数学建模数学建模简介

合集下载

什么是数学建模

什么是数学建模

什么是数学建模数学建模是指运用数学的理论、方法和技术,以模型为基础,通过对实际问题进行抽象、建模、求解和验证,为实际问题的研究和决策提供可靠依据的过程。

数学建模可以帮助我们更好地理解、分析、解决实际问题。

它是一种综合运用数学、物理、计算机科学和其他相关学科知识的跨学科研究领域,可以应用于各个领域的问题,包括自然科学、工程技术、社会科学、医学、金融等。

数学建模的过程一般包括以下几个步骤:1. 定义问题和目标。

在这个阶段,我们需要对实际问题进行全面的了解,明确研究的目标和需要解决的问题是什么,确定问题的限制和条件。

2. 建立模型。

在这个阶段,我们需要根据实际问题的特点和需要解决的问题,选择适当的模型类型,建立数学模型。

模型应该尽可能简明明了,能够比较好地描述实际问题,并且便于求解。

3. 求解模型。

在这个阶段,我们需要根据所建立的模型,采用数学和计算机科学等相关方法,对模型进行求解,得到具体的结果和解决方案。

4. 验证模型。

在这个阶段,我们需要根据模型的求解结果,进行模型的验证。

验证模型的正确性和可靠性,以及对模型的结果进行误差分析和敏感性分析,以保证模型的可行性和实用性。

5. 应用模型。

在这个阶段,我们需要将模型的结果应用于实际问题的解决中。

根据模型的结果,提出相应的决策和措施,实现问题的解决和优化。

数学建模具有广泛的应用领域和重要性。

在物理、化学、生物学和工程技术等领域,数学建模可以帮助我们解决复杂的系统问题,如气候模型、流体力学模型、生物进化模型等。

在社会科学领域,数学建模可以应用于经济学、管理学、社会学等领域,对社会现象进行建模和预测,如人口增长模型、市场模型、网络模型等。

在医学领域,数学建模可以帮助我们研究疾病的发展和治疗方法,如病毒传播模型、治疗模型等。

在金融领域,数学建模可以帮助我们分析风险和投资策略,如股票价格模型、期权评估模型等。

总之,数学建模是一种重要的跨学科研究领域,以模型为基础,运用数学和相关学科知识,对实际问题进行抽象、建模、求解和验证,为实际问题的研究和决策提供可靠依据,具有广泛的应用领域和重要性。

数学建模简介

数学建模简介

●模型求解和分析
在模型构成中建立的数学模型可以采用解方程、推理、图 解、计算机模拟、定理证明等各种传统的和现代的数学方法对 其进行求解,其中有些可以用计算机软件来做这些工作。建模 的目的是解释自然现象、寻找规律以解决实际问题。要达到此 目的,还要对获得结果进行数学上的分析,如分析变量之间的 依赖关系和稳定状况等,这一过程称为模型求解与分析。
( x y) 30 750 ( x y) 50 750
实际上方程组就是上述航行问题的数学模型。列 出方程组,原问题已转化为纯粹的数学问题。方程的 解x=20km/h、y=5km/h,最终给出了航行问题的答案。
大家都做过数学应用题,比如说“树上有十只鸟,开枪打死一 只,还剩几只?”,这样的问题就是一道数学应用题,正确答案应 该是0只。这样的题同样是数学建模题,不过答案就不重要了,重 要是过程。 真正的数学建模选手会这样回答这道题。 “是无声手枪吗?”“您确定那只鸟真的被打死啦?” “树上的鸟里有没有聋子?”“有没有关在笼子里的?” “边上还有没有其他的树,树上还有没有其他鸟?” “有没有残疾的或饿的飞不动的鸟?”“算不算怀孕肚子里的小 鸟?”“打鸟的人眼有没有花?保证是十只?” “有没有傻的不怕死的?”“会不会一枪打死两只?” “所有的鸟都可以自由活动吗?”“如果您的问题没有骗人,打死 的鸟要是挂在树上没掉下来,那么就剩一只,如果掉下来,就一只 不剩。”
分析:设甲桶中有x个红球,乙桶中有y个蓝球,因为对
甲桶来说,甲桶中的蓝球数加上乙桶中的蓝球
数等于10000,所以
10000-x+y=10000
即 x=y
故甲桶中的红球和乙桶中的蓝球一样多。
问题2、哥哥和妹妹分别在离家2km和1km且方向相反的两 所学校上学,每天同时放学后分别以4km/h和2km/h的速度 步行回家。一小狗以6km/h的速度由男孩处奔向女孩,又 从女孩处奔向男孩,如此往返直至回到家中,问小狗奔跑 了多少路程?

数学建模介绍

数学建模介绍

数学建模介绍1.1 数学模型及其分类数学建模作为用数学方法解决问题的第一步,它与数学本身有着同样悠久的历史。

一个羊倌看着他的羊群进入羊圈,为了确信他的羊没有丢失,他在每只羊进入羊圈时,则在旁边放一颗小石子,如果每天羊全部入圈而他那堆小石子刚好全部放完,则表示他的羊和以前一样多。

究竟羊倌数的是石子还是羊,那是毫无区别的,因为羊的数目同石子的数目彼此相等。

这实际上就使石子与羊“联系”起来,建立了一个使石子与羊一一对应的数学模型。

(1)什么是数学模型人们在认识研究现实世界里的客观对象时,常常不是直接面对那个对象的原形,有些是不方便,有些甚至是不可能直接面对原形,因此,常常设计、构造它的各种各样的模型。

如各式各样的玩具模型、展览厅里的三峡大坝模型、化学上的分子结构模型等。

这些模型都是人们为了一定目的,对客观事物的某一部分进行简化、抽象、提炼出来的原形替代物,集中反映了原形中人们需要的那一部分特征,因而有利于人们对客观对象的认识。

数学模型也是反映客观对象特征的,只不过它刻画的是事物在数量方面的特征或数学结构及其变化规律。

数学模型是人们为了认识客观对象在数量方面的特征、定量地分析对象的内在规律、用数学的语言和符号去近似地刻画要研究的那一部分现象时,所得到的一个数学表述。

建立数学模型的过程称为数学建模。

(2) 数学模型的重要作用进入20世纪以来,数学以空前的广度和深度向一切领域渗透,作为数学的应用,数学建模也越来越受到人们的重视。

在一般工程技术领域,数学模型仍是工程技术人员定量研究有关工程技术问题的重要工具;而随着数学与其他学科领域诸如经济、人口、生态、地质等所谓非物理领域的渗透,一些交叉学科如计量经济学、人口控制论、数学生态学、数学地质学等应运而生;计算机的发展给数学及作为数学应用的数学建模带来了前所未有的机遇和挑战。

计算机改变了人类的生活方式、思考方式和研究方式,极大地提高了人们的计算能力、搜索和分析海量数据和信息的能力。

什么是数学建模3篇

什么是数学建模3篇

什么是数学建模第一篇:数学建模基础数学建模是指利用数学方法及其它学科的知识和技术,对实际问题进行抽象、分析和求解的一种综合性学科。

数学建模的目的是通过对实际问题的建模进行定量分析和解决,从而为实际问题提供可行的解决方案,为现代社会的发展提供技术和理论支持。

数学建模可以分为三个阶段:问题分析阶段、建模阶段和求解阶段。

在问题分析阶段,需要对实际问题进行详细的调查和分析,了解实际问题的背景以及运作模式。

在建模阶段,需要对实际问题进行抽象、量化并建立数学模型,确定模型的参数、变量及其相互关系。

在求解阶段,需要运用数学方法和技术对建立的数学模型进行求解,并给出实际问题的解决方案。

数学建模是一门综合性的学科,需要掌握数学、物理学、工程学等多学科的知识。

在数学方面,需要熟练掌握微积分、线性代数、统计学等数学基础知识,并能够灵活运用这些知识;在其它学科方面,需要了解相关学科的基本知识和应用技术,如电子技术、通信技术等。

此外,数学建模还需要高超的计算机应用技术,能够用计算机模拟实际问题的过程,并对其进行分析和求解。

总之,数学建模是一门综合性、学科交叉性强的学科,对全面培养学生的综合素质提出了更高的要求。

通过学习数学建模,可以培养学生的创新思维能力和解决实际问题的能力,提高综合应用数学知识解决实际问题的能力,并为未来走向各个领域和专业打下坚实基础。

第二篇:数学建模与实际应用数学建模是数学和实际应用之间的桥梁,主要应用于工程、自然科学和社会科学等领域。

在工程领域,数学建模可以应用于各种工程设计和工程管理中,如市政供水、排水、高速公路等。

在自然科学领域,数学建模可以应用于气象、生态学、地理学、天文学等领域,如预测天气、分析生态系统破坏的原因等。

而在社会科学领域,数学建模可以应用于经济、管理学、政治学等领域中,如预测股票市场走势、企业管理优化等。

数学建模与实际应用密不可分,具有卓越的应用价值和广阔的应用前景。

随着科技和工业的不断发展,实际问题的规模和复杂性也在不断提高,对数学建模提出了更高的要求。

数学建模最简明易懂的介绍

数学建模最简明易懂的介绍

数学建模最简明易懂的介绍黑龙江农业经济职业学院基础部 邢进喜 157041一.什么是数学模型与数学建模简单地说,数学模型就是对实际问题的一种数学表述,可以是数学公式、函数、方程、不等式、算法、表格、图示等。

数学建模就是建立数学模型,建立数学模型的过程就是数学建模的过程。

二.数学建模的一般步骤(1)模型准备:了解问题的实际背景,明确题目的要求,查阅相关资料,收集各种必要的信息。

(2)模型假设:为了利用数学方法,通常要对问题做出必要的、合理的假设,使问题的主要方面凸现出来,忽略问题的非本质的、不影响问题解决的次要方面。

(3)模型构成:根据所做的假设及所研究对象的内在规律,利用适当的数学工具来刻划各变量之间的数学关系,建立相应的数学结构。

构造各种量之间的关系,把问题化为数学问题。

(4)模型求解:运用适当的数学方法求解上一步所得到的数学问题,有时还要借助数学软件。

(5)模型分析:对所得的结果进行数学上的分析,特别要注意当数据变化时所得结果是否稳定。

(6)模型检验:分析所得结果的实际意义,与实际现象、数据等情况进行比较,检验模型的准确性、合理性和适用性。

如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。

如果不够理想,应该修改、补充假设,或重新建模,不断完善。

(7)模型应用:所建立的模型必须能在实际中应用,能产生实际效益,能在应用中不断改进和完善。

应用方式与问题性质、建模目的及最终结果有关。

三.简单实例示意――观看塑像的最佳位置[注:这仅是一个要点式的数学建模方法示例]问题提出大型的塑像通常都有一个比人还高的底座,看起来雄伟壮观。

但当观看者与塑像的水平距离不同时,观看像身的视角就不一样。

那么,在离塑像的水平距离为多远时, 观看像身的视角最大?模型假设与符号说明a OS MT ==-------人眼高;b AB =-------塑像身高;c AT =-------底座高, c a >;d AM c a ==-;x ST OM ==-------人与塑像水平距离;;MOA MOB αβ=∠=∠;AOB θβα=∠=-------观看像身的视角.模型建立、求解与分析∵tan α=/AM OM =/d x , tan β=/BM OM =()/b a x +()arctanarctan b d d x x x θ+∴=-, 2222()d d b d dx x d x b d θ+=-+++ 令0d dxθ=,解出唯一驻点 ,此数恰是AM 与BM 的几何平均 根据经验,此问题θ必有最大值,且x =模型检验、应用与推广举例例1.上海外滩海关大钟直径为5.5米, 钟底到地面高为56.75米.设某观看者眼高为1.55米,则b=5.5,d=56.75-1.55=55.2,最佳位置是x=57.88米, 0min 243'θ=例2.设有甲乙两观看者,甲高乙矮,则两者的最佳位置不同,谁前谁后? 谁的最佳视角更大?四.详细资料可查阅下列书籍及网站《数学模型》姜启源,谢金星,叶俊编 全国大学生数学建模竞赛网站 中国数学建模网站/undergraduate/contests 美国大学生数学建模竞赛网站 美国建模论坛网站。

数学建模简介

数学建模简介

中国大学生建模竞赛题目汇集
2011年赛题 • (A)城市表层土壤重金属污染分析 • (B)交巡警服务平台的设置与调度 • (C)企业退休职工养老金制度的改革 • (D)天然肠衣搭配问题 2012年赛题 • (A)葡萄酒的评价 • (B)太阳能小屋的设计 • (C)脑卒中发病环境因素分析及干预
四、我校数学建模协会简介及 成果
徐州工程学院数学建模协会成立于2003年10月,它是 由本校对数学建模有共同爱好且有一定基础的学生 发起成立学习型社团组织,协会由数理学院院长李 苏北担任长期顾问,以姜英姿,赵建强等老师为核心 的多位优秀老师担任指导老师,并同时接受校院两级 团委的指导。
建模协会活动
模型构成
xk~第k次渡河前此岸的商人数 yk~第k次渡河前此岸的随从数 sk=(xk , yk)~过程的状态 xk, yk=0,1,2,3; k=1,2,
S ~ 允许状态集合
S={(x , y) x=0, y=0,1,2,3; x=3, y=0,1,2,3; x=y=1,2} uk, vk=0,1,2; uk~第k次渡船上的商人数 vk~第k次渡船上的随从数 k=1,2, dk=(uk , vk)~决策 D={(u , v) u+v=1, 2} ~允许决策集合 sk+1=sk+(-1)kdk ~状态转移律
年 1625 1830 1930 1960 1974 1987 1999 人口(亿) 5 10 20 30 40 50 60
中国人口增长概况
年 1908 人口(亿) 3
1933 1953 1964 1982 1990 1995 4.7 6 7 10.1 11.3 12
控制人口过快增长
研究人口变化规律
Logistic模型在经济领域中的应用(如耐用消费品的售量)

数学建模简介1

数学建模简介1

数学建模的方法和步骤
模型假设
在明确建模目的,掌握必要资料的基础上, 通过对资料的分析,根据对象的特征和建 模目的,找出起主要作用的因素,对问题 进行必要的、合理的简化,用精确的语言 提出若干符合客观实际的合理假设。
数学建模的方法和步骤
模型假设
作出合理假设,是建模至关重要的一步。 如果对问题的所有因素一概考虑,无疑是 一种有勇气但方法欠佳的行为,所以高超 的建模者能充分发挥想象力、洞察力和判 断力 ,善于辨别主次,而且为了使处理方 法简单,应尽量使问题线性化、均匀化。
看谁答得快
1、某甲早8时从山下旅店出发沿一路径上山,下 午5时到达山顶并留宿。次日早8时沿同一路径下 山,下午5时回到旅店。某乙说,甲必在两天中 的同一时刻经过路径中的同一地点,为什么?
2、两兄妹分别在离家2千米和1千米且方向相反 的两所学校上学,每天同时放学后分别以4千米/ 小时和2千米/小时的速度步行回家,一小狗以6千 米/小时的速度从哥哥处奔向妹妹,又从妹妹处奔 向哥哥,如此往返直至回家中,问小狗奔波了多 少路程?
四、模型的特点:
逼真性和可行性 渐进性 强健性 可移植性 非预测性 条理性 技艺性 局限性
五、建模能力的培养:
具有广博的知识(包括数学和各种实际知 识)、丰富的经验、各方面的能力、注意 掌握分寸。

具有丰富的想象力和敏锐的洞察力
类比法和理想化方法
直觉和灵感
实例研究法
学 习 、 分 析 别 人 的 模 型 亲 手 去 做
模型集中反映了原型中人们需要的那一部分特征
什么是数学建模
什么是数学模型?
简单地说:数学模型就是对实际问题的一种 数学表述。
具体一点说:数学模型是以部分现实世界为某 种研究目的的一个抽象的、简化的数学结构。 这种数学结构可以是数学公式、算法、表格、 图示等。

数学建模简介

数学建模简介

MATLAB求解代码: x=[50,100,150,200,250,300,350,400,450,500,550]; y=[1.000,1.875,2.750,3.250,4.375,4.875,5.675,6.500,7.250,8.000,8.750]; scatter(x,y,'.') xlabel('质量') ylabel('伸长')
MATLAB求解代码: x=[50,100,150,200,250,300,35 0,400,450,500,550]; y=[1.000,1.875,2.750,3.250,4.3 75,4.875,5.675,6.500,7.250,8.0 00,8.750]; c1=polyfit(x,y,1); tp1=0:50:550; x1=polyval(c1,tp1); plot(tp1,x1,x,y,'.') xlabel('质量m') ylabel('伸长e')

建立数学模型过程
建立数学模型没有固定模式,一般大致可分为 以下几个步骤: 分析问题 合理假设(简化) 模型建立 模型求解 模型检验(包含了模型评价、推广或改进等) 模型应用
简化关系:比例性
例1 测试比例性
y k x( k 0)
y 记为:∝ x
做一个测量弹簧的伸长作为置于弹簧末端的质量(以重量计) 的函数的实验。
模型检验:数据拟合效果好,所以建立的比例模型合理。
数学建模基础


基本概念
原型(Prototype)
人们在现实世界中关心、研究、从 事的生产、管理的实际对象称为原型。 模型(Modle)为了某个特定的目的将原型的某一部分 信息进行简缩、提炼而成的原型的替代物称为模型。 模型有直观模型、物理模型、思维模型、符号模型、 计算模型、数学模型等。一个原型可以有多个不同的 模型。 数学模型(Mathematical Model)由数字、字母或其他 数学符号组成,描述实际对象的数量规律的数学公式、 图形或算法称为数学模型。即就是对于现实世界的一 个特定对象,为一个特定目的,根据特有的内在规律, 做出一些必要的简化假设,也能用适当的数学工具, 得到一个数学结构。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学建模的一般步骤
实际问题
抽象、简化、假设 确定变量、参数
建立数学模型并数学、数值地求解、确定参数
用实际问题的实测数据等来检验该数学模 型
不符合实际
符合实际
交付使用,从而可产生经济、社会效益
数学模型(Mathematical Model)
• 数学模型是对于现实世界的一个特定对象, 一个特定目的,根据特有的内在规律,做出 一些必要的假设,运用适当的数学工具,得 到一个数学结构。
A 2001
B A 2002 B A 2003 B A 2004 B
血管的三维重建 公交车调度
车灯线光源的优化设计 彩票中的数学
非典型肺炎的传染和控制 露天矿生产的车辆安排 奥运会临时超市网点设计 电力市场的输电阻塞管理
2005 2006 2007 2008
A
长江水质的评价和预测
B
DVD 在线租赁
年份 1992 1993 1994 1995 1996 1997 1998 1999 -2009
省(市、自治区)数 10 16 21 23 25 26 26 26 33
院校数 79 101 196 259 337 373 400 460
1137
队数 314 420 867 1234 1683 1874 2103 2657 15042(12272 +2770)
• 全国高校规模最大的课外科技活动 • 1999年开始设立大专组的竞赛
竞赛内容:题目由工程技术、管理科学中的实际问 题简化而成,没有事先设定的标准答案,但留有充 分余地供参赛者发挥其聪明才智和创造精神。
竞赛形式:三名大学生组成一队,可以自由地收集 资料、调查研究,使用计算机、互联网和任何软件, 在三天时间内分工合作完成一篇论文。
•每年赛题、优秀答卷及获奖名单刊登于次年
•“数学的实践与认识”第1期
竞赛的 社会影
“99’创维杯全国大学生数学建模竞赛”
响不断 扩大 “2000~2001网易杯全国大学生数学建模竞赛”
“2002~2009”高教社杯全国大学生数学建模竞 赛”
• 全国组委会网址:
近几年全国大学生数学建模竞赛题
A 1994
Ⅲ. 要重视的问题
➢ 0. 摘要。 ➢ 1. 问题重述。 ➢ 2. 模型假设 ➢ 3. 模型的建立 ➢ 4. 模型求解 ➢ 5. 结果分析、检验;模型检验及模型修正;
结果表示 ➢ 6.模型评价和推广 ➢ 7.参考文献 ➢ 8.附录
0. 摘要
• a. 模型的数学归类(在数学上属于什么类型) • b. 建模的思想(思路) • c . 算法思想(求解思路) • d. 建模特点(模型优点,建模思想或方法,
• 分析:中肯、确切 • 术语:专业、内行 • 原理、依据:正确、明确 • 表述:简明,关键步骤要列出,可将公
式与中文说明相结合 • 忌:外行话,专业术语不明确,表述混
乱,冗长。
4. 模型求解
• (1) 需要建立数学命题时: 命题叙述要符合数学命题的表述规范,尽可能 论证严密。能用定理总结的,尽量给出定理, 并证明(很专业)
一、写好数模答卷的重要性
➢ 1. 评定参赛队的成绩好坏、高低,获奖级别 数模答卷,是唯一依据。
➢ 2. 答卷是竞赛活动的成绩结晶的书面形式。
➢ 3. 写好答卷的训练,是科技写作的一种基本训 练。
二、答卷的基本内容,需要重 视的问题
▪ Ⅰ. 评阅原则 ▪ Ⅱ. 答卷的文章结构 ▪ Ⅲ. 要重视的问题
符号模型
数学模型
数式模型
图形模型
◆ 按研究方法和对象的数学特征分:初等 模型、几何模型、优化模型、微分方程 模型、图论模型、逻辑模型、稳定性模 型、扩散模型等。
◆ 按研究对象的实际领域(或所属学科) 分:人口模型、交通模型、环境模型、 生态模型、生理模型、城镇规划模型、 水资源模型、污染模型、经济模型、社 会模型等。
数学建模数学建模简介
数学建模(Mathematical Modelling)
数学建模是利用数学方法解决实际问题的 一种实践。即通过抽象、简化、假设、引 进变量等处理过程后,将实际问题用数学 方式表达,建立起数学模型。数学建模所 涉及的问题都是现实生活中的实际问题, 范围广、学科多,包括工业、农业、医学、 生物学、政治、经济、军事、社会、管理、 信息技术等方面。
• 数学建模面临的、要解决的是实际问题, 较复杂的问题,力求简单化不追求数学上:高 (级)、深(刻)、难(度大)。
– 能用初等方法解决的,就不用高级方法 – 能用简单方法解决的,就不用复杂方法 – 能用被更多人看懂、理解的方法,就不用只能少数人看懂
理解的方法。
• 对较简单的问题,做出自己的特色,你想如果自己 能做,别人也能这样做,只有比赛各自的创新。
➢(2) 对数值结果或模拟结果进行必要 的检验。
Ⅰ. 评阅原则
➢假设的合理性 ➢建模的创造性 ➢结果的合理性 ➢表述的清晰程度
Ⅱ. 答卷的文章结构
➢ 0. 摘要 ➢ 1. 问题的叙述,问题的分析,背景的分析
等 2. 模型的假设,符号说明(表) ➢ 3. 模型的建立(问题分析,公式推导,基本
模型,最终或简化模型 等)
• 4. 模型的求解
• 5. 结果表示、分析与检验,误差分析, 模型检验……
• (2) 需要说明计算方法或算法的原理、思想、 依据、步骤。 若采用现有软件,说明采用此软件的理由,软 件名称
• (3) 计算过程,中间结果可要可不要的,如 果篇辐大的,不要列出。
• (4) 设法算出合理的数值结果。
5. 结果分析、检验;模型检验及模型修 正;结果表示
➢(1) 最终数值结果的正确性或合理性 是第一位的 ;
标新立异 ➢(5)在问题分析推导过程中,需要注意
的问题:
(1) 基本模型:
• 1) 首先要有数学模型:数学公式、方案 等
• 2) 基本模型,要求 完整,正确,简明
(2) 简化模型
• 1) 要明确说明:简化思想,依据 • 2) 简化后模型,尽可能完整给出
(3) 模型要实用,有效,有特色,以解决 问题有效为原则。
算法特点,结果检验,灵敏度分析, 模型检验…….) • e. 主要结果(数值结果,结论)(回答题目所 问的全部“问题”) ▲表述:准确、简明、条理清晰、合乎语法; 符合打印文章格式。务必认真校对。
1. 问题重述
用自己的话去复述或理解一遍,实际是问 题分析的开始
切忌:原封不动照写一遍
2. 模型假设
A
出版社的资源配置
艾滋病疗效的评价及疗效的预
B

A
中国人口增长预测
B
乘公交,看奥运
A
数码相机定位
B
高等教育学费标准探讨
2009 2010
A 制动器试验台的控制方法分析
B
眼科病床的合理安排
A
储油罐的变位识别与罐容表标 定
B
2010 年上海世博会影响力的定 量评估
A
B
A
B
如何写好数学建模竞赛答卷
一、写好数模答卷的重要性 二、答卷的基本内容,需要重视的问题 三、对分工执笔的同学的要求 四、关于写答卷前的思考和工作规划 五、答卷要求的原理
全国大学生数学建模竞赛简介
数学建模竞赛(MCM)最早始于美国,1985 年由美国政府部门资助,由美国数学及其应用 联合会(COMAP)主办,由美国工业与应用数 学学会(SIAM)、运筹及工业和应用数学协会 (INFORMS)及数学学会(MAA)协办。
第一届MCM只有70所高校90个参赛队,后来 它的影响力逐步扩大,现已成为有十几个国家 和地区参加的国际型的竞赛活动。
数学建模与数学实验的区别与联系
数学建模与数学实验都要用到计算机,但数学 建模课是让学生学会利用数学知识和计算机来 解决实际问题,而数学实验课侧重于在计算机 的帮助下学习数学知识。一个是用数学,一个 是学数学,两者的目标不同。从内容选材上两 者都是从实际问题出发,而不是从概念出发, 但数学建模强调问题的实用,而不强调普遍性, 解决问题本身就是目的;数学实验可以从理论 问题出发,也可以由实际问题引入,但这个问 题一般是比较经典、有较普遍意义
中国最早从1989年有北京地区的清华、北大、北 京理工等学校派队参赛,近几年来仅中国的参赛 学校及队数几乎都占了参赛总数的三分之一以上 ,而且每年都能取得最高奖。
中国的大学生数学建模竞赛(CUMCM)始于1992 年,首先由中国工业与应用数学学会(CSIAM) 举办了民间的“全国大学生数学建模竞赛”,到 1994年是由原国家教委高教司直接领导组织,由 工业与应用数学学会具体承办的一项大规模的竞 赛活动。
• 根据全国组委会确定的评阅原则,基本 假设的合理性很重要。 (1)根据题目中条件作出假设 (2)根据题目中要求作出假设
• 关键性假设不能缺;假设要切合题意
3. 模型的建立
➢(1) 基本模型: ➢(2) 简化模型 ➢(3) 模型要实用,有效,有特色,以解
决问题有效为原则。 ➢(4)鼓励创新,但要切实,不要离题搞
• 数学建模所涉及的学科知识也是非常广泛的. 如微分方程、线性代数、概率统计、图与网络、 回归分析、层次分析、量纲分析、机理分析、 规划论、排队论、对策论、决策论、插值方法、 差分方法、样条方法、变分方法等优化方法, 以及计算机的操作和编程。
• 数学建模所需要知识,首先是“广”,其次才 是“精”。
• 简单地说:就是系统的某种特征的本质的数 学表达式(或是用数学术语对部分现实世界 的描述),即用数学式子(如函数、图形、 代数方程、微分方程、积分方程、差分方程 等)来描述(表述、模拟)所研究的客观对 象或系统在某一方面的存在规律。
数学模型分类
模型
具体模型
直观模型




思维模型
相关文档
最新文档