领域中的应用(如耐用消费品的售量)

数学建模简介1

数学建模简介1

数学建模的方法和步骤
模型假设
在明确建模目的,掌握必要资料的基础上, 通过对资料的分析,根据对象的特征和建 模目的,找出起主要作用的因素,对问题 进行必要的、合理的简化,用精确的语言 提出若干符合客观实际的合理假设。
数学建模的方法和步骤
模型假设
作出合理假设,是建模至关重要的一步。 如果对问题的所有因素一概考虑,无疑是 一种有勇气但方法欠佳的行为,所以高超 的建模者能充分发挥想象力、洞察力和判 断力 ,善于辨别主次,而且为了使处理方 法简单,应尽量使问题线性化、均匀化。
看谁答得快
1、某甲早8时从山下旅店出发沿一路径上山,下 午5时到达山顶并留宿。次日早8时沿同一路径下 山,下午5时回到旅店。某乙说,甲必在两天中 的同一时刻经过路径中的同一地点,为什么?
2、两兄妹分别在离家2千米和1千米且方向相反 的两所学校上学,每天同时放学后分别以4千米/ 小时和2千米/小时的速度步行回家,一小狗以6千 米/小时的速度从哥哥处奔向妹妹,又从妹妹处奔 向哥哥,如此往返直至回家中,问小狗奔波了多 少路程?
四、模型的特点:
逼真性和可行性 渐进性 强健性 可移植性 非预测性 条理性 技艺性 局限性
五、建模能力的培养:
具有广博的知识(包括数学和各种实际知 识)、丰富的经验、各方面的能力、注意 掌握分寸。

具有丰富的想象力和敏锐的洞察力
类比法和理想化方法
直觉和灵感
实例研究法
学 习 、 分 析 别 人 的 模 型 亲 手 去 做
模型集中反映了原型中人们需要的那一部分特征
什么是数学建模
什么是数学模型?
简单地说:数学模型就是对实际问题的一种 数学表述。
具体一点说:数学模型是以部分现实世界为某 种研究目的的一个抽象的、简化的数学结构。 这种数学结构可以是数学公式、算法、表格、 图示等。

数学建模简介2

数学建模简介2

罗钟瑞
张驹翔
王俊智
蔡少杰
王鸣涛
林瑶
黄维娜
林亦然
体育类省金奖 拓步体育旅游文化有限责任公司 09电信 09计科 林天飞 何陈文 09旅管 09财管 叶韩英 林丽婷 10电信 陈华津 10食科 林正方 10财管 10财管 许小青 陈巧炜
2013全国大学生创新创业计划训练项目
康跃体育旅游文化研究与企业开发利用 2013福建省大学生创新创业计划训练项目 小区智能监控系统的研制 基于时间序列与灰色拓扑的节假日火灾损失预测及综合治理
五、数学建模的实例
模型建立与求解
w(k) ~ 第k周(末)体重 c(k) ~第k周吸收热量
w(k 1) w(k ) c(k 1) w(k )
=1/8000(kg/kcal)
~ 代谢消耗系数(因人而异)
五、数学建模的实例
1)不运动情况的两阶段减肥计划
• 确定某甲的代谢消耗系数
赖晓燕
10财管 10食科 10农区 09土木
林莉莉 赖燕秋 陈志微 王世宇
11动医
林武涛
漳州市育松绞股蓝茶品加工厂
10国贸 10财管
林少郎 叶成群
10国贸 10财管 10计科 10广告
骆昊远 吴月 林燕凌 李鹏辉 乐圈传媒有限责任公司
09英语
邵瑛
09英语
周海燕
10机械 10财管
10食科 10工程
10食科 10电信 10电信 09土木
卢伟杰
石永杰
戴雪香
张凡凡
郑蓉芳
陈达隆 庄宇斌
刘芳伟
省优胜奖 农保生物农药有限公司 10食科 10电气 10财管 10食科 10土木 10农区 09土木 10国贸

数学建模简介

数学建模简介

数学建模
建立数学模型的全过程 (包括表述、求解、解释、检验等)
18
数学模型的分类
分类标准
对某个实际问题 了解的深入程度 模型中变量的特 征 建模中所用的数 学方法
具体类别
白箱模型、灰箱模型、黑箱模型 连续型模型、离散型模型或确定性 模型、随机型模型等
初等模型、微分方程模型、差分方 程模型、优化模型等
数学建模
第一讲 概述
主要内容
• 1.什么是数学模型? • 2.如何数学建模?
• 3.为什么数学建模?
2
1.什么是数学模型?
• 数学 • 模型
• 数学模型
3
1、圆形蜘蛛网是一个简单漂 亮的数学创造 2、蜂巢
自 然 离 不 开 数 学
3、在矿物结构中,可以找到许多更为奇妙的空间图形
4
问题/应用 核磁共振成像技术(MRI) 计算机辅助成像(CAT) 空中交通管制 积分几何 控制论
类似这样的问题,后来被统称为“一笔画”问题。 作为一笔画,应该只有一个起点和一个终点,而其它点只能是通过点.
图中四个节点A、B、C、D都是奇节点。所以,这是一个不可行 的一笔画问题。
17
什么是数学模型、数学建模
数学模型 • 一般地说,数学模型可以描述为,对于现实世
界的一个 特定对象,为了一个特定目的 ,根据 特有的内在规律 ,做出一些必要的 简化假设 , 运用适当的数学工具,得到的一个数学结构。
模 型 假 设 针对问题特点和建模目的 作出合理的、简化的假设
在合理与简化之间作出折中
用数学的语言、符号描述问题 发挥想像力 使用类比法
29
模 型 构 成
尽量采用简单的数学工具
数学建模的一般步骤
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学建模简介
当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言作表述,也就是建立数学模型,然后用通过计算得到的结果来解释实际问题,并接受实际的检验。

这个建立数学模型的全过程就称为数学建模。

数学建模的广泛应用
数学建模的应用逐渐变的广泛,数学建模大量用于一般工程技术领域,用于代替传统工程设计中的现场实验、物理模拟等手段;在高新科技领域,成为必不可少的工具,无论是在通信、航天、微电子、自动化都是创新工艺、开发新
产品的必要手段;在新的科研领域在用数学方法研究
其中的定量关系时,数学建模就成为首要的、关键的
步骤和这些学科发展和应用的基础。

将计算机技术和数学建模进行紧密结合,使得原
本抽象的数学模型生动具体的呈现在研究者面前,使
得问题得到更好的解决。

数学建模的分支——数据挖掘
数据挖掘(Data Mining,DM)是目前人工智能和数
据库领域研究的热点问题,所谓数据挖掘是指从数据库
的大量数据中揭示出隐含的、先前未知的并有潜在价值
的信息的非平凡过程。

数据挖掘是一种决策支持过程,
它主要基于人工智能、机器学习、模式识别、统计学、
数据库、可视化技术等,高度自动化地分析企业的数据,
做出归纳性的推理,从中挖掘出潜在的模式,帮助决策
者调整市场策略,减少风险,做出正确的决策。

数据挖掘是通过分析每个数据,从大量数据中寻找其规律的技术,主要有数据准备、规律寻找和规律表示3个步骤。

数据准备是从相关的数据源中选取所需的数据并整合成用于数据挖掘的数据集;规律寻找是用某种方法将数据集所含的规律找出来;规律表示是尽可能以用户可理解的方式(如可视化)将找出的规律表示出来。

数据挖掘的任务有关联分析、聚类分析、分类分析、异常分析、特异群组分析和演变分析,等等。

简单数学模型展示
核军备竞赛模型
冷战时期美苏声称为了保卫自己的安全,实行“核威慑战略”,核军备竞赛不断升级。

随着前苏联的解体和冷战的结束,双方通过了一系列的核裁军协议。

首先进行模型假设
•认为对方可能发起所谓第一次核打击,即倾其全部核导弹攻击己方的核导弹基地;
•乙方在经受第一次核打击后,应保存足够的核导弹,给对方重要目标以毁灭性的打击。

•在任一方实施第一次核打击时,假定一枚核导弹只能攻击对方的一个核导弹基地。

•摧毁这个基地的可能性是常数,它
•由一方的攻击精度和另一方的防御能力决定。

在进行好假设后再建立模型
y=f(x)~甲方有x枚导弹,乙方所需的最少导弹数
x=g(y)~乙方有y枚导弹,甲方所需的最少导弹数
当x=0时y=y0,y0~乙方的威慑值
y0~甲方实行第一次打击后已经没有导弹,乙方为毁灭甲方工业、交通中心等目标所需导弹数
从图中很容易看出核军备满足双方安全区的最小值P就是双方应达成的核军备数量,这便是一个初步的典型数学模型。

数学建模重要赛事简介
美国大学生数学建模竞赛(简称“美赛”),是一项国际级的竞赛项目,为现今各类数学建模竞赛之鼻祖。

中国大学生数学建模竞赛(通称“全国大学生数学建模竞赛”,简称“全赛”),是全国高校规模最大的课外科技活动之一。

1992年由中国工业与应用数学学会(CSIAM)组织第一次竞赛。

1994年起由教育部高等教育司和CSIAM共同举办。

参加数模竞赛的意义
在参加建模竞赛的过程中,学生能够培养创新意识和创造能力,训练快速获取信息和资料的能力,锻炼快速了解和掌握新知识的技能,培养团队合作意识和团队合作精神,增强写作技能和排版技术。

参加数学建模竞赛对于训练我们的逻辑思维能力和开放性思考方式有着很大的好处,而且切身的论文创作经历对于我们将来工作、学习甚至是大学期间的论文答辩都有着很大的帮助。

数学建模对于计算机技术的要求十分严苛,对于数学软件的使用要求广泛,参加数学建模其实也是一个提升自我计算机能力的过程。

美国大学生数学建模竞赛作为国际上的建模赛事,使得参加美赛得奖的同学在申请出国留学方面优势十分明显,美国各大学尤为看重。

全国大学生数学建模比赛作为国内最高级别的课外科技赛事,如果参赛得奖,对于本科生保送研究生或者谋求工作都有着极大的帮助。

华工在数学建模中获得的成绩
近年来华工在数学建模方面巨大的成就,华工曾多次获美赛outstanding(华南地区唯一获此荣誉的高校),共取得各类奖项共647项。

而且,数学建模作为一个培养学生的方式,将在华工越来越热门,华工的数学建模水平将会越来越强!。

相关文档
最新文档