数学建模——微分方程的应用

合集下载

数学建模的微分方程方法

数学建模的微分方程方法

数学建模的微分方程方法数学建模是将现实问题抽象化为数学问题并运用数学方法来解决的过程。

微分方程方法是一种常用的数学建模方法,可以描述问题中的变化过程和规律。

下面将介绍微分方程方法在数学建模中的应用。

微分方程是描述自变量与其之间的关系的方程,其中自变量通常表示时间或空间。

微分方程方法通过建立适当的微分方程来描述问题中的变化过程,然后利用数学工具来求解这些微分方程,从而得到问题的解析解或数值解。

微分方程方法在数学建模中的应用非常广泛。

例如,经典的弹簧振子问题可以通过建立二阶线性常微分方程来描述。

通过求解该微分方程,可以得到弹簧振子的运动规律,从而预测其位置和速度随时间的变化。

微分方程方法还可以用来描述人口增长、化学反应、电路等问题。

人口增长问题可以通过建立一阶常微分方程来描述,从而得到人口数量随时间的变化规律。

化学反应可以通过建立化学动力学方程来描述,从而预测反应速率随时间和反应物浓度的变化。

电路问题可以通过建立电路方程来描述,从而预测电流和电压随时间的变化。

在数学建模中,常常需要求解一类特殊的微分方程,即边值问题。

边值问题是指在一定边界条件下求解微分方程的解。

例如,热传导问题可以通过建立热传导方程和适当的边界条件来描述。

通过求解这个边值问题,可以得到在不同边界条件下的温度分布。

微分方程方法还与其他数学建模方法相结合,如优化方法、概率统计方法等。

例如,最优化问题可以通过建立约束条件下的微分方程来描述,从而求解最优解。

概率统计问题可以通过建立随机微分方程来描述,从而分析问题中的随机性和不确定性。

在实际建模中,常常会遇到复杂的问题和非线性的微分方程。

对于这些问题,常常需要借助数值方法来求解。

数值方法通过将微分方程离散化为差分方程,然后利用计算机进行数值计算,从而得到问题的数值解。

常用的数值方法包括欧拉法、龙格-库塔法、有限差分法、有限元法等。

总之,微分方程方法是数学建模中常用的方法之一,可以描述变化过程和规律,并通过数学分析和数值计算来求解。

数学建模在常微分方程中的应用

数学建模在常微分方程中的应用

数学建模在常微分方程中的应用常微分方程是数学中一个重要的研究领域,它描述了物理、工程等各个领域中的许多现象和问题。

数学建模是将实际问题抽象为数学模型,通过数学方法来研究和解决这些问题。

在常微分方程中,数学建模的应用有着重要的地位。

数学建模在常微分方程中的应用,首先体现在对实际问题的建模过程中。

常微分方程可以描述许多现象,例如生物学中的人口增长问题、化学反应动力学、电路中的电流变化等等。

通过对实际问题的观察和分析,可以建立相应的常微分方程模型。

数学建模的主要任务是确定模型中的方程形式和参数值。

这一过程需要深入了解实际问题的背景和特性,结合数学的方法和技巧,确定合适的数学模型。

数学建模在常微分方程中的应用还体现在对方程的求解和分析过程中。

常微分方程一般是通过解析方法或数值方法来求解。

对于一些简单的常微分方程可以通过分离变量、变量代换等方法直接求解。

但是对于一些复杂的常微分方程,求解比较困难甚至无解析解。

此时,数值方法就发挥了重要的作用,如欧拉法、龙格-库塔法等。

数值方法通过数值逼近和计算机模拟,求得近似解,能够克服解析解的困难。

数学建模在常微分方程中的应用还包括对方程解的分析和结果的验证。

对于一些简单的常微分方程,可以通过对解的性质和图像特征的分析来得到对问题的深入理解。

通过对解的稳定性和渐近行为的分析,可以得到对系统行为的预测。

而对于一些复杂的常微分方程,数值解可以作为解的近似,对结果进行验证。

通过比较数值解和解析解(如果存在)的差异,可以评估数值方法的精确度和可靠性。

数学建模在常微分方程中的应用有着重要的作用。

它是将实际问题抽象为数学模型的过程,是求解和分析常微分方程的方法和手段。

通过数学建模,可以对实际问题进行深入理解,提供对问题的解决方案和预测。

数学建模和常微分方程的相互关系也促进了数学和其他学科的交叉和发展。

数学建模的发展对于常微分方程的研究和应用提供了更广阔的空间和方法,对各个领域的科学研究和工程实践具有重要的指导意义。

数学建模在物理研究中的应用

数学建模在物理研究中的应用

数学建模在物理研究中的应用数学建模是一种将实际问题抽象化为数学模型的方法,通过数学模型的分析和求解,可以得到对实际问题的深入理解和解决方案。

在物理研究中,数学建模发挥着重要的作用,可以帮助科学家们更好地理解和解释物理现象,推动科学的发展和进步。

一、微分方程在物理研究中的应用微分方程是数学建模中最常用的工具之一,它描述了物理现象中的变化规律。

在物理研究中,很多问题都可以通过微分方程来建模和求解。

以牛顿第二定律为例,它描述了物体的加速度与作用力之间的关系。

通过建立物体的运动微分方程,可以求解出物体的运动轨迹和速度变化。

这对于研究物体的运动规律、预测物体的行为具有重要意义。

另外,微分方程还可以用于描述热传导、扩散、振动等物理现象。

通过建立相应的微分方程模型,可以研究这些现象的规律和特性,为实际问题的解决提供理论依据。

二、概率论在物理研究中的应用概率论是研究随机现象的数学理论,它在物理研究中也有广泛的应用。

在物理实验中,往往存在着一定的随机性,通过概率论的方法可以对这些随机现象进行建模和分析。

例如,在粒子物理研究中,粒子的衰变过程往往是一个随机事件。

通过概率论的方法,可以建立粒子衰变的概率模型,预测粒子衰变的规律和特性。

这对于研究基本粒子的性质和相互作用具有重要意义。

另外,概率论还可以应用于统计物理学中。

统计物理学研究的是大系统中的微观粒子运动和宏观物理量之间的关系。

通过概率论的方法,可以建立系统的统计模型,研究系统的平衡态和非平衡态,揭示物质的宏观性质和相变规律。

三、优化理论在物理研究中的应用优化理论是研究如何找到最优解的数学理论,它在物理研究中也有广泛的应用。

在物理实验和工程设计中,往往需要找到最佳的方案或参数配置,通过优化理论的方法可以实现这一目标。

例如,在光学设计中,如何设计出具有最佳光学性能的透镜系统是一个重要问题。

通过建立光学系统的数学模型,并运用优化理论的方法,可以求解出最佳的透镜参数配置,实现光学系统的高性能。

数学建模思想在常微分方程教学中的运用

数学建模思想在常微分方程教学中的运用

数学建模思想在常微分方程教学中的运用在大学数学教学中,常微分方程教学十分重要,在整体的数学教学中具有承上启下的意义,另一方面,常微分方程教学与我们的生活息息相关。

尽管现阶段常微分方程教学在大学数学中的地位逐渐提高,然而因为教学中存在的一些问题导致教学过程中仍然面临诸多问题,其一常微分方程教学过于重视理论,缺乏实践;其二,课堂中教师忽略学生的主观作用,缺乏学生动手实践的能力,只是学习常微分方程的基础理论,却不能利用其解决实际问题。

为了解决这些问题,文章中笔者针对常微分方程教学,对数学建模思想的运用进行了分析。

一、数学建模思想在常微分方程教学中应用重要性(一)是满足数学应用技能型人才培养的基本需求现阶段受社会发展的影响,大学阶段学生面临的就业问题十分现实,而就现在的院校而言,培养应用技能型人才已经逐渐成为办学的主要趋势。

然而受传统教学观念的影响,教师缺乏具体的实践教学,因此,教师要在教学的同时将理论知识与实践进行结合,重点培养学生解决实际问题的能力。

在常微分方程教学中运用数学建模思想,能够重点培养学生的应用技能,同时也是满足数学应用技能型人才培养的基本需求,是大学阶段进行数学常微分方程教学的主要教学手段,学生通过对建模思想的学习,能够提高自身的理论的实际应用水平,培养其应用实践技能。

(二)是满足常微分方程教学设置的基本要求大学阶段的常微分方程教学是数学专业的一门必修课程,然而在具体的课程设置中,在数学分析、以及高等代数等一些专业课程教学之后会进行常微分方程教学,由此可以奠定常微分方程教学在数学专业教学中的重要位置。

为此,在大学阶段的数学专业中,常微分方程教学具有特殊的地位,同样也是数学专业课程设置中最为重要的课程。

将数学建模思想在常微分方程教学中运用,实现数学理论与实践的融合,对大学阶段的数学教学都具有十分重要的影响,可以从中呈现数学课程设置的科学合理性。

二、数学建模思想在常微分方程教学中的运用在大学阶段的常微分方程教学中运用数学建模思想,主要可以从以下几个方面入手,其一是相关方程所涉及的理论以及应用背景;其二,在数学建模思想的基础上应用实际案例教学,进行常微分方程教学;其三,激发学生学习积极性,培养学生理论与实践结合的能力。

数学建模在常微分方程中的应用

数学建模在常微分方程中的应用

数学建模在常微分方程中的应用
数学建模是指运用数学方法和技巧分析和解决实际问题的过程。

在数学建模中,常微分方程是一个重要的工具,它用于描述许多实际问题中的变化和发展。

下面将介绍常微分方程在数学建模中的应用。

常微分方程可以用来描述许多自然科学和工程科学中的变化和发展过程。

描述物理学中的运动、天文学中的行星运动和混合和反应过程等。

它们还可以用于解决实际问题,如人口增长、疾病传播、金融模型和生态系统动力学等。

常微分方程的一个重要应用领域是物理学。

在经典力学中,可以通过常微分方程来描述物体在外力作用下的运动。

牛顿第二定律可以用常微分方程的形式表示为:
m*d^2x/dt^2 = F(x,t)
其中m是物体的质量,dx/dt是物体的速度,F(x,t)是物体受到的外力。

这个方程可以用来研究物体的运动轨迹和速度随时间的变化。

常微分方程在工程科学中也有广泛的应用。

热传导方程可以用常微分方程的形式表示为:
d(theta)/dt = k*d^2(theta)/dx^2
其中theta是温度分布,t是时间,k是热传导系数,x是空间位置。

这个方程可以用来研究材料中的温度分布和传热过程。

在生物学和生态学中,常微分方程被用来描述生物种群的增长和相互作用。

Lotka-Volterra方程可以用常微分方程的形式表示为:
dN/dt = r*N - a*N*P
dP/dt = -b*P + c*N*P
其中N是捕食者的数量,P是猎物的数量,t是时间,r、a、b和c是常数。

这个方程可以用来研究捕食者和猎物种群之间的相互作用和稳定性。

常微分方程在数学建模中的应用

常微分方程在数学建模中的应用

常微分方程在数学建模中的应用
常微分方程(Ordinary Differential Equations, ODEs)是一类用来描述物理系统动态变化的方程。

它们在数学建模中有广泛的应用,可以用来描述各种各样的系统,包括力学系统、电学系统、热学系统、生物学系统等等。

举个例子,假设你想描述一个物体在受到重力作用力时的运动轨迹。

这个问题可以用常微分方程来解决,具体来说,你可以用下面的方程来描述物体的运动:
其中,x 是物体的位置,t是时间,g 是重力加速度。

这个方程表示物体受到重力作用力时的加速度,根据牛顿第二定律,加速度等于作用力除以质量。

因此,这个方程可以用来描述物体在受到重力作用力时的运动轨迹。

常微分方程还可以用来描述其他类似的问题,例如:
•电路中的电流和电压的变化
•化学反应过程中物质浓度的变化
•振动系统中振动的频率和振幅的变化
•生物学系统中生物体内激素浓度的变化
总的来说,常微分方程在数学建模中有着广泛的应用。

它们可以用来描述各种各样的物理系统的动态变化,并且通常都有解析解或者近似解的存在。

此外,常微分方程还有很多的数学理论,可以用来解决常微分方程的特殊情况。

尽管常微分方程在数学建模中有着广泛的应用,但它们也有一些局限性。

例如,常微分方程通常假设系统是连续的、平滑的,并且忽略了离散的、非连续的现象。

在这些情况下,常微分方程可能不再适用。

因此,在使用常微分方程进行数学建模时,需要谨慎考虑是否适用。

数学建模竞赛课件---微分方程模型

数学建模竞赛课件---微分方程模型
微分方程在生物学、物理学、化学和经济学等领域都有广泛的应用。它们可以用于模拟生物生长、物体 运动、热传导和经济增长等现象。
案例分析
通过几个具体案例,展示微分方程在建模竞赛中的应用。包括鱼的增长模型、自由落体问题、热传导问 题和稳定的经济增长模型。
结语
微分方程是数学建模竞赛中必不可少的工具,对于解决复杂问题具有重要作 用。通过系统学习和实践,可以掌握微分方程的解法和应用。
一阶微分方程
一阶微分方程是最基本的微分方程类型之一,包括可分离变量、齐次线性、 一阶线性和变量分离法等。掌握这些求解方法可以解决许多实际问题。
高阶微分方程
高阶微分方程是一阶微分方程的延伸,包括齐次线性、非齐次线性、常系数 和变系数等类型。熟练掌握这些求解方法可以应对更加复杂的建模问题。
微分方程在建模中的应用
数学建模竞赛课件---微分 方程模型
本课件介绍微分方程模型在数学建模竞赛中的重要性和应用。内容包括微分 方程的定义、分类、解法,以及在生物学、物理学、是数学中的重要工具,可用于描述自然现象和科学问题。它们分为 常微分方程和偏微分方程,并可以按类型进行分类。了解微分方程的解法对 于建模竞赛至关重要。

微分方程在数学建模中的应用

微分方程在数学建模中的应用

微分方程在数学建模中有广泛的应用,具体如下:
1.微分方程可以描述现实世界的变化,揭示实际事物内在的动态关
系。

2.微分方程可以建立纯数学(特别是几何)模型。

3.微分方程可以建立物理学(如动力学、电学、核物理学等)模型。

4.微分方程可以建立航空航天(火箭、宇宙飞船技术)模型。

5.微分方程可以建立考古(鉴定文物年代)模型。

6.微分方程可以建立交通(如电路信号,特别是红绿灯亮的时间)
模型。

7.微分方程可以建立生态(人口、种群数量)模型。

8.微分方程可以建立环境(污染)模型。

9.微分方程可以建立资源利用(人力资源、水资源、矿藏资源、运
输调度、工业生产管理)模型。

10.微分方程可以建立生物(遗传问题、神经网络问题、动植物循环
系统)模型。

11.微分方程可以建立医学(流行病、传染病问题)模型。

12.微分方程可以建立经济(商业销售、财富分布、资本主义经济周
期性危机)模型。

13.微分方程可以建立战争(正规战、游击战)模型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八节 数学建模——微分方程的应用举例微分方程在物理学、力学、经济学和管理科学等实际问题中具有广泛的应用,本节我们将集中讨论微分方程的实际应用,尤其是微分方程经济学中的应用. 读者可从中感受到应用数学建模的理论和方法解决实际问题的魅力.分布图示★衰变问题 ★逻辑斯谛方程 ★价格调整问题 ★人才分配问题内容要点:一、衰变问题镭、铀等放射性元素因不断放射出各种射线而逐渐减少其质量, 这种现象称为放射性物质的衰变. 根据实验得知, 衰变速度与现存物质的质量成正比, 求放射性元素在时刻t 的质量.用x 表示该放射性物质在时刻t 的质量, 则dtdx表示x 在时刻t 的衰变速度, 于是“衰变速度与现存的质量成正比”可表示为.kx dtdx-= (8.1) 这是一个以x 为未知函数的一阶方程, 它就是放射性元素衰变的数学模型, 其中0>k 是比例常数, 称为衰变常数, 因元素的不同而异. 方程右端的负号表示当时间t 增加时, 质量x 减少.解方程(8.1)得通解.ktCex -=若已知当0t t =时, ,0x x =代入通解kt Ce x -=中可得,00kt e x C -= 则可得到方程(8.1)特解,)(00t t k e x x --=它反映了某种放射性元素衰变的规律.注: 物理学中, 我们称放射性物质从最初的质量到衰变为该质量自身的一半所花费的时间为半衰期, 不同物质的半衰期差别极大. 如铀的普通同位素(U 238)的半衰期约为50亿年;通常的镭(Ra 226)的半衰期是上述放射性物质的特征, 然而半衰期却不依赖于该物质的初始量, 一克Ra 226衰变成半克所需要的时间与一吨Ra 226衰变成半吨所需要的时间同样都是1600年, 正是这种事实才构成了确定考古发现日期时使用的著名的碳-14测验的基础.二、 逻辑斯谛方程:逻辑斯谛方程是一种在许多领域有着广泛应用的数学模型, 下面我们借助树的增长来建立该模型.一棵小树刚栽下去的时候长得比较慢, 渐渐地, 小树长高了而且长得越来越快, 几年不见, 绿荫底下已经可乘凉了; 但长到某一高度后, 它的生长速度趋于稳定, 然后再慢慢降下来. 这一现象很具有普遍性. 现在我们来建立这种现象的数学模型.如果假设树的生长速度与它目前的高度成正比, 则显然不符合两头尤其是后期的生长情形, 因为树不可能越长越快; 但如果假设树的生长速度正比于最大高度与目前高度的差, 则又明显不符合中间一段的生长过程. 折衷一下, 我们假定它的生长速度既与目前的高度,又与最大高度与目前高度之差成正比.设树生长的最大高度为H (m), 在t (年)时的高度为h (t ), 则有)]()[()(t h H t kh dtt dh -= (8.2) 其中0>k 是比例常数. 这个方程为Logistic 方程. 它是可分离变量的一阶常数微分方程.下面来求解方程(8.2). 分离变量得,)(kdt h H h dh=-两边积分,)(⎰⎰=-kdt h H h dh得 ,)]ln([ln 11C kt h H h H+=-- 或,21kHt H C kHt e C e hH h ==-+故所求通解为,11)(22kHtkHt kHt Ce H e C He C t h -+=+=其中的⎪⎪⎭⎫ ⎝⎛>==-0112H C e C C C 是正常数. 函数)(t h 的图象称为Logistic 曲线. 图8-8-1所示的是一条典型的Logistic 曲线, 由于它的形状, 一般也称为S 曲线. 可以看到, 它基本符合我们描述的树的生长情形. 另外还可以算得.)(lim H t h t =+∞→这说明树的生长有一个限制, 因此也称为限制性增长模式.注: Logistic 的中文音译名是“逻辑斯谛”. “逻辑”在字典中的解释是“客观事物发展的规律性”, 因此许多现象本质上都符合这种S 规律. 除了生物种群的繁殖外, 还有信息的传播、新技术的推广、传染病的扩散以及某些商品的销售等. 例如流感的传染、在任其自然发展(例如初期未引起人们注意)的阶段, 可以设想它的速度既正比于得病的人数又正比于未传染到的人数. 开始时患病的人不多因而传染速度较慢; 但随着健康人与患者接触,受传染的人越来越多, 传染的速度也越来越快; 最后, 传染速度自然而然地渐渐降低, 因为已经没有多少人可被传染了.下面举两个例子说明逻辑斯谛的应用.人口阻滞增长模型 1837年, 荷兰生物学家Verhulst 提出一个人口模型00)(),(y t y by k y dtdy=-= (8.3)其中b k ,的称为生命系数.我们不详细讨论这个模型, 只提应用它预测世界人口数的两个有趣的结果.有生态学家估计k 的自然值是0.029. 利用本世纪60年代世界人口年平均增长率为2%以及1965年人口总数33.4亿这两个数据, 计算得,2=b 从而估计得:(1)世界人口总数将趋于极限107.6亿. (2)到2000年时世界人口总数为59.6亿.后一个数字很接近2000年时的实际人口数, 世界人口在1999年刚进入60亿. 新产品的推广模型 设有某种新产品要推向市场, t 时刻的销量为),(t x 由于产品性能良好, 每个产品都是一个宣传品, 因此, t 时刻产品销售的增长率,dtdx与)(t x 成正比, 同时, 考虑到产品销售存在一定的市场容量N , 统计表明dtdx与尚未购买该产品的潜在顾客的数量)(t x N -也成正比, 于是有)(x N kx dt dx-= (8.4)其中k 为比例系数. 分离变量积分, 可以解得kNtCeNt x -+=1)( (8.5)由,)1()1(,)1(2322222kNt kNt kNt kNt kNt Ce Ce e N Ck dt x d Ce ke CN dt dx -----+-=+= 当N t x <)(*时, 则有,0>dt dx 即销量)(t x 单调增加. 当2)(*N t x =时, ;022=dt x d 当2)(*N t x >时, ;022<dt x d 当2)(*Nt x <时, 即当销量达到最大需求量N 的一半时, 产品最为畅销, 当销量不足N 一半时, 销售速度不断增大, 当销量超过一半时, 销售速度逐渐减少.国内外许多经济学家调查表明. 许多产品的销售曲线与公式(8.5)的曲线(逻辑斯谛曲线)十分接近. 根据对曲线性状的分析, 许多分析家认为, 在新产品推出的初期, 应采用小批量生产并加强广告宣传, 而在产品用户达到20%到80%期间, 产品应大批量生产; 在产品用户超过80%时, 应适时转产, 可以达到最大的经济效益.三、价格调整模型在本章第一节例3已经假设, 某种商品的价格变化主要服从市场供求关系. 一般情况下,商品供给量S 是价格P 的单调递增函数, 商品需求量Q 是价格P 的单调递减函数, 为简单起见, 分别设该商品的供给函数与需求函数分别为P P Q bP a P S βα-=+=)(,)( (8.6)其中βα,,,b a 均为常数, 且.0,0>>βb当供给量与需求量相等时, 由(8.6)可得供求平衡时的价格baP e +-=βα 并称e P 为均衡价格.一般地说, 当某种商品供不应求, 即Q S <时, 该商品价格要涨, 当供大于求, 即Q S >时, 该商品价格要落. 因此, 假设t 时刻的价格)(t P 的变化率与超额需求量SQ -成正比, 于是有方程)]()([P S P Q k dtdP-= 其中,0>k 用来反映价格的调整速度.将(8.6)代入方程, 可得)(P P dtdPe -=λ (8.7) 其中常数,0)(>+=k b βλ方程(8.7)的通解为t e Ce P t P λ-+=)(假设初始价格,)0(0P P =代入上式, 得,0e P P C -=于是上述价格调整模型的解为t e e e P P P t P λ--+=)()(0由于0>λ知, +∞→t 时, .)(e P t P →说明随着时间不断推延, 实际价格)(t P 将逐渐趋近均衡价格e P .四、人才分配问题模型每年大学毕业生中都要有一定比例的人员留在学校充实教师队伍, 其余人员将分配到国民经济其他部门从事经济和管理工作. 设t 年教师人数为),(1t x 科学技术和管理人员数目为),(2t x 又设1外教员每年平均培养α个毕业生, 每年人教育、科技和经济管理岗位退休、死亡或调出人员的比率为βδδ),10(<<表示每年大学生毕业生中从事教师职业所占比率),10(<<δ于是有方程111x x dt dx δαβ-= (8.8) 212)1(x x dtdx δβα--= (8.9) 方程(8.8)有通解t e C x )(11δαβ-=(8.10)若设,)0(101x x =则,101x C =于是得特解te x x )(101δαβ-= (8.11)将(8.11)代入(8.9)方程变为tex x dtdx )(1022)1(δαββαδ--=+ (8.12) 求解方程(8.12)得通解t te x eC x )(122)1(δαβδββ---+= (8.13)若设,)0(202x x =则,110202x x C ⎪⎪⎭⎫⎝⎛--=ββ于是得特解 tt ex e x x x )(101020211δαβδββββ--⎪⎪⎭⎫ ⎝⎛-+⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--= (8.14) (8.11)式和(8.14)式分别表示在初始人数分别为)0(),0(21x x 情况, 对应于β的取值, 在t 年教师队伍的人数和科技经济管理人员人数. 从结果看出, 如果取,1=β即毕业生全部留在教育界, 则当∞→t 时, 由于,δα>必有+∞→)(1t x 而,0)(2→t x 说明教师队伍将迅速增加. 而科技和经济管理队伍不断萎缩, 势必要影响经济发展, 反过来也会影响教育的发展. 如果将β接近于零. 则,0)(1→t x 同时也导致,0)(2→t x 说明如果不保证适当比例的毕业生充实教师选择好比率β, 将关系到两支队伍的建设, 以及整个国民经济建设的大局.五、追迹问题设开始时甲、乙水平距离为1单位, 乙从A 点沿垂直于OA 的直线以等速0v 向正北行走; 甲从乙的左侧O 点出发, 始终对准乙以)1(0>n mv 的速度追赶. 求追迹曲线方程, 并问乙行多远时, 被甲追到.建立如图8-8-2所示的坐标系, 设所求追迹曲线方程为).(x y y =经过时刻t , 甲在追迹曲线上的点为),,(y x P 乙在点).,1(0t v B 于是有,1tan 0xyt v y --='=θ (8.15) 由题设, 曲线的弧长OP 为,1002t nv dx y x='+⎰解出t v 0代入(8.15), 得.11)1(02⎰'+=+'-x dx y ny y x 两边对x 求导, 整理得.11)1(2y ny x '+=''- 这就是追迹问题的数学模型.这是一个不显含y 的可降阶的方程, 设p y x p y ''=''='),(, 代入方程得211)1(p n p x +='- 或 ,)1(12x n dx pdp -=+两边积分, 得|,|ln |1|ln 1)1ln(12C x np p +--=++即 .1112nxC p p -=++ 将初始条件00||==='x x p y 代入上式, 得.11=C 于是,1112nxy y -='++' (8.16) 两边同乘,12y y '+-'并化简得,112n x y y --='+-' (8.17)(8.16)与(8.17)式相加, 得,11121⎪⎭⎫ ⎝⎛---='n n x x y两边积分, 得.)1(1)1(121211C x n n x n n y nn nn +⎥⎦⎤⎢⎣⎡-++---=+- 代入初始条件0|0==x y 得,122-=n nC 故所求追迹曲线方程为 ),1(11)1(1)1(2211>-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--+-=-+n n n n x n x n y n n n n甲追到乙时, 即曲线上点P 的横坐标,1=x 此时.12-=n n y 即乙行走至离A 点12-n n个单位距离时被甲追到.(注:本资料素材和资料部分来自网络,仅供参考。

相关文档
最新文档