数学建模—微分方程的应用举例

数学建模—微分方程的应用举例
数学建模—微分方程的应用举例

§8-5--微分方程应用举例

§8-5 微分方程应用举例 在前面几节,已经举了一些力学、运动学方面应用微分方程的实例,本节将再集中学习几个在其他方面的应用实例,说明微分方程在许多实际领域中都有着广泛的应用. 应用微分方程解决实际问题通常按下列步骤进行: (1)建立模型:分析实际问题,建立微分方程,确定初始条件; (2)求解方程:求出所列微分方程的通解,并根据初始条件确定出符合实际情况的特解; (3)解释问题:从微分方程的解,解释、分析实际问题,预计变化趋势. 例1 有一个30?30?12(m 3 )的车间,空气中CO 2的容积浓度为0.12%.为降低CO 2的含量,用一台风量为1500(m 3 /min )的进风鼓风机通入CO 2浓度为0.04%的新鲜空气,假定通入的新鲜空气与车间内原有空气能很快混合均匀,用另一台风量为1500(m 3 /min )的排风鼓风机排出,问两台鼓风机同时开动10min 后,车间中CO 2的容积浓度为多少? 解 车间体积为10800m 3 .设鼓风机开动t (min )后,车间空气中CO 2的含量为x =x (t ),那么容积浓度为 10800 x . 记在t 到t +dt 这段时间内,车间CO 2含量的改变量为dx ,则 dx =该时间段内CO 2通入量-该时间段内CO 2排出量 =单位时间进风量?进风CO 2的浓度?时间-单位时间排风量?排风CO 2浓度?时间 =1500?0.04%?dt -1500? 10800 x ?dt , 于是有 dt dx =1500?0.04% -1500?10800x 即 dt dx =36 5 (4.32-x ) 初始条件x (0)=10800?0.12%=12.96. 方程为可分离变量的方程,其通解为 x (t )=4.32+C t e 36 5-. 将初始条件代入上式,得C =8.64.于是在t 时刻车间内空气中CO 2的含量为 x (t )=4.32(1+2t e 36 5-). 所以鼓风机打开10min 后,车间中CO 2浓度为 10800 47 .610800)10(= x =0.06%. 例2 (马尔萨斯人口方程)英国人口学家马尔萨斯在1798年提出了人口指数增长模型:人口的增长率与当时的人口总数成正比.若已知t =t 0时人口总数为x 0,试根据马尔萨斯模型,确定时间t 与人口总数x (t )之间的函数关系.据我国有关人口统计的资料数据,1990年我国人口总数为11.6亿,在以后的8年中,年人口平均增长率为14.8‰,假定年增长率一直

常微分方程在数学建模中的应用(免费版)

常微分方程在数学建模中的应用 这里介绍几个典型的用微分方程建立数学模型的例子. 一、人口预测模型 由于资源的有限性,当今世界各国都注意有计划地控制人口的增长,为了得到人口预测模型,必须首先搞清影响人口增长的因素,而影响人口增长的因素很多,如人口的自然出生率、人口的自然死亡率、人口的迁移、自然灾害、战争等诸多因素,如果一开始就把所有因素都考虑进去,则无从下手.因此,先把问题简化,建立比较粗糙的模型,再逐步修改,得到较完善的模型. 例1( 马尔萨斯 (Malthus ) 模型) 英国人口统计学家马尔萨斯(1766—1834)在担任牧师期间,查看了教堂100多年人口出生统计资料,发现人口出生率是一个常数,于1789年在《人口原理》一书中提出了闻名于世的马尔萨斯人口模型,他的基本假设是:在人口自然增长过程中,净相对增长(出生率与死亡率之差)是常数,即单位时间内人口的增长量与人口成正比,比例系数设为r ,在此假设下,推导并求解人口随时间变化的数学模型. 解 设时刻t 的人口为)(t N ,把)(t N 当作连续、可微函数处理(因人口总数很大,可近似地这样处理,此乃离散变量连续化处理),据马尔萨斯的假设,在t 到t t ?+时间段内,人口的增长量为 t t rN t N t t N ?=-?+)()()(, 并设0t t =时刻的人口为0N ,于是 ?????==. , 00)(d d N t N rN t N 这就是马尔萨斯人口模型,用分离变量法易求出其解为 )(00e )(t t r N t N -=, 此式表明人口以指数规律随时间无限增长. 模型检验:据估计1961年地球上的人口总数为9 1006.3?,而在以后7年中,人口总数以每年2%的速度增长,这样19610=t ,901006.3?=N ,02.0=r ,于是 ) 1961(02.09 e 1006.3)(-?=t t N . 这个公式非常准确地反映了在1700—1961年间世界人口总数.因为,这期间地球上的人 口大约每35年翻一番,而上式断定34.6年增加一倍(请读者证明这一点). 但是,后来人们以美国人口为例,用马尔萨斯模型计算结果与人口资料比较,却发现有很大的差异,尤其是在用此模型预测较遥远的未来地球人口总数时,发现更令人不可思议的问题,如按此模型计算,到2670年,地球上将有36 000亿人口.如果地球表面全是陆地(事实上,地球表面还有80%被水覆盖),我们也只得互相踩着肩膀站成两层了,这是非常荒谬的,因此,这一模型应该修改. 例2(逻辑Logistic 模型) 马尔萨斯模型为什么不能预测未来的人口呢?这主要是地

常微分方程在数学建模中的应用.

微分方程应用 1 引言 常微分方程的形成与发展和很多学科有着密切的联系,例如力学、天文学、物理学等.数学的其他分支的快速发展,产生出很多新兴学科,这些新兴学科的产生都对常微分方程的发展有着深刻的影响,而且当前计算机的快速发展更是为常微分方程的应用及理论研究提供了非常有力的工具. 数学解决实际问题就必须建立模型,而数学建模就是把数学语言描述实际现象的过程.利用数学去解决各类实际问题时,建立数学模型是十分重要的一步,但是也是最困难的一步.建立数学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程.要通过大量调查、收集相关数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题. 因此本文先简要介绍了如何建立微分方程模型,并通过具体的实例来简单地介绍了微分方程在数学建模中的应用. 2 数学模型简介 通常我们把现实问题的一个模拟称为模型.如交通图、地质图、航空模型和建筑模型等.利用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图象、框图等来模拟现实的模型称为数学模型.数学模型在实际生活中经常碰到,如求不规则图形的面积,可建立定积分的数学模型,求变化率的问题可建立导数模型,统计学中抽样调查,买彩票中奖的概率问题等等.学会建立数学模型对解决实际生活问题会有很大的帮助. 建立数学模型是沟通摆在面前的实际问题与数学工具之间联系的一座必不可少的桥梁.随着科学技术的进步,特别是电子计算机技术的迅速发展,数学已经渗透到从自然科学技术到工农业生产建设,从经济生活到社会生活的各个领域.一般地说,当实际问题需要我们对所研究的现实对象提供分析、预报、决策、控制等方面的定量结果时,往往都离不开数学的应用,而建立数学模型则是这个过程的关键环节. 3 常微分方程模型 3.1 常微分方程的简介

常微分方程的实际应用

常微分方程的实际应用 于萍 摘要:常微分方程在当代数学中是极为重要的一个分支,它的实用价值很高,应用也很广泛,本文主要介绍常微分方程在几何、机械运动、电磁振荡方面的应用,并举例说明,体会常微分方程对解决实际问题的作用,在解决实际问题过程中通常是建立起实际问题的数学模型,也就是建立反映这个实际问题的微分方程,求解这个微分方程,用所得的数学结果解释实际问题,从而预测到某些物理过程的特定性质,以便达到能动地改造世界,解决实际问题的目的。 关键字:常微分方程,几何,机械运动,电磁振荡,应用

Abstract: Nomal differential equation is an important part of math at it has a high practical value. This thesis shows the use in geometry, mechaics and electrothermal and makes some examples. Also, it summarizes the normal move of dealing with practical problems by the normal differential equation. Normal, we set up the maths matic model of the problem, solute the normal differentical equation make the use of the result to explain practical problems and make a forecast of some special character of physical process. Key: Normal differetial equation geometry mechanics electrothermal use

数学建模之微分方程建模与平衡点理论

微分方程 列微分方程常用的方法: (1)根据规律列方程 利用数学、力学、物理、化学等学科中的定理或经过实验检验的规律来建 立微分方程模型。 (2)微元分析法 利用已知的定理与规律寻找微元之间的关系式,与第一种方法不同的是对 微元而不是直接对函数及其导数应用规律。 (3)模拟近似法 在生物、经济等学科的实际问题中,许多现象的规律性不很清楚,即使有 所了解也是极其复杂的,建模时在不同的假设下去模拟实际的现象,建立能 近似反映问题的微分方程,然后从数学上求解或分析所建方程及其解的性 质,再去同实际情况对比,检验此模型能否刻画、模拟某些实际现象。 一、模型的建立与求解 1.1传染病模型 (1)基础模型 假设:t时刻病人人数() x t连续可微。每天每个病人有效接触(使病人治病的接触)的人数为λ,0 t=时有0x个病人。 +?病人人数增加 建模:t到t t

()()()x t t x t x t t λ+?-=? (1) 0,(0)dx x x x dt λ== (2) 解得: 0()t x t x e λ= (3) 所以,病人人数会随着t 的增加而无限增长,结论不符合实际。 (2)SI 模型 假设:1.疾病传播时期,总人数N 保持不变。人群分为两类,健康者占总人数的比例为s(t),病人占总人数的比例为i(t)。 2.每位病人每天平均有效接触λ人,λ为日接触率。有效接触后健康者变为病人。 依据:患病人数的变化率=Ni(t)(原患病人数)* λs(t)(每个病人每天使健康人变为病人的人数) 建模: di N Nsi dt λ= (4) 由于 ()()1s t i t += (5) 设t=0时刻病人所占的比例为0i ,则可建立Logistic 模型 0(1),(0)di i i i i dt λ=-= (6)

数学建模——微分方程的应用

第八节 数学建模——微分方程的应用举例 微分方程在物理学、力学、经济学和管理科学等实际问题中具有广泛的应用,本节我们将集中讨论微分方程的实际应用,尤其是微分方程经济学中的应用. 读者可从中感受到应用数学建模的理论和方法解决实际问题的魅力. 分布图示 ★衰变问题 ★逻辑斯谛方程 ★价格调整问题 ★人才分配问题 内容要点: 一、衰变问题 镭、铀等放射性元素因不断放射出各种射线而逐渐减少其质量, 这种现象称为放射性物质的衰变. 根据实验得知, 衰变速度与现存物质的质量成正比, 求放射性元素在时刻t 的质量. 用x 表示该放射性物质在时刻t 的质量, 则 dt dx 表示x 在时刻t 的衰变速度, 于是“衰变速度与现存的质量成正比”可表示为 .kx dt dx -= (8.1) 这是一个以x 为未知函数的一阶方程, 它就是放射性元素衰变的数学模型, 其中0>k 是比例常数, 称为衰变常数, 因元素的不同而异. 方程右端的负号表示当时间t 增加时, 质量x 减少. 解方程(8.1)得通解.kt Ce x -=若已知当0t t =时, ,0x x =代入通解kt Ce x -=中可得,00kt e x C -= 则可得到方程(8.1)特解 ,)(00t t k e x x --= 它反映了某种放射性元素衰变的规律. 注: 物理学中, 我们称放射性物质从最初的质量到衰变为该质量自身的一半所花费的时间为半衰期, 不同物质的半衰期差别极大. 如铀的普通同位素( U 238)的半衰期约为50亿年;通常的镭( Ra 226)的半衰期是上述放射性物质的特征, 然而半衰期却不依赖于该物质的初始量, 一克Ra 226 衰变成半克所需要的时间与一吨Ra 226衰变成半吨所需要的时间同样都是1600年, 正是这种事实才构成了确定考古发现日期时使用的著名的碳-14测验的基础.

常微分方程在高中物理中的应用

微分方程在高中物理中的应用 高中阶段,我们经常会遇到一些需要定性分析的物理问题,其实如果我们应用高等数学 的知识,可以把其中一些问题进行定量的分析。 例如,质量为m 的物体从高度H 自由下落,所受阻力f 与速度v 成正比,g 为重力加速 度这是我们平时常见的一类问题。但我们只知道速度V 最终会趋近于某一数值v0。下面我 进行一下定量分析。 根据题目所给信息,可列出动力学方程 mg-kv=ma ① a=dv/dt ② 结合①式可得mg-kv=mdv/dt 这里移项可得dt=mdv/(mg-kv)③ 两边同时积分便可的到 V=mg(ce*(-kt/m)+1)/k 又∵自由下落,可得t=0时v=.0 ∴v=mg(1-e*(-kt/m))/k ④ 由④式知,当t 趋近于正无穷时,e*(-kt/m)=0, 此时v=mg/k ⑤ 若按照正常思路,当物体受力平衡时,mg=kv,此时也能得到⑤式的结论。 而在高考中,更为常见的是在电磁场中的同类问题,我们不妨看一下下面这一道例题 (2012·山东理综)如图所示,相距为L 的两条足够长的光滑平行金属导轨与水平面的夹 角为θ,上端接有定值电阻,匀强磁场垂直于导轨平面,磁感应强度为B 。将质量为m 的导 体棒由静止释放,当速度达到v 时开始匀速运动,此时对导体棒施加一平行于导轨向下的 拉力,并保持拉力的功率为P ,导体棒最终以2v 的速度匀速运动。导体棒始终与导轨垂直 且接触良好,不计导轨和导体棒的电阻,重力加速度为g ,下列选项正 确的是 A .P =2mg sin θ B .P =3mg sin θ C .当导体棒速度达到v /2时加速度为12 g sin θ D .在速度达到2v 以后匀速运动的过程中,R 上产生的焦耳热等于拉力 所做的功 我们根据题目也可以列出动力学方程 Mgsin θ-B*2L*2V/R=ma ① a=dv/dt ② 同样可以解得v=(mgR sin θ/B*2L*2)(1-e*(-B*2L*2t/mR))③ 从③式可以看出当t 趋近于正无穷时,v=mgR sin θ/B*2L*2即B*2L*2v/R=mg sin θ转化而来。 所以题目中所说当速度到达V 时开始匀速运动存在明显错误。应改为近似于做匀速直线运 动。

数学建模之微分方程建模与平衡点理论

微分方程 列微分方程常用的方法: (1)根据规律列方程 利用数学、力学、物理、化学等学科中的定理或经过实验检验的规律来建立微分方程模型。 (2)微元分析法 利用已知的定理与规律寻找微元之间的关系式,与第一种方法不同的是对微元而不是直接对函数及其导数应用规律。 (3)模拟近似法 在生物、经济等学科的实际问题中,许多现象的规律性不很清楚,即使有所了解也是极其复杂的,建模时在不同的假设下去模拟实际的现象,建立能近似反映问题的微分方程,然后从数学上求解或分析所建方程及其解的性质,再去同实际情况对比,检验此模型能否刻画、模拟某些实际现象。 一、模型的建立与求解 1.1传染病模型 (1)基础模型 假设:t 时刻病人人数()x t 连续可微。每天每个病人有效接触(使病人治病的接触)的人数为λ,0t =时有0x 个病人。 建模:t 到t t +?病人人数增加 ()()()x t t x t x t t λ+?-=?(1) 0,(0)dx x x x dt λ==(2) 解得: 0()t x t x e λ=(3) 所以,病人人数会随着t 的增加而无限增长,结论不符合实际。 (2)SI 模型

假设:1.疾病传播时期,总人数N 保持不变。人群分为两类,健康者占总人数的比例为s(t),病人占总人数的比例为i(t)。 2.每位病人每天平均有效接触λ人,λ为日接触率。有效接触后健康者变为病人。 依据:患病人数的变化率=Ni(t)(原患病人数)*λs(t)(每个病人每天使健康人变为病人的人数) 建模: di N Nsi dt λ=(4) 由于 ()()1s t i t +=(5) 设t=0时刻病人所占的比例为0i ,则可建立Logistic 模型 0(1),(0)di i i i i dt λ=-=(6) 解得: 01()111kt i t e i -= ??+- ??? (7) 用Matlab 绘制图1()~i t t ,图2 ~di i dt 图形如下, 结论:在不考虑治愈情况下

【典型例题】 第三章 一阶微分方程的解的存在定理

第三章 一阶微分方程的解的存在定理 例3-1 求方程 22y x dx dy += 满足初始条件0)0(=y 的解的逐次逼近)(),(),(321x y x y x y ,并求出h 的最大值,其中h 的意义同解的存在唯一性定理中的h 。 解 函数2 2 ),(y x y x f +=在整个平面上有意义,则在以原点为中心的任一闭矩形区域 b y a x D ≤≤,:上均满足解的存在唯一性定理的条件,初值问题?????=+=0 )0(22y y x dx dy 的解在],[h h -上存在唯一,其中)(max ),, min(22),(y x M M b a h D y x +==∈。 因为逐次逼近函数序列为 ?-+=x x n n dx x y x f y x y 0 ))(,()(10, 此时,2 200),(,0,0y x y x f y x +===,所以 0)(0=x y , ?=+=x x dx x y x x y 03 2 02 13 )]([)(, | 63 3)]([)(7 032 12 2x x dx x y x x y x +=+=?, ?? +++=+=x x dx x x x x dx x y x x y 0 14 1062 2 223)3969 18929()]([)( 59535 20792633151173x x x x +++=。 现在求h 的最大值。 因为 ),, min(2 2b a b a h += 对任给的正数b a ,,ab b a 22 2 ≥+,上式中,当 b a = 时, 2 2b a b +取得最大值

a ab b 21 2= 。 此时,)21,min()2, min(a a ab b a h ==,当且仅当a a 21 = ,即22==b a 时,h 取得最大值为 2 2 。 评注:本题主要考查对初值问题的解的存在唯一定理及其证明过程的基本思想(逐次逼近方法)的理解。特别地,对其中的b y a x D y x f M M b a h D y x ≤≤==∈,:),,(max ),, min(),(等常数意义的理解和对逐次逼近函数列? -+=x x n n dx x y x f y x y 0 ))(,()(10的构造过程的理 解。 例3-2 证明下列初值问题的解在指定区间上存在且唯一。 1) 2 1 0,0)0(cos 2 2≤ ≤=+='x y x y y ,。 2) 32 2 )2 1 (0,0)0(≤≤=+='x y y x y , 。 | 证 1) 以原点为中心作闭矩形区域1,2 1 :≤≤ y x D 。 易验证2 2 cos ),(x y y x f +=在区域D 上满足解的存在唯一性定理的条件,求得 2cos m ax 22),(=+=∈x y M D y x ,则2 1 )21,21min(==h 。 因此初值问题 ?? ?=+='0 )0(cos 2 2y x y y 的解在]21,21[- 上存在唯一,从而在区间]2 1 ,0[上方程 cos 22, x y y +='满足条件0)0( =y 的解存在唯一。 2) 以原点为中心作闭矩形区域b y a x D ≤≤,:。 易验证x y y x f +=2 ),(在D 上满足解的存在唯一性定理的条件,并求得 22),(m ax b a x y M D y x +=+=∈,

最新常微分方程及其应用

常微分方程及其应用

第5章常微分方程及其应用 习题5.2 1.求下列各微分方程的通解: (1)?Skip Record If...?;(2)?Skip Record If...?; (3)?Skip Record If...?;(4)?Skip Record If...?; (5)?Skip Record If...?;(6)?Skip Record If...?. 2.求下列各微分方程满足所给初始条件的特解: (1)?Skip Record If...?,?Skip Record If...?;(2)?Skip Record If...?,?Skip Record If...?; (3)?Skip Record If...?,?Skip Record If...?;(4)?Skip Record If...?,?Skip Record If...?; (5)?Skip Record If...?,?Skip Record If...?;(6)?Skip Record If...?,?Skip Record If...?. 5.3 可降阶微分方程及二阶常系数线性微分方程 案例引入求微分方程?Skip Record If...?的通解. 解两边积分,得?Skip Record If...? 两边再积分,得?Skip Record If...? 所以,原方程的通解为?Skip Record If...?,其中?Skip Record If...?为任意常数. 5.3.1 可降阶微分方程 仅供学习与交流,如有侵权请联系网站删除谢谢20

1. 形如?Skip Record If...?的微分方程 特点:方程右端为已知函数?Skip Record If...?. 解法:对?Skip Record If...?连续积分?Skip Record If...?次,即可得含有 ?Skip Record If...?个任意常数的通解. 2. 形如?Skip Record If...?的微分方程 特点:方程右端不显含未知函数?Skip Record If...?. 解法:令?Skip Record If...?,则?Skip Record If...?.于是,原方程可化为?Skip Record If...?.这是关于?Skip Record If...?的一阶微分方程.设其通解为?Skip Record If...?,即?Skip Record If...?.两边积分,即可得原方程通解?Skip Record If...?,其中?Skip Record If...?为任意常数. 3. 形如?Skip Record If...?的微分方程 特点:方程右端不显含自变量?Skip Record If...?. 解法:令?Skip Record If...?,则?Skip Record If...?.于是,原方程可化为?Skip Record If...?.这是关于?Skip Record If...?的一阶微分方程.设其通解为?Skip Record If...?,即 ?Skip Record If...?.分离变量,得?Skip Record If...?.然后两边积分,即可得原方程通解 ?Skip Record If...?,其中?Skip Record If...?为任意常数.例5-7求微分方程?Skip Record If...?的通解. 解两边积分,得?Skip Record If...? 仅供学习与交流,如有侵权请联系网站删除谢谢20

扩散问题的偏微分方程模型,数学建模

第七节 扩散问题的偏微分方程模型 物质的扩散问题,在石油开采、环境污染、疾病流行、化学反应、新闻传播、煤矿瓦斯爆炸、农田墒情、水利工程、生态问题、房屋基建、神经传导、药物在人体内分布以及超导、液晶、燃烧等诸多自然科学与工程技术领域,十分普遍地存在着. 显然,对这些问题的研究是十分必要的,其中的数学含量极大. 事实上,凡与反应扩散有关的现象,大都能由线性或非线性抛物型偏微分方程作为数学模型来定量或定性地加以解决. MCM的试题来自实际,是“真问题⊕数学建模⊕计算机处理”的“三合一”准科研性质的一种竞赛,对上述这种有普遍意义和数学含量高,必须用计算机处理才能得到数值解的扩散问题,当然成为试题的重要来源,例如,AMCM-90A,就是这类试题;AMCM-90A要研究治疗帕金森症的多巴胺(dopamine )在人脑中的分布,此药液注射后在脑子里经历的是扩散衰减过程,可以由线性抛物型方程这一数学模型来刻划. AMCM-90A要研究单层住宅混凝土地板中的温度变化,也属扩散(热传导)问题,其数学模型与AMCM-90A一样,也是线性抛物型方程. 本文交代扩散问题建模的思路以及如何推导出相应的抛物型方程,如何利用积分变换求解、如何确定方程与解的表达式中的参数等关键数学过程,且以AMCM-90A题为例,显示一个较细致的分析、建模、求解过程. §1 抛物型方程的导出 设(,,,)u x y z t 是t 时刻点(,,)x y z 处一种物质的浓度. 任取一个闭曲面S ,它所围的区域是Ω,由于扩散,从t 到t t +?时刻这段时间内,通过S 流入Ω的质量为 2 221(cos cos cos )dSd t t t S u u u M a b c t x y z αβγ+????=++???? ??. 由高斯公式得 2222 221222()d d d d t t t u u u M a b c x y z t x y z +?Ω ???=++???? ???. (1) 其中,222,,a b c 分别是沿,,x y z 方向的扩散系数. 由于衰减(例如吸收、代谢等),Ω内的质量减少为 2 2d d d d t t t M k u x y z t +?Ω =? ???, (2) 其中2 k 是衰减系数. 由物质不灭定律,在Ω内由于扩散与衰减的合作用,积存于Ω内的质量为12M M -. 换一种角度看,Ω内由于深度之变化引起的质量增加为 3[(,,,)(,,,)]d d d d d d d . (3)t t t M u x y z t t u x y z t x y z u x y z t t Ω +?Ω =+?-?=????? ??? 显然312M M M =-,即

数学模型 微 分 方 程

数学模型 13.人体注射葡萄糖溶液时,血液中葡萄糖浓度g(t)的增长率与注射速率r 成正比,与人体血液容积v 成反比,而由于人体组织的吸收作用,g(t)的减少率与g(t)本身成正比。分别在以下几种假设下建立模型,并讨论稳定情况。 (1)人体血液容积v 不变。 (2)v 随着注入溶液而增加。 (3)由于排泄等因素v 的 增加有极限值 解:模型假设: 本模型中主要符号说明为: 葡萄糖浓度g(t) 注射速率r 人体血液容积v 基本模型为: g k V r k dt dg 21-= (1k ,02>k ,常数) ⑴ (1)V 为常数时,平衡点V k r k g 210= 稳定。 如果以g 为横轴、 dt dg 为纵轴作出方程的图形(图1),可以分析葡萄糖浓度增长速度dt dg 随着g 的增加而变化的情况,从而大概地看出g(t)的变化规律。 令2.01=k ,5.02=k ,利用Mathematica 在操作窗口中输入以下代码命令: Plot[0.2/100-0.5g,{g,0,100},PlotStyle->{RGBColor[1,0,0]}] 得到: 图1 dt dg ~g 曲线 再利用matlab 在操作窗口中输入以下代码命令:

g=dsolve('Dg=k1*r/v-k2*g','g(0)=g0','t') 其解为 g =k1*r/v/k2+exp(-k2*t)*(-k1*r+g0*v*k2)/v/k2 整理得到: 2 20112)(vk vk g r k e v r k t g t k +-+=- ⑵ 令2.01=k ,5.02=k ,利用Mathematica 在操作窗口中输入以下代码命令: Plot[0.2/100+Exp[-0.5t],{t,0,100},PlotStyle->{RGBColor[1,0,0]}] 得到: 图2 g ~t 曲线 由图可以知道它在平衡点V k r k g 210= 稳定。 (2)不妨设 β=dt dV (0>β,常数) ⑶ 方程⑴,⑵不存在平衡点。若由⑵解出t V t V β+=0)(代入⑴,得到 g k t V r k dt dg 201-+=β ⑷ 则⑷不能是自治方程。因为平衡点及稳定性的概念只是对自治方程而言才有意义,而⑷不能是自治方程,所以不能考虑它的稳定性。 (3)不妨设 V )(V dt dV -=1μ (0>μ,常数) ⑸ 如果以V 为横轴、dt dV 为纵轴作出方程的图形(图3),可以分析人体血液容积V 增长速度dt dV 随着V 的增加而变化的情况,从而大概地看出V(t)的变化规

《常微分方程》课程大纲

《常微分方程》课程大纲 一、课程简介 课程名称:常微分方程学时/学分:3/54 先修课程:数学分析,高等代数,空间解析几何,或线性代数(行列式,矩阵与线性方程组,线性空间F n,欧氏空间R n,特征值与矩阵的对角化), 高等数学(多元微积分,无穷级数)。 面向对象:本科二年级或以上学生 教学目标:围绕基本概念与基本理论、具体求解和实际应用三条主线开展教学活动,通过该课程的教学,希望学生正确理解常微分方程的基本概念,掌握基本理论和主要方法,具有一定的解题能力和处理相关应用问题的思维方式,如定性分析解的性态和定量近似求解等思想,并希望学生初步了解常微分方程的近代发展,为学习动力系统学科的近代内容和后续课程打下基础。 二、教学内容和要求 常微分方程的教学内容分为七部分,对不同的内容提出不同的教学要求。(数字表示供参考的相应的学时数,第一个数为课堂教学时数,第二个数为习题课时数) 第一章基本概念(2,0) (一)本章教学目的与要求: 要求学生正确掌握微分方程,通解,线性与非线性,积分曲线,线素场(方

向场),定解问题等基本概念。本章教学重点解释常微分方程解的几何意义。 (二)教学内容: 1.由实际问题:质点运动即距离与时间关系(牛顿第二运动定律),放射性元素衰变过程,人口总数发展趋势估计等,通过建立数学模型,导出微分方程。 2.基本概念(常微分方程,偏微分方程,阶,线性,非线性,解,定解问题,特解,通解等)。 3.一阶微分方程组的几何定义,线素场(方向场),积分曲线。 4.常微分方程所讨论的基本问题。 第二章初等积分法(4,2) (一)本章教学目的与要求: 要求学生熟练掌握分离变量法,常数变易法,初等变换法,积分因子法等初等解法。 本章教学重点对经典的几类方程介绍基本解法,勾通初等积分法与微积分学基本定理的关系。并通过习题课进行初步解题训练,提高解题技巧。 (二)教学内容: 1. 恰当方程(积分因子法); 2. 分离变量法 3. 一阶线性微分方程(常数变易法) 4. 初等变换法(齐次方程,伯努利方程,黎卡提方程)

〈常微分方程》应用题及答案

应 用 题(每题10分) 1、设()f x 在(,)-∞∞上有定义且不恒为零,又()f x '存在并对任意,x y 恒有()()()f x y f x f y +=,求()f x 。 2、设()()()F x f x g x =,其中函数(),()f x g x 在(,)-∞∞内满足以下条件 ()(),()(),(0)0,()()2x f x g x g x f x f f x g x e ''===+= (1)求()F x 所满足的一阶微分方程; (2)求出()F x 的表达式。 3、已知连续函数()f x 满足条件320 ()3x x t f x f dt e ??=+ ??? ?,求()f x 。 ; 4、已知函数()f x 在(0,)+∞内可导,()0,lim ()1x f x f x →+∞ >=,且满足 1 1 0()lim ()h x h f x hx e f x →? ?+ ?= ? ?? ? ,求()f x 。 5、设函数()f x 在(0,)+∞内连续,5 (1)2 f = ,且对所有,(0,)x t ∈+∞,满足条件 1 1 1 ()()()xt x t f u du t f u du x f u du =+? ??,求()f x 。 6、求连续函数()f x ,使它满足10 ()()sin f tx dt f x x x =+?? 。 7、已知可微函数()f t 满足 31() ()1()x f t dt f x t f t t =-+?,试求()f x 。 8、设有微分方程 '2()y y x ?-=, 其中21 ()01 x x x ??。试求在(,)-∞∞内的连续函 数()y y x =使之在(,1)-∞和()1,+∞内部满足所给方程,且满足条件(0)0y =。 9、设位于第一象限的曲线()y f x = 过点122?? ? ? ?? ,其上任一点(,)P x y 处的法线与y 轴的交点为Q ,且线段PQ 被x 轴平分。 (1)求曲线()y f x =的方程; (2)已知曲线sin y x =在[0,]π上的弧长为l ,试用l 表示曲线()y f x =的弧长s 。 ' 10、求微分方程(2)0xdy x y dx +-=的一个解()y y x =,使得由曲线()y y x =与直线 1,2x x ==以及x 轴所围成的平面图形绕x 轴旋转一周的旋转体体积最小。 11、设曲线L 位于xOy 平面的第一象限内,L 上任一点M 处的切线与y 轴总相交,交点记

数学建模微分方程的应用举例

第八节 数学建模——微分方程的应用举例 微分方程在物理学、力学、经济学和管理科学等实际问题中具有广泛的应用,本节我们将集中讨论微分方程的实际应用,尤其是微分方程经济学中的应用. 读者可从中感受到应用数学建模的理论和方法解决实际问题的魅力. 内容分布图示 ★衰变问题 ★逻辑斯谛方程 ★价格调整问题 ★人才分配问题模型 ★追迹问题 ★返回 内容要点: 一、衰变问题 镭、铀等放射性元素因不断放射出各种射线而逐渐减少其质量, 这种现象称为放射性物质的衰变. 根据实验得知, 衰变速度与现存物质的质量成正比, 求放射性元素在时刻t 的质量. 用x 表示该放射性物质在时刻t 的质量, 则dt dx 表示x 在时刻t 的衰变速度, 于是“衰变速度与现存的质量成正比”可表示为 .kx dt dx -= (8.1) 这是一个以x 为未知函数的一阶方程, 它就是放射性元素衰变的数学模型, 其中0>k 是比例常数, 称为衰变常数, 因元素的不同而异. 方程右端的负号表示当时间t 增加时, 质量x 减少. 解方程(8.1)得通解.kt Ce x -=若已知当0t t =时, ,0x x =代入通解kt Ce x -=中可得 ,00kt e x C -= 则可得到方程(8.1)特解 ,)(00t t k e x x --= 它反映了某种放射性元素衰变的规律. 注: 物理学中, 我们称放射性物质从最初的质量到衰变为该质量自身的一半所花费的时间为半衰期, 不同物质的半衰期差别极大. 如铀的普通同位素(U 238 )的半衰期约为50亿年; 通常的镭(Ra 226 )的半衰期是上述放射性物质的特征, 然而半衰期却不依赖于该物质的初始 量, 一克 Ra 226 衰变成半克所需要的时间与一吨Ra 226衰变成半吨所需要的时间同样都是 1600年, 正是这种事实才构成了确定考古发现日期时使用的著名的碳-14测验的基础. 二、 逻辑斯谛方程: 逻辑斯谛方程是一种在许多领域有着广泛应用的数学模型, 下面我们借助树的增长来建立该模型. 一棵小树刚栽下去的时候长得比较慢, 渐渐地, 小树长高了而且长得越来越快, 几年不见, 绿荫底下已经可乘凉了; 但长到某一高度后, 它的生长速度趋于稳定, 然后再慢慢降下

一阶微分方程的应用

一阶微分方程的应用

(1)数学建模列出微分方程(含初始条件);(2)求解微分方程. 步骤: 利用共性建立微分方程,利用个性确定定解条件.

),(y x M y x o 例1 已知某曲线经过点( 1 , 1 ),轴上的截距等于切点的横坐标, 求它的方程. 提示: 设曲线上的动点为M (x,y ),令X = 0, 得截距由题意知微分方程为 x x y y ='-即11-=-'y x y 定解条件为.11==x y y x x ' =αtan x 此点处切线方程为它的切线在纵1、几何应用

2、物理应用(1)动力学:例2跳伞运动(如图),求伞降落速度与时间的关系,初始时刻为原点. mg )( 阻力kv f =x o kv mg F ma -==作受力分析用ma F =

(2)热学 例3 发动机冷却系统设计 (Newton 冷却定律:冷却速度与温差成正比) dt T T k dt dT e )(-+=α. 之间的关系与试建立发动机温度t T , ),(e T t T 环境温度为工作温度为),(,e T T k -降温速率为升温速率为α

例4. 已知某车间的容积为 的新鲜空气 问每分钟应输入多少才能在30 分钟后使车间空 的含量不超过0.06 % ?提示: 设每分钟应输入t 时刻车间空气中含 则在],[t t t ?+内车间内=?x 两端除以t ?并令0→?t 与原有空气很快混合均匀后, 以相同的流量排出)得微分方程 t k ??10004.0t x k ??-5400 5400( 假定输入的新鲜空气输入, 的改变量为

二阶常系数线性微分方程的应用举例

第七章常微分方程7.13 二阶常系数线性微分 方程的应用举例 数学与统计学院 赵小艳

解 受力分析 例1 (弹簧的机械振动) 如图,弹簧下挂一物体.设在垂直方向有一随时间变化的外力 作用在物体上,物体将受外力驱使而上下振动,求物体的振动规律. pt H t f sin )(1=x x o )(1t f ;sin )()1(1pt H t f =外力;)2(kx f -=弹性力v f μ-=0)3(介质阻力,ma F =由t x kx pt H t x m d d d d μ--=sin 22可得.t x d d μ-= 设振动开始时刻为0,t 时刻物体离开平衡位置 的位移为x (t ). .0,000====t t x x d 还应满足初始条件:

.0,000====t t x x d 还应满足初始条件:2m t x kx pt H t x m d d d d μ--=sin 22 可得m m pt h x t x t x sin 2222=++ωδd d d d 强迫振动的微分方程

2m m m pt h x t x t x sin 2222=++ωδd d d d 强迫振动的微分方程 对应齐次方程: 02222=++x t x t x ωδd d d d 自由振动的微分方程 其特征方程: 0222=++ωδλλ. ,222221ωδδλωδδλ---=-+-=. 0)1(22>-ωδ.)(2)(12222t t e C e C x ωδδωδδ-+----+=齐次方程的通解为 .0)(→∞→t x t 时,当此时物体运动按指数函数规律衰减. t x O

数学建模微分方程的应用举例

第八节数学建模——微分方程的应用举例 微分方程在物理学、力学、经济学和管理科学等实际问题中具有广泛的应用,本节我们将集中讨论微分方程的实际应用,读者可从中感受到应用数学建模的理论和方法解决实际问题的魅力. 内容分布 ★衰变问题 ★逻辑斯谛方程 ★价格调整问题 ★人才分配问题模型 ★追迹问题 内容要点: 一、衰变问题 镭、铀等放射性元素因不断放射出各种射线而逐渐减少其质量, 这种现象称为放射性物质的衰变. 根据实验得知, 衰变速度与现存物质的质量成正比, 求放射性元素在时刻t的质量. 用x表示该放射性物质在时刻t的质量, 则 表示x在时刻t的衰变速度, 于是“衰变速度与现存的质量成正比”可表示为 (8.1)

这是一个以x为未知函数的一阶方程, 它就是放射性元素衰变的数学模型, 其中 是比例常数, 称为衰变常数, 因元素的不同而异. 方程右端的负号表示当时间t增加时, 质量x减少. 解方程(8.1)得通解 若已知当 时, 代入通解 中可得 则可得到方程(8.1)特解 它反映了某种放射性元素衰变的规律. 注: 物理学中, 我们称放射性物质从最初的质量到衰变为该质量自身的一半所花费的时间为半衰期, 不同物质的半衰期差别极大. 如铀的普通同位素( )的半衰期约为50亿年;通常的镭( )的半衰期是1600年.半衰期是上述放射性物质的特征, 然而半衰期却不依赖于该物质的初始量, 一克 衰变成半克所需要的时间与一吨 衰变成半吨所需要的时间同样都是1600年, 正是这种事实才构成了确定考古发现日期时使用的著名的碳-14测验的基础. 二、逻辑斯谛(Logistic)方程:

逻辑斯谛方程是一种在许多领域有着广泛应用的数学模型, 下面我们借助树的增长来建立该模型. 一棵小树刚栽下去的时候长得比较慢, 渐渐地, 小树长高了而且长得越来越快, 几年不见, 绿荫底下已经可乘凉了; 但长到某一高度后, 它的生长速度趋于稳定, 然后再慢慢降下来. 这一现象很具有普遍性. 现在我们来建立这种现象的数学模型. 如果假设树的生长速度与它目前的高度成正比, 则显然不符合两头尤其是后期的生长情形, 因为树不可能越长越快; 但如果假设树的生长速度正比于最大高度与目前高度的差, 则又明显不符合中间一段的生长过程. 折衷一下, 我们假定它的生长速度既与目前的高度,又与最大高度与目前高度之差成正比. 设树生长的最大高度为H(m), 在t(年)时的高度为h(t), 则有 (8.2) 其中 是比例常数. 这个方程为Logistic方程. 它是可分离变量的一阶常数微分方程. 下面来求解方程(8.2). 分离变量得 两边积分 得

拉格朗日方程的应用及举例08讲

拉格朗日方程的应用及举例 拉格朗日方程有以下几个特点:(1)拉格朗日方程适用于完整系统,可以获得数目最少的运动微分方程,即可以建立与自由度数目相同的n个方程,是一个包含n个二阶常微分方程组,方程组的阶数为2n。求解这个方程组可得到以广义坐标描述的系统运动方程。(2)拉格朗日方程的形式具有不变性。对于任意坐标具有统一的形式,即不随坐标的选取而变化。特别是解题时有径直的程序可循,应用方便。(3)所有的理想约束的约束反力均不出现在运动微分方程中。系统的约束条件愈多,这个特点带来的便利越突出。(4)拉格朗日方程是以能量的观点建立起来的方程,只含有表征系统运动的动能和表征主动力作用的广义力,避开了力、速度、加速度等矢量的复杂运算。(5)拉格朗日方程不但可以建立相对惯性系的运动,还可以直接建立相对非惯性系的动力学方程,只要写出的动能是绝对运动的动能即可,至于方程所描述的运动是对什么参考系的运动,则取决于所选的广义坐标。 纵观拉格朗日方程,看出分析力学在牛顿力学的基础上,提出严密的分析方法,从描述系统的位形到建立微分方程都带有新的飞跃。我们还应看到,虽然拉格朗日方法在理论上和应用上都有重要的价值,但是,牛顿力学的价值并未降低,特别是它的几何直观性和规格化的方法使人乐于应用,由于计算机的广泛使用,牛顿一欧拉方法又有所发展。我们将会看到,用拉格朗日方程求解,在获得数量最少的运动微分方程时,其求导过程有时过于繁琐,并有较多的耦合项。 应用拉格朗日方程建立动力学方程时,应首先建立以广义坐标q和广义速度q 表示的动能函数和广义力Q。为此,首先讨论动能的计算和广义力的计算,在此基础上,再讨论拉格朗日方程的应用。 一、动能的计算 对于系统的动能,可以写出关于广义速度q 的齐次函数的表达式。在实际计算中,应用理论力学的有关知识就可以建立以广义坐标和广义速度所表达的动能函数。 例1-1已知质量为m,半径为r的均质圆盘D, 沿OAB直角曲杆的AB段只滚不滑。圆盘的盘面和曲 杆均放置在水平面上。已知曲杆以匀角速度 1绕通过 O点的铅直轴转动,试求圆盘的动能。 解:取广义坐标x和 ,x为圆盘与曲杆接触点到 曲杆A点的距离, 为曲杆OAB的转角, = 1t。 应用柯尼希定理求圆盘的动能。为此,先求圆盘质心C 的速度和相对于质心平动坐标标准

相关文档
最新文档