数学建模实验答案微分方程模型
数学建模作业、微分方程实验、北京工业大学

2微分方程实验1、微分方程稳定性分析绘出下列自治系统相应的轨线,并标出随 t 增加的运动方向,确定平■衡点, 并按稳定的、渐近稳定的、或不稳定的进行分类:解:(1)由 f (x ) =x=0, f (y ) =y=0;可得平衡点为(0,0),___ 1 0系数矩阵A,求得特征值入1=1,入2=1;0 1p=-(入1+入2)=-2<0 , q=入1入2=1>0;对照稳定性的情况表,可知平■衡点(0, 0) 是不稳定的。
图形如下:(2)如上题可求得平衡点为(0,0 ),特征值入1=-1,入2=2;p=-(入1+入2)=-1<0 , q-入1入2=-2<0;对照稳定性的情况表,可知平■衡点(0, 0) 是不稳定的。
其图形如下:dx⑴dt dtx, y;dxdtdydt dx x, ⑶尸 2y ;晋 dx y, (4) ? 2x;也 dtx+1, 2y.(3) 如上题可求得平■衡点为(0,0 ),特征值入1=0 + 1.4142i,入2=0 -1.4142i; p=-(入1+入2)= 0, q-入1入2=1.4142>0;对照稳定性的情况表,可知平■衡点(0, 0)是不稳定的。
其图形如下:(4) 如上题可求得平衡点为(1,0 ),特征值入1=-1,入2=-2;p=-(入1+入2)= 3>0, q=入1入2=2>0;对照稳定性的情况表,可知平■衡点(1, 0) 是稳定的。
其图形如下:2、种群增长模型一个片子上的一群病菌趋向丁繁殖成一个圆菌落.设病菌的数目为N,单位成员的增长率为r1,则由Malthus生长律有竺r1 N,但是,处丁周界表面的dt那些病菌由丁寒冷而受到损伤,它们死亡的数量与N2成比例,其比例系数为r2, 求N满足的微分方程.不用求解,图示其解族.方程是否有平衡解,如果有,是否为稳定的?解:由题意很容易列出N满足的微分方程:坐r1N r2N; f(N)dt令f(N)=O,可求得方程的两个平■衡点N1=0,N2=「22/r i21 1d2N 1 5 52 (r1 r2N 2) (r1N r2N 2)dt 2进而求得A d2N 令r dt2 2 0可求得N=r2 /4r〔则N=N1 N=N2 N=r22/4r i2可以把第一象限划为三部分,且从下到上三部分中分0,冬dt2.2 2 c dN cdN c dN cdN 0, ;—0, —r 0; —0, ―rdt dt dt dt则可以画出N (t) 的图形,即微分方程的解族,如下图所示:由图形也可以看出,对丁方程的两个平■衡点,其中N1=0是不稳定的;N2=^2 /「;是稳定的o3、有限资源竞争模型1926年Volterra 提出了两个物种为共同的、有限的食物来源而竞争的模型当[b MX h 2X 2)]x dt dX2 电 2(h i X i h 2X 2)]X 2dt假设也 坦,称垣为物种i 对食物不足的敏感度,(1) 证明当x1(t0)>0时,物种2最终要灭亡; (2) 用图形分析方法来说明物种 2最终要灭亡.解:(1)由上述方程组 f (x1) =[b 1〔S' h 2x 2)]x 1=0,f (x2)=电2 (h 1X 1h 2X 2)]X 2=0,可得方程的平■衡点为R (0,0), P 1 (E,0),P 2 (0, M).2 h 2对平衡点P 。
重庆大学数学实验方程模型及其求解算法参考答案

重庆⼤学数学实验⽅程模型及其求解算法参考答案实验2 ⽅程模型及其求解算法⼀、实验⽬的及意义[1] 复习求解⽅程及⽅程组的基本原理和⽅法;[2] 掌握迭代算法;[3] 熟悉MATLAB软件编程环境;掌握MATLAB编程语句(特别是循环、条件、控制等语句);[4] 通过范例展现求解实际问题的初步建模过程;通过该实验的学习,复习和归纳⽅程求解或⽅程组求解的各种数值解法(简单迭代法、⼆分法、⽜顿法、割线法等),初步了解数学建模过程。
这对于学⽣深⼊理解数学概念,掌握数学的思维⽅法,熟悉处理⼤量的⼯程计算问题的⽅法具有⼗分重要的意义。
⼆、实验内容1.⽅程求解和⽅程组的各种数值解法练习2.直接使⽤MATLAB命令对⽅程和⽅程组进⾏求解练习3.针对实际问题,试建⽴数学模型,并求解。
三、实验步骤1.开启软件平台——MATLAB,开启MATLAB编辑窗⼝;2.根据各种数值解法步骤编写M⽂件3.保存⽂件并运⾏;4.观察运⾏结果(数值或图形);5.根据观察到的结果写出实验报告,并浅谈学习⼼得体会。
四、实验要求与任务基础实验1.⽤图形放⼤法求解⽅程x sin(x) = 1. 并观察该⽅程有多少个根。
画出图形程序:x=-10:0.01:10;y=x.*sin(x)-1;y1=zeros(size(x));plot(x,y,x,y1)MATLAB运⾏结果:-10-8-6-4-20246810-8-6-4-22468扩⼤区间画图程序:x=-50:0.01:50;y=x.*sin(x)-1;y1=zeros(size(x));plot(x,y,x,y1)MATLAB 运⾏结果:-50-40-30-20-1001020304050由上图可知,该⽅程有偶数个⽆数的根。
2.将⽅程x 5+5x3- 2x + 1 = 0 改写成各种等价的形式进⾏迭代,观察迭代是否收敛,并给出解释。
(1)画图:x1=-6:0.01:6;x2=-3:0.01:3;x3=-1:0.01:1;x4=-0.8:0.01:-0.75;y1=x1.^5 +5*x1.^3-2*x1+1;y2=x2.^5 +5*x2.^3-2*x2+1;y3=x3.^5 +5*x3.^3-2*x3+1;y4=x4.^5 +5*x4.^3-2*x4+1;subplot(2,2,1),plot(x1,y1),title('⼦图(1)') ,grid on,subplot(2,2,2),plot(x2,y2),title('⼦图(2)'),grid on,subplot(2,2,3),plot(x3,y3),title('⼦图(3)'),grid on,subplot(2,2,4),plot(x4,y4),title('⼦图(4)') ,grid on,由图可知x 的初值应在(-0.78,0.76)之间。
数学建模实验二:微分方程模型Matlab求解与分析

实验二: 微分方程模型Matlab 求解与分析一、实验目的[1] 掌握解析、数值解法,并学会用图形观察解的形态和进行解的定性分析; [2] 熟悉MATLAB 软件关于微分方程求解的各种命令;[3] 通过范例学习建立微分方程方面的数学模型以及求解全过程; [4] 熟悉离散 Logistic 模型的求解与混沌的产生过程。
二、实验原理1. 微分方程模型与MATLAB 求解解析解用MATLAB 命令dsolve(‘eqn1’,’eqn2’, ...) 求常微分方程(组)的解析解。
其中‘eqni'表示第i 个微分方程,Dny 表示y 的n 阶导数,默认的自变量为t 。
(1) 微分方程 例1 求解一阶微分方程 21y dxdy+= (1) 求通解 输入:dsolve('Dy=1+y^2')输出:ans =tan(t+C1)(2)求特解 输入:dsolve('Dy=1+y^2','y(0)=1','x')指定初值为1,自变量为x 输出:ans =tan(x+1/4*pi)例2 求解二阶微分方程 221()04(/2)2(/2)2/x y xy x y y y πππ'''++-=='=-原方程两边都除以2x ,得211(1)04y y y x x'''++-= 输入:dsolve('D2y+(1/x)*Dy+(1-1/4/x^2)*y=0','y(pi/2)=2,Dy(pi/2)=-2/pi','x')ans =- (exp(x*i)*(pi/2)^(1/2)*i)/x^(1/2) +(exp(x*i)*exp(-x*2*i)*(pi/2)^(3/2)*2*i)/(pi*x^(1/2))试试能不用用simplify 函数化简 输入: simplify(ans)ans =2^(1/2)*pi^(1/2)/x^(1/2)*sin(x) (2)微分方程组例3 求解 d f /d x =3f +4g ; d g /d x =-4f +3g 。
数学建模实验答案微分方程模型

实验07 微分方程模型(2学时)(第5章 微分方程模型)1.(验证)传染病模型2(SI 模型)p136~138传染病模型2(SI 模型):0(1),(0)dik i i i i dt =-= 其中,i (t )是第t 天病人在总人数中所占的比例。
k 是每个病人每天有效接触的平均人数(日接触率)。
i 0是初始时刻(t =0)病人的比例。
1.1 画~dii dt曲线图p136~138取k =0.1,画出i dt di ~的曲线图,求i 为何值时dtdi达到最大值,并在曲线图上标注。
参考程序:提示:fplot, fminbnd, plot, text, title, xlabel1)画曲线图用fplot函数,调用格式如下:fplot(fun,lims)fun必须为一个M文件的函数名或对变量x的可执行字符串。
若lims取[xmin xmax],则x轴被限制在此区间上。
若lims取[xmin xmax ymin ymax],则y轴也被限制。
本题可用fplot('0.1*x*(1-x)',[0 1.1 0 0.03]);2)求最大值用求解边界约束条件下的非线性最小化函数fminbnd,调用格式如下:x=fminbnd('fun',x1,x2)fun必须为一个M文件的函数名或对变量x的可执行字符串。
返回自变量x在区间x1<x<x2上函数取最小值时的x值。
本题可用x=fminbnd('-0.1*x*(1-x)',0,1)y=0.1*x*(1-x)3)指示最大值坐标用线性绘图函数plot,调用格式如下:plot(x1,y1, '颜色线型数据点图标', x2,y2, '颜色线型数据点图标',…)本题可用hold on; %在上面的同一张图上画线(同坐标系)plot([0,x],[y,y],':',[x,x],[0,y],':');4)图形的标注使用文本标注函数text,调用格式如下:格式1text(x,y,文本标识内容, 'HorizontalAlignment', '字符串1')x,y给定标注文本在图中添加的位置。
数学建模微分方程模型

建立模型:设物体在冷却过程中的温度为 T(t),t≥0,
“T的变化速率正比于T与周围介质的温度差” 翻译为
dT 与 T m 成正比 dt
dT k (T m ), dt T ( 0) 60.
建立微分方程
数学语言
其中参数k >0,m=18. 求得一般解为
ln(T-m)=-k t+c,
该物体温度降至300c 需要8.17分钟.
二. 利用平衡与增长式
许多研究对象在数量上常常表现出某种不变 的特性,如封闭区域内的能量、货币量等. 利用变量间的平衡与增长特性,可分析和建 立有关变量间的相互关系.
例1 某车间体积为12000立方米, 开始时空气中
含有0.1% 的 CO2, 为了降低车间内空气中CO2 的含量, 用一台风量为每秒2000立方米的鼓风机 通入含 0.03%的 CO2的新鲜空气, 同时以同样的 风量将混合均匀的空气排出, 问鼓风机开动6分 钟后, 车间内 CO2的百分比降低到多少?
规律。
解
dM 铀的衰变速度就是 M (t ) 对时间t的导数 dt
,
由于衰变速度与其含量成正比,可知未知函数满足 关系式: dM M (1) ( 0) 是衰变系数
dt
且初始条件 M t 0 M0 dM dt 分离变量得 M 对上式两端积分得:ln M t ln c 因此, M (t ) Cet 代入初始条件得
{Δt时间内的净改变量} ={Δt时间内输入量}-{Δt时间内输出量}
三. 微元法 基本思想: 通过分析研究对象的有关变量在
一个很短时间内的变化情况.
例 一个高为2米的球体容器里盛了一半 的水,水从它的底部小孔流出,小孔的横截面 积为1平方厘米. 试求放空容器所需要的时间. 对孔口的流速做两条假设 : 1.t 时刻的流速v 依赖于 此刻容器内水的高度h(t). 2 .整个放水过程无能 量损失。 2米
数学模型课后习题答案

数学模型课后习题答案数学模型课后习题答案数学模型作为一门应用数学的学科,通过建立数学模型来解决实际问题。
在学习数学模型的过程中,课后习题是非常重要的一环。
通过解答习题,我们可以巩固和应用所学的知识,提高解决实际问题的能力。
在这篇文章中,我将为大家提供一些数学模型课后习题的答案,希望能够对大家的学习有所帮助。
一、线性规划1. 某工厂生产甲、乙两种产品,每天生产的总量不能超过100个。
甲产品每个利润为5元,乙产品每个利润为8元。
甲产品需要2个工时,乙产品需要3个工时。
每天工厂总共有200个工时可用。
如何确定每天生产甲、乙产品的数量,使得利润最大化?答案:设甲产品的数量为x,乙产品的数量为y。
根据题意,我们可以列出如下的约束条件:x + y ≤ 100 (每天生产的总量不能超过100个)2x + 3y ≤ 200 (每天工厂总共有200个工时可用)利润最大化即为目标函数,设为f(x, y) = 5x + 8y。
我们需要求解目标函数的最大值。
通过求解线性规划问题,可以得到最优解。
2. 某公司生产甲、乙两种产品,每天生产的总量不能超过200个。
甲产品每个利润为10元,乙产品每个利润为15元。
甲产品需要1个工时,乙产品需要2个工时。
每天工厂总共有300个工时可用。
如何确定每天生产甲、乙产品的数量,使得利润最大化?答案:设甲产品的数量为x,乙产品的数量为y。
根据题意,我们可以列出如下的约束条件:x + y ≤ 200 (每天生产的总量不能超过200个)x + 2y ≤ 300 (每天工厂总共有300个工时可用)利润最大化即为目标函数,设为f(x, y) = 10x + 15y。
我们需要求解目标函数的最大值。
通过求解线性规划问题,可以得到最优解。
二、微分方程1. 某物质的衰减速率与其当前的数量成正比。
已知初始数量为100,经过3小时,其数量减少到80。
求该物质的衰减速率。
答案:设物质的数量为N(t),t表示时间。
数学建模-微分方程模型-饮酒驾车问题

和 x0 ,将体重 70kg 的某人在快速喝下 2 瓶啤酒之后一段时间内他血液中酒精含量的
测量值进行处理后,得到附录 1 所示的 y0 0 时的一组数据,并采用非线性最小二乘法 拟合算法对系数进行求解,得出参数如下。 x0 5193
=2.00796
=0.1855
同时可以看到,每瓶啤酒含酒精量为 2596.5mg。 所以,得出的血液中酒精含量关于时间的函数如下。
0.1855 t e 2.00756t ) 2860.78604(e y (t ) 0.1855( t 6) 2860.8028e 2.00756(t 6) 3800.7595e
0t 6 6 t 12
利用 matlab 对以上模型进行求解。 图 3 大李血液中酒精含量随时间变化图像
y (t ) ( y0 +5721.57208)e 0.1855t 5721.57208e 2.00796t
拟合效果如图。 图 1 函数的拟合效果
图 2 残差分析图
残差分析图
600 500 400 300 200 100 0 10 11 12 13 14 15 0.5 1.5 2.5 3.5 0.25 ‐100 ‐200 ‐300 ‐400 残差 0.75 4.5 16 1 2 3 4 5 6 7 8 9
时刻为 t 时胃肠道中的酒精含量。
y (t ) 时刻为 t 时血液中的酒精含量。
胃肠道中的酒精进入血液的转移率与胃肠道中酒精量的比值。 血液中的酒精的排除率与血液中酒精量的比值。
五、模型的建立与求解
5.1 问题一 根据题目叙述,大李的实际情况符合快速饮酒的模型。为了确定函数中的系数 ,
数学建模与数学实验课后习题答案

P594•学校共1002名学生,237人住在A 宿舍,333人住在B 宿舍,432 人住在C 宿舍。
学生要组织一个10人的委员会,使用Q 值法分配各 宿舍的委员数。
解:设P 表示人数,N 表示要分配的总席位数。
i 表示各个宿舍(分别取 A,B,C ), p i 表 示i 宿舍现有住宿人数, n i 表示i 宿舍分配到的委员席位。
首先,我们先按比例分配委员席位。
23710 A 宿舍为:n A ==2.365 1002 333"0 B 宿舍为:n B =3.323 1002 432X0 C 宿舍为:n C =4.3111002现已分完9人,剩1人用Q 值法分配。
经比较可得,最后一席位应分给 A 宿舍。
所以,总的席位分配应为: A 宿舍3个席位,B 宿舍3个席位,C 宿舍4个席位。
QA23722 3= 9361.5 Q B33323 4 = 9240.7 Q C4322 4 5=9331.2商人们怎样安全过河傻麴删舫紬削< I 11山名畝臥蹄峨颂禮训鋤嫌邂 韻靖甘讹岸讎鞍輯毗匍趾曲展 縣確牡GH 錚俩軸飙奸比臥鋪謎 smm 彌鯉械即第紘麵觎岸締熾 x^M 曲颁M 删牘HX …佛讪卜过樹蘇 卜允棘髒合 岡仇卅毘冋如;冋冋1卯;砰=口 於广歎煙船上觸人敦% V O J U;xMmm朗“…他1曲策D 咿川| thPl,2卜允隸策集合 刼為和啊母紳轉 多步贱 就匚叫=1入“山使曲并按 腿翻律由汩3』和騒側),模型求解 -穷举法〜编程上机 ■图解法S={(x ?jOI x=o, j-0,1,2,3;X =3? J =0,1,2,3; X =»*=1,2}J规格化方法,易于推广考虑4名商人各带一随从的情况状态$=(xy¥)~ 16个格点 允许状态〜U )个。
点 , 允许决策〜移动1或2格; k 奇)左下移;&偶,右上移. 右,…,必I 给出安全渡河方案评注和思考[廿rfn片,rfl12 3xmm賤縣臓由上题可求:4个商人,4个随从安全过河的方案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验07 微分方程模型(2学时)(第5章 微分方程模型)1.(验证)传染病模型2(SI 模型)p136~138传染病模型2(SI 模型):0(1),(0)dik i i i i dt =-= 其中,i (t )是第t 天病人在总人数中所占的比例。
k 是每个病人每天有效接触的平均人数(日接触率)。
i 0是初始时刻(t =0)病人的比例。
1.1 画~dii dt曲线图p136~138取k =0.1,画出i dt di ~的曲线图,求i 为何值时dtdi达到最大值,并在曲线图上标注。
参考程序:提示:fplot, fminbnd, plot, text, title, xlabel1)画曲线图用fplot函数,调用格式如下:fplot(fun,lims)fun必须为一个M文件的函数名或对变量x的可执行字符串。
若lims取[xmin xmax],则x轴被限制在此区间上。
若lims取[xmin xmax ymin ymax],则y轴也被限制。
本题可用fplot('0.1*x*(1-x)',[0 1.1 0 0.03]);2)求最大值用求解边界约束条件下的非线性最小化函数fminbnd,调用格式如下:x=fminbnd('fun',x1,x2)fun必须为一个M文件的函数名或对变量x的可执行字符串。
返回自变量x在区间x1<x<x2上函数取最小值时的x值。
本题可用x=fminbnd('-0.1*x*(1-x)',0,1)y=0.1*x*(1-x)3)指示最大值坐标用线性绘图函数plot,调用格式如下:plot(x1,y1, '颜色线型数据点图标', x2,y2, '颜色线型数据点图标',…)本题可用hold on; %在上面的同一张图上画线(同坐标系)plot([0,x],[y,y],':',[x,x],[0,y],':');4)图形的标注使用文本标注函数text,调用格式如下:格式1text(x,y,文本标识内容, 'HorizontalAlignment', '字符串1')x,y给定标注文本在图中添加的位置。
'HorizontalAlignment'为水平控制属性,控制文本标识起点位于点(x,y)同一水平线上。
'字符串1'为水平控制属性值,取三个值之一:'left',点(x,y)位于文本标识的左边。
'center',点(x,y)位于文本标识的中心点。
'right',点(x,y)位于文本标识的右边。
格式2text(x,y, 文本标识内容, 'VerticalAlignment', '字符串2')x,y给定标注文本在图中添加的位置。
'VerticalAlignment'为垂直控制属性,控制文本标识起点位于点(x,y)同一垂直线上。
'字符串1'为垂直控制属性值,取四个值之一:'middle','top','cap','baseline','bottom'。
(对应位置可在命令窗口应用确定)本题可用text(0,y,'(di/dt)m','VerticalAlignment','bottom');text(x,-0.001,num2str(x),'HorizontalAlignment','center');5)坐标轴标注调用函数xlabel,ylabel和title本题可用title('SI模型di/dt~i曲线');xlabel('i');ylabel('di/dt');★程序运行结果(比较[138]图2):(在图形窗口菜单选择Edit/Copy Figure,复制图形)1.2 画i~t曲线图p136~138求出微分方程的解析解i(t),画出i~t曲线(i(0)=0.15, k=0.2, t=0~30)(见[138]图1比较)。
参考程序:% 5.1 传染病模型——模型2% 文件名:p136fig1.m% di/dt=ki(1-i), i(0)=i0clear; clc;x=dsolve('Dx=k*x*(1-x)','x(0)=x0') %求微分方程的解析解,为符号表达式x0=0.15; k=0.2;%xi对应i,xi0对应i0,k对应λtt=0:0.1:30;%时间单位为天for s=1:length(tt)%x的表达式中没有点运算,按标量运算取值xx t=tt(s);xx(s)=eval(x);%给出xi0=0.2,k=0.2,t,求符号表达式xi的对应值end %xx为复数表示plot(tt,xx);axis([0 31 0 1.1]);title('图1 SI模型的i~t曲线');xlabel('t (天)'); ylabel('i (病人所占比例)');提示:1) 求解微分方程dsolve],见提示;2) 画出i~t曲线(i(0)=0.15, λ=0.2, t=0~30)用for循环,函数length, eval, plot, axis, title, xlabel, ylabel。
★程序运行结果(见[138]图1):命令窗口中的结果:图形窗口中的结果(比较[138]图1):2.(编程)传染病模型3(SIS 模型)已知传染病模型3(SIS 模型):0)0()],11([i i i i dt di =---=σλ 其中,i (t )是第t 天病人在总人数中所占的比例。
λ是每个病人每天有效接触的平均人数(日接触率)。
i 0是初始时刻(t =0)病人的比例。
σ是整个传染期内每个病人有效接触的平均人数(接触数)。
2.1 画~dii dt曲线图p138~139取λ=0.1,σ=1.5,画出如下所示的i dtdi~曲线图。
试编写一个m 文件来实现。
(在图形窗口菜单选择Edit/Copy Figure ,复制图形)(注:p139图3) 提示:用fplot 函数画出i dtdi~的曲线图; 在上图上用plot 函数画一条过原点的水平线; 用title, xlabel, ylabel 标注。
★★ 编写的M 文件和运行结果(见[139]图3):2.2 画i~t曲线图p138~139要求:求出微分方程的解析解i(t)。
取λ=0.2, σ=3, t=0~40,画出如下所示的图形。
试编写一个m文件来实现。
(注:p139图4)其中蓝色实线为i(0)=0.2时的i~t曲线(第1条);黑色虚点线为过点(0, 1-1/σ)的水平线(第2条);红色虚线为i(0)=0.9时的i~t曲线(第3条)。
提示图例标注可用legend('i(0)=0.2','1-1/¦σ','i(0)=0.9');★★编写的M文件和运行结果(比较[139]图4):解法一:程序:命令窗口的结果:图形窗口的结果:51015202530354000.10.20.30.40.50.60.70.80.91t (天)i (病人所占比例)图1 SI 模型的i~t 曲线(λ=0.2,σ=3)i(0)=0.21-1/σi(0)=0.9解法二: 程序:%传染病模型3(SIS 模型)的i~t 曲线图 %文件名:p138fig4.m clear; clc;%λ=0.2, σ=3,x 代表ix=dsolve('Dx=-0.2*x*(x-(1-1/3))','x(0)=x0')%求微分方程的解析解,为符号表达式for x0=[0.2,0.9]%i(0)=0.2,0.9for t=ttxx(2-(x0==0.2),round(t/0.1)+1)=eval(x);endendplot(tt,xx(1,:),'-b',[0,41],[1-1/3,1-1/3],'-.k',tt,xx(2,:),':r');legend('i(0)=0.2','1-1/σ','i(0)=0.9');axis([0 40 0 1]);title('图1 SI模型的i~t曲线(λ=0.2,σ=3)');xlabel('t (天)'); ylabel('i (病人所占比例)');命令窗口的结果:图形窗口的结果:与解法一相同解法三:程序%传染病模型3(SIS模型)的i~t曲线图%文件名:p138fig4.mclear; clc;x=dsolve('Dx=-lam*x*(x-(1-1/si))','x(0)=x0')%求微分方程的解析解,为符号表达式lam=0.2; si=3; %λ=0.2, σ=3,x 代表ifor x0=[0.2,0.9] %i(0)=0.2,0.9 for t=ttxx(2-(x0==0.2),round(t/0.1)+1)=eval(x); end endplot(tt,xx(1,:),'-b',[0,41],[1-1/3,1-1/3],'-.k',tt,xx(2,:),':r');legend('i(0)=0.2','1-1/σ','i(0)=0.9'); axis([0 40 0 1]);title('图1 SI 模型的i~t 曲线(λ=0.2,σ=3)'); xlabel('t (天)'); ylabel('i (病人所占比例)');命令窗口的结果:图形窗口的结果:与解法一相同3.(验证)传染病模型4(SIR 模型)p140~141SIR 模型的方程:00(0) (0)disi i i i dtds si s sdtλμλ⎧=-=⎪⎪⎨⎪=-=⎪⎩ 设λ =1,μ =0.3,i (0)=0.02,s (0)=0.98。
输入p140的程序并运行,结果与教材p141的图7和图8比较。
ode45, pause 的用法见提示。
★ 2个M文件(见[140])和运行结果(比较[141]图7、图8):函数M文件:命令M文件:i(t), s(t)图形(比较[141]图7):i~s图形(相轨线)(比较[141]图8):4.(验证)人口指数增长模型参数估计及结果分析(美国1790-2000年人口)p163~164美国1790-2000年人口统计数据(以百万为单位)人口指数增长模型:x(t) = x0 e r t(1) 用表中数据进行数据拟合求参数r,x0。