§8-5--微分方程应用举例
常微分方程的常见解法

# 定义网格密度
arrows=LINE,
# 定义线段类型
axes=NORMAL);
# 定义坐标系类型
在MATLAB的向量场命令为 quiver(x,y,px,py)
回车后Maple就在1 1 的网格点上画出了向量场
44
的图形,并给出了过点(-2, 2) (-2 ,1) (-2,2) 的三
条积分曲线,见下图
M (x,y)co x s2xye , y
N (x,y)co x s2xye x
M(x,y)N(x,y)
y
x
所以方程为全微分方程。
由公式F (x ,y ) 0M (s ,y )d s 0N (0 ,s )d s
x(yc o ss 2 se y)d sy2 d s
0
0
ysinxx2ey2y
或
x
y
F (x ,y )x 0M (s ,y ) d s y 0N (x 0 ,s ) d
s
例:验证方程
( y c o s x 2 x e y ) d x ( s i n x x 2 e y 2 ) d y 0
是全微分方程,并求它的通解。 解:由于 M (x ,y ) y c o sx 2 x e yN (x ,y ) s in x x 2 e y 2
dx
令 zy1n,则 dz(1n)yndy
dx
dx
d z (1 n )P (x )z (1 n )Q (x )
d x
求出此方程通解后, 换回原变量即得伯努利方程的通解。
例 湖泊的污染
设一个化工厂每立方米的废水中含有3.08kg盐酸, 这些废水流入一个湖泊中,废水流入的速率20 立方米每小时. 开始湖中有水400000立方米. 河水 中流入不含盐酸的水是1000立方米每小时, 湖泊 中混合均匀的水的流出的速率是1000立方米每小 时,求该厂排污1年时, 湖泊水中盐酸的含量。 解: 设t时刻湖泊中所含盐酸的数量为 x ( t )
第6章-微分方程

dQ dt
kQ .
解得
Q t Ce .
把t = 0代入其中求得C= Q0. 由条件得Q(240) = 0.9Q0,代入得 0.9 Q0 = Q0 e240k, 解得 k = ( ln 0.9)/240 -0.000439. 因此,所求特解为 Q(t) = Q0e-0.000439t.
例5(陨石的挥发)
陨石挥发的速度与陨石的表
面积成正比. 若假设陨石是质量均匀的球体,试求出 陨石的质量m关于时间t的函数表达式.
解 设t时刻陨石的半径为r(t),质量为m(t),表面积为s(t). 由题意得
s t 4 r
d m (t ) dt
2
ks t 其 中 k 0 .
u
2
x
2
u
2
y
2
0.
把常微分方程称为微分方程或简称为方程.
微分方程中出现的未知函数的最高阶导数的 阶数,叫做该方程的阶 ,例如
x2y + 2xy - y + 5y = e x 和 y(5) + 3y(4) -5xy - y = 0 分别是3阶和5阶微分方程. n阶微分方程的一般形式是 F(x, y, y,…,y(n)) = 0,
利息,同时每个月获得的利息存在银行也可生利息).
如果存款时间很长,可把资金看成时间的连续函数. 假定该款存入后在时刻t的资本总额(连本带利)为
s(t). 于是,资金函数s(t)就是如下初值问题的解:
r s '( t ) 1 0 0 s ( t ) . s |t 0 s 0
例7(Logistic模型 )设对某种传染病,某个居民区有
y
x0
WJF8-5线性微分方程的性质与解的结构

如果y1 ( x ), y2 ( x )中的任意一个都不是另一个的常数倍,
y1 ( x ) 即 不恒等于非零常数, 则称y1 ( x )与y2 ( x )线性无关, y2 ( x ) 否则称y1 ( x )与y2 ( x )线性相关。
定理8.2 如果y1 ( x ), y2 ( x )是方程(1)的两个线性无关的解, 则 y C1 y1 C 2 y2 就是方程(1)的通解. 如 y1 cos x和y2 sin x是方程 y y 0的两个线性无关解.
方程(1)的任何两个线性无关的 特解称为基解组.
三、线性非齐次微分方程解的结构
定理8.3 设 y1 ( x ) 是二阶非齐次线性方程 y P ( x ) y Q( x ) y f ( x ) ( 2) 的一个特解, y2 ( x ) 是对应的齐次方程(1)的通解, 那么 Y y1 ( x ) y2 ( x ) 是方程(2)的通解. 证 因为 y1 P ( x ) y1 Q( x ) y1 f ( x ) 且 y P ( x ) y Q( x ) y2 0 2 2 则 Y P ( x )Y Q( x )Y ( y1 y2 ) P ( x )( y1 y2 ) Q( x )( y1 y2 ) [ y1 P ( x ) y1 Q( x ) y1 ] [ y P ( x ) y Q( x ) y2 ] f ( x ) 2 2
y P ( x ) y Q( x ) y f 2 ( x ) 和 的解, 则 y1 ( x ) y2 ( x ) 是方程 y P ( x ) y Q( x ) y f1 ( x ) f( x ) y Q( x ) y 0 (1)
二、线性齐次微分方程解的结构
常微分方程的求解

18—1 常微分方程数值解法2§1 引言§2 Euler 方法§3 Runge -Kutta 方法§4 单步法的收敛性与稳定性§5 线性多步法§6 方程组与高阶方程的情况§7 边值问题的数值解法3§1 引言微分方程:关于一个未知函数的方程,方程中含有未知函数的(偏)导数,以及自变量等,其中关于未知函数导数的最高次数称为微分方程的阶数.例如:0)()(')()(''=++−x c y x b y x a x y4实际中,很多问题的数学模型都是微分方程. 常微分方程作为微分方程的基本类型之一,在理论研究与工程实际上应用很广泛. 很多问题的数学模型都可以归结为常微分方程. 很多偏微分方程问题,也可以化为常微分方程问题来近似求解.微分方程的应用情况5对于一个常微分方程:'(,) ,[,]dy y f x y x a b dx==∈为了使解存在,一般要对函数f 施加限制条件,例如要求f 对y 满足Lipschitz 条件:1212(,)(,)f x y f x y L y y −≤−6同时,一个有解的微分方程通常会有无穷多个解例如cos() sin(),dyx y x a a R dx=⇒=+∀∈为了使解唯一,需要加入一个限定条件. 通常会在端点出给出,如下面的初值问题:(,),[,]()dyf x y x a b dx y a y ⎧=∈⎪⎨⎪=⎩7常微分方程的解是一个函数,但是,只有极少数特殊的方程才能求解出来,绝大多数是不可解的.并且计算机没有办法对函数进行运算. 一般考虑其近似解法,一种是近似解析法,如逼近法、级数解法等,另一种是本章介绍的数值解法.8§2 Euler 方法92-1 Euler 公式对常微分方程初值问题:⎩⎨⎧==00')(),(y x y y x f y 数值求解的关键在于消除其中的导数项——称为离散化. 利用差商近似逼近微分是离散化的一个基本途径.10现在假设求解节点为),,1,0(m i ih a x i "=+=,其中ma b h −=为步长,这些节点相应的函数值为)(,),(1m x y x y ". 在点n x 处,已知))(,()('n n n x y x f x y =用n x 的向前差商nn n n x x x y x y −−++11)()(近似代替)('n x y ,如§1,则得到所谓的Euler 公式1(,)n n n n y y hf x y +=+——单步、显式格式11Euler 公式的局部截断误差:假设)(n n x y y =情况下,11)(++−n n y x y 称为局部截断误差.'''2311''23()()()()()2()(,()(()))2n n n n n n n n n y x y x y y x hy x h O h y x h y x f x y x h O h ++−=+++−−=+故有)(2)(''211n n n x y h y x y ≈−++. 122-2 后退的Euler 公式同样对常微分方程初值问题,在1+n x 点,已知))(,()(111'+++=n n n x y x f x y ,如果用向后差商hx y x y n n )()(1−+代替)(1'+n x y ,则得到后退的Euler 公式:111(,)n n n n y y hf x y +++=+——单步、隐式格式13相对于以上可以直接计算1+n y 的Euler 公式(显式),上式是隐式公式. 一般来讲,显式容易计算,而隐式具有更好的稳定性.求解上述公式,通常使用迭代法:对于给定的初值)0(1+n y,计算(1)()111(,)(0,1,)k k n n n n y y f x y k ++++=+=", 如果)(1lim k n k y +∞→收敛,则其极限必满足上述后退Euler 公式.14局部截断误差:假设)(n n x y y =,则),()(111++++=n n n n y x hf x y y .由于)]()[,())(,(),(1111111+++++++−+=n n n y n n n n x y y x f x y x f y x f η且''''2111(,())()()()()n n n n n f x y x y x y x hy x O h +++==++15则有'2''31111(,)[()]()()()()n y n n n n n n y hf x y y x y x hy x h y x O h η++++=−++++将此式减去式2'''31()()()()()2n n n n h y x y x hy x y x O h +=+++ 可得,2''311111()(,)[()]()()2n n y n n n n h y x y hf x y x y y x O h η+++++−=−−+16考虑到21111(,)()1(,)y n y n hf x O h hf x ηη++=++−,则有22''3''11()()()()22n n n n h h y x y y x O h y x ++−=−+≈−172-3 梯形公式由于上述两个公式的局部截断误差绝对值相等,符号相反,故求其算术平均得到梯形公式:111[(,)(,)]2n n n n n n hy y f x y f x y +++=++——单步、隐式格式18梯形法同样是隐式公式,可用下列迭代公式求解:(0)1(1)()111(,)[(,)(,)]2n n n n k k n n n n n n y y hf x y h y y f x y f x y +++++⎧=+⎪⎨=++⎪⎩局部截断误差:类似于后退Euler ,可计算出)(12)('''311n n n x y h y x y −≈−++192-4 改进的Euler 公式上述用迭代法求解梯形公式虽然提高了精度,但计算量也很大. 实际上常采用的方法是,用Euler 公式求得初始值(预测),然后迭代法仅施行一次(校正)——改进的Euler 公式:1111(,)[(,)(,)]2n n n n n n n n n n y y f x y hy y f x y f x y ++++⎧=+⎪⎨=++⎪⎩20估计上式中第二式当1+n y 为准确值时的局部截断误差:''11113(3)()()(()[()()])2()12n n n n n n n hy x y y x y x y x y x hy x ++++−=−++≈−212-5 Euler 两步公式如果用中心差商hx y x y n n 2)()(11−+−代替)('n x y ,则得Euler 两步公式112(,)n n n n y y hf x y +−=+——两步、显式格式22假设1−n y 及n y 均为准确值,利用Taylor 展式容易计算Euler 两步公式的局部截断误差为:11113(3)()()(()2(,()))()3n n n n n n n y x y y x y x hf x y x h y x +++−−=−+≈23此式与梯形公式相结合,得到如下的预测-校正公式:111112(,)[(,)(,)]2n n n n n n n n n n y y hf x y hy y f x y f x y −++++⎧=+⎪⎨=++⎪⎩假设第一式中的1−n y 及n y ,以及第二式中的n y 及1+n y 均是准确值,则有,2441)()(1111−≈−−++++n n n n y x y y x y 从而可得以下的事后估计式,111111114()()51()()5n n n n n n n n y x y y y y x y y y ++++++++⎧−≈−−⎪⎪⎨⎪−≈−⎪⎩25可以期望,以上式估计的误差作为计算结果的补偿,可以提高计算精度.以n p 及n c 分别表示第n 步的预测值和校正值,则有以下的“预测-改进-校正-改进”方案(其中在1+n p 与1+n c 尚未计算出来的前提下,以n n c p −代替11++−n n c p :26预测:'112n n n hy y p +=−+预测的改进:)(5411n n n n c p p m −−=++计算:),(11'1+++=n n n m x f m校正:)(2'1'1++++=n n n n m y hy c校正的改进:)(511111++++−+=n n n n c p c y计算:),(11'1+++=n n n y x f y27例 用Euler 方法求解初值问题2'[0,0.6](0)1y y xy x y ⎧=−−∈⎨=⎩取0.2h =,要求保留六位小数. 解:Euler 迭代格式为2210.2()0.80.2k k k k k k k k y y y x y y x y +=+−−=−因此2821000(0.2)0.80.20.8y y y x y ≈=−= 22111(0.4)0.80.20.6144y y y x y ≈=−=23222(0.6)0.80.20.461321y y y x y ≈=−=29例 用改进的Euler 方法求解初值问题2'sin 0[0,0.6](0)1y y y x x y ⎧++=∈⎨=⎩取0.2h =,求(0.2),(0.4)y y 的近似值,要求保留六位小数.解:改进的Euler 格式为212211110.2(sin )0.2(sin sin )2k k k k k k k k k k k k k y y y y x y y y y x y y x +++++⎧=+−−⎪⎨=+−−−−⎪⎩30即,222110.820.08sin 0.1(0.80.2sin )sin k k k k k k k k y y y x y y x x ++=−−−则有1(0.2)0.807285y y ≈=,2(0.4)0.636650y y ≈=31§3 Runge -Kutta 方法Def.1如果一种方法的局部截断误差为)(1+p h O ,则称该方法具有p 阶精度. 323-2 Runge —Kutta 方法的基本思想上述的Taylor 级数法虽然可得到较高精度的近似公式,但计算导数比较麻烦. 这里介绍不用计算导数的方法.))(,()()()('1h x y h x f h x y hx y x y n n n n n θθθ++=+=−+——平均斜率.33如果粗略地以),(n n y x f 作为平均斜率,则得Euler 公式;如果以221K K +作为平均斜率,其中),(1n n y x f K =,),(112hK y x f K n n +=+,则得改进的Euler 公式.343-3 二阶的Runge -Kutta 方法对点n x 和)10(≤<+=+p ph x x n p n ,用这两点斜率的线性组合近似代替平均斜率,则得计算公式:11122121()(,)(,)n n n n n p n y y h K K K f x y K f x y phK λλ++⎧=++⎪=⎨⎪=+⎩35现确定系数p ,,21λλ,使得公式具有二阶精度. 因为,取n y 为()n y x ,则'1(,)(,())'()n n n n n nK f x y f x y x y x y === 再把2K 在),(n n y x 处展开,有36'21(,)(,)n p n n n n K f x y phK f x ph y phy +=+=++代入可得,'2''31122()()n n n n y y hy ph y O h λλλ+=++++'2(,)(,)(,)()n n x n n y n n n f x y f x y ph f x y phy O h =+⋅+⋅+'2(')(,)()n x y n n y ph f f y x y O h =+⋅+⋅+'''2()n n y ph y O h =+⋅+37相比较二阶Taylor 展开''2'12n n n n y h hy y y ++=+,有,⎪⎩⎪⎨⎧==+211221p λλλ满足此条件的公式称为二阶Runge -Kutta 公式.38可以验证改进的Euler 公式属于二阶Runge -Kutta 公式. 下列变形的Euler 公式也是二阶Runge -Kutta 公式:12121(,)(,)22n n n n n n y y hK K f x y h h K f x y K +⎧⎪=+⎪=⎨⎪⎪=++⎩393-4 三阶Runge -Kutta 公式同二阶Runge -Kutta 公式,考虑三点,,(01)n n p n q x x x p q ++≤≤≤试图用它们的斜率321,,K K K 的线性组合近似代替平均斜率,即有如下形式的公式:1112233121312()(,)(,)(,())n n n n n n n n y y h K K K K f x y K f x ph y phK K f x qh y qh rK sK λλλ+=+++⎧⎪=⎪⎨=++⎪⎪=+++⎩40把32,K K 在),(n n y x 处展开,通过与)(1+n x y 在n x 的直接Taylor 展式比较,可确定系数s r q p ,,,,,,321λλλ,满足下式,从而使得上述公式具有三阶精度,41特别地,2,1,1,21,32,61231=−======s r q p λλλ是其一特例.123232223311213161p q p q pqs r s λλλλλλλλ++=⎧⎪⎪+=⎪⎪⎪+=⎨⎪⎪=⎪⎪+=⎪⎩423-5 四阶Runge -Kutta 公式相同的方法,可以导出下列经典的四阶Runge -Kutta 公式:112341213243(22)6(,)(,)22(,)22(,)n n n n n n n n n n h y y K K K K K f x y h h K f x y K h h K f x y K K f x h y hK +⎧=++++⎪⎪=⎪⎪⎪=++⎨⎪⎪=++⎪⎪=++⎪⎩43例 用经典四阶Runge —Kutta 方法求解初值问题'83[0,0.4](0)1y y x y =−⎧∈⎨=⎩,取0.2h =,求(0.4)y 的近似值,要求保留六位小数.解:四阶Runge —Kutta 格式为44112341211123122241330.2(22)6(,)830.2(,)83(0.1) 5.6 2.120.2(,)83(0.1) 6.32 2.372(,0.2)83(0.2) 4.208 1.578k k k k k k k k k k k kk k k k ky y K K K K K f x y y K f x y K y K yK f x y K y K y K f x y K y K y ++++⎧=++++⎪⎪==−⎪⎪⎪=+=−+=−⎨⎪⎪=+=−+=−⎪⎪⎪=+=−+=−⎩则10.5494 1.2016k k y y +=+,45故12(0.2) 2.3004,(0.4) 2.4654y y y y ≈=≈=.注:由准确解382()33xy x e −=−可得(0.2) 2.300792,(0.4) 2.465871y y ==46§5 线性多步法基本思想:在计算1+i y 之前,已计算出一系列的近似值i y y ,,1",如果充分利用这些已知信息,可以期望会获得更高精度的)(1+i x y 的近似值1+i y .基本方法:基于数值积分与基于Taylor 展开的构造方法.475-1 基于数值积分的构造方法对方程),('y x f y =两边从i x 到1+i x 积分,则得∫++=+1),()()(1i ix x i i dxy x f x y x y 设)(x P r 是f (x , y )的插值多项式,由此可得以下的一般形式的计算公式:∫++=+1)(1i ix x r i i dxx P y y 48例 取线性插值))(,())(,()(11111+++++−−+−−=i i i i ii i i i i r x y x f x x x x x y x f x x x x x P ,则得到梯形法:)],(),([2111+++++=i i i i i i y x f y x f hy y495-2 Adams 显式公式在区间],[1+i i x x 上利用r +1个数据点),(,),,(),,(11r i r i i i i i f x f x f x −−−−"构造插值多项式)(x P r ,由牛顿后插公式(注意到:j i j i j f f −Δ=∇)j i jrj j i r f j t th x P −=Δ⎟⎟⎠⎞⎜⎜⎝⎛−−=+∑0)1()(其中!)1()1(j j s s s j s +−−=⎟⎟⎠⎞⎜⎜⎝⎛". 50可得10rj i i rj i jj y y h f αΔ+−==+∑——Adams 显式公式其中1(1)j j t dt j α−⎛⎞=−⎜⎟⎝⎠∫,它可写成:∑=−++=rj ji rj i i f h y y 01β515-3 Adams 隐式公式在区间],[1+i i x x 上利用r +1个数据点),(,),,(),,(1111+−+−++r i r i i i i i f x f x f x "构造插值多项式)(x P r ,由牛顿后插公式101)1()(+−=+Δ⎟⎟⎠⎞⎜⎜⎝⎛−−=+∑j i jrj ji r f j t th x P 可得*11rj i i rj i j j y y h f α+−+==+Δ∑——Adams 隐式公式52其中01(1)jj t dt j −−⎛⎞α=−⎜⎟⎝⎠∫,它又可写成: *11ri i rj i j j y y h f β+−+==+∑535-4 Adams 预测-校正公式以r =3时的Adams 显式与隐式公式为例. 此时,显式公式为)9375955(243211−−−+−+−+=i i i i i i f f f f hy y 利用Taylor 展式,容易计算局部截断误差为)(720251)5(5i x y h . 54)5199(242111−−+++−++=i i i i i i f f f f hy y 同样利用Taylor 展开可得,其局部截断误差为5(5)19()720i h y x −. 隐式公式为55⎪⎩⎪⎨⎧+−++=−+−+=−−+++−−−+)519),(9(24)9375955(24211113211i i i i i i i i i i i i i f f f y x f hy y f f f f h y y 注 利用2-5节的相同作法同样可以构造更精确的计算过程.可构造利用显式预测,隐式校正的计算公式:56§6 方程组与高阶方程的情形6-1 一阶方程组常微分方程初值问题为⎩⎨⎧==00)(),('y x y y x f y 此时T m y y y ),,(1"=,Tm f f f ),,(1"=. 此时上述的一切方法均可使用,只是注意y 与f 此时为向量.576-2 化高阶方程为一阶方程组解下列的m 阶方程()(1)'(1)(1)000000(,,',,)(),'(),,()m m m m y f x y y y y x y y x y yx y −−−⎧=⎨===⎩""令)1(21,,',−===m m y y y y y y ",则有58'12'23'1'12(,,,,)m m m m y y y y y yy f x y y y −⎧=⎪=⎪⎪⎨⎪=⎪⎪=⎩#"初始条件为:)1(00'002001)(,,)(,)(−===m m y x y y x y y x y "。
常微分方程的常见解法

曲线(称为积分曲线),且 fx,x就是该曲线上
的点 x,x处的切线斜率,特别在 x0, y0切线斜率 就是 f x0,y0 尽管我们不一定能求出方程 1.3.1 的 解,但我们知道它的解曲线在区域D中任意点 x, y
的切线斜率是 f x, y。 如果我们在区域D内每一点 x, y 处,都画上一个
可化为齐次方程的方程
形如
dyf(a xb yc) dx a1b1yc1
的方程可化为齐次方程.
其中 a,b,c,a1,b1,c1都是常数.
1. 当 cc10时, 此方程就是齐次方程.
2. 当 c2c120 时, 并且
ab
(1)
a1
0 b1
此时二元方程组 axbyc0 a1xb1yc0
有惟一解 x,y.
例,且融化过程中它始终为球体,该雪球在
开始时的半径为6cm ,经过2小时后,其半径缩
小为3cm。求雪球的体积随时间变化的关系。
解:设t时刻雪球的体积为 V ( t ) ,表面积为 S ( t ) ,
由题得
dV(t) kS(t)
dt
12 2
球体与表面积的关系为 S(t)(4)333V3
12
引入新常数r (4)333k 再利用题中的条件得
或
x
y
F (x ,y )x 0M (s ,y ) d s y 0N (x 0 ,s ) d
s
例:验证方程
( y c o s x 2 x e y ) d x ( s i n x x 2 e y 2 ) d y 0
是全微分方程,并求它的通解。 解:由于 M (x ,y ) y c o sx 2 x e yN (x ,y ) s in x x 2 e y 2
5-8-用常微分方程求解实际问题

解此初值问题得 故 令
Q = 3(1 − e
)
− 1 C (t ) = (1 − e 20
10 − 4 t 3
)
C ( t ) = 0.1% ,代入上式得 t = −30000 ln 0.08 = 606(min) = 10h6 min
即从开始抽烟,经过 10 小时 6 分钟后,房间内空气中的一氧化碳含量达到 0.1% 的浓度.
《微积分 A》习题解答
习题 5.8(P338)
1. 一圆柱形水桶内有 40 L 盐溶液,每升溶液中含盐 1kg . 现有质量浓度为 1.5kg / L 的盐溶 液以 4 L / min 的流速注入桶内,搅拌均匀后以 4 L / min 的速度流出. 求任意时刻桶内溶液 所含盐的质量. 解:设 m = m ( t ) 为时刻 t 的含盐量,则时刻 t 流出的溶液的浓度为
积分得
−
2 b2
当 t = 0 时, y = H , u = a − b H 代入 ( 3) 得
C=
2 b2
[a − b H − a ln( a − b H )]
代入 ( 3) 得
t=
2R 2 ⎡ a−b H ⎤ u − a + b H + a ln ⎢ ⎥ u b2 ⎣ ⎦ 2R 2 ( H− b R2 cr22 y)+ 2R 2 b
《微积分 A》习题解答
因而得初值问题
⎧ dW = 0.05W − 2 ⎪ ⎨ dt ⎪ ⎩W t = 0 = W 0
W ( t ) = 40 + (W 0 − 40)e 0.05 t
0.05 t
解此初值问题得
当 W 0 = 30 时, W = 40 − 10e 即此时净资产为 0 ;
微分方程建模 个例

A1
C
C1
分析:1.追击开始后,大家将进入正方 A 形里面,距离将变小,由于追击的规则 及四个人速度和方向的假定,四人还是 在某个正方形的顶点上。 2.会不会出现四个人绕一个圆循环追? 不会!距离会不断缩小最后到一点,就 是正方形的中心。追击曲线是四条指向 D1 中心的螺旋线(可能绕中心几周) 3.坐标架怎么建? D O点在中心,直角坐标架。
2H g
2.二氧化碳的吸收
空气通过盛有CO2的吸收剂的圆柱形器皿,已知它吸收CO2的量与 CO2的浓度及吸收层的厚度成正比,今有含CO28%的空气通过厚度 为10cm的吸收层后浓度为2%,求: (1)若吸收层变为30cm厚,出口浓度是多少? (2)要使出口浓度为1%,应该设多厚的吸收层? 解: 记吸收层厚度为d,等分n份,每小层d/n厘米。入口浓 度为8%,在每小层看吸收量,第一层后被吸收量为: kd k8%d/n,含量变为: 8%(1)
v0t y x(0) 0 y , 就是曲线的切向量, 1 x y (0) 0
Q(1,v0t) 模型里y(t),x(t)都是t的函数,但是三个 变量不好处理,注意我们要求的是y(x)。 P(x,y) O 1 x
(1 x) y y v0t实现了变量t的分离
再建立一个y(t),x(t),t的关系:t时间里导弹已 飞行的距离是可求的。 x 1 y2 dx 5v0t (1 x) y y v0t , x0 0, y0 0
v r (0) 2 2 , (2r cos dx cos dr r sin d dx r sin cos d , , y r sin dy sin dr r cos d dy r cos sin dr d 1 sin cos dx dr r r cos r sin dy
常微分方程及其应用

第5章 常微分方程及其应用习题5.21.求下列各微分方程的通解:(1)02=+ydy dx x ; (2)0ln =-'y y y x ; (3)0)()(22=-++dy y x y dx x xy ; (4)03=-'xy y ; (5)xe y y =-'2; (6)x x y y cos tan +='.2.求下列各微分方程满足所给初始条件的特解: (1)yx ey -='2,0)0(=y ; (2)011=+-+dy xy dx y x ,1)0(=y ; (3)x y y cos =-',0)0(=y ; (4)x x y y sec tan =-',0)0(=y ; (5)xx x y y sin =+',1)(=πy ; (6)()0122=+-+dx x xy dy x ,0)1(=y . 5.3 可降阶微分方程及二阶常系数线性微分方程案例引入 求微分方程x y 6=''的通解. 解 两边积分,得1236C x xdx y +=='⎰两边再积分,得 ()213123C x C x dx C xy ++=+=⎰所以,原方程的通解为213C x C x y ++=,其中21C C 、为任意常数.5.3.1 可降阶微分方程 1. 形如)()(x f yn =的微分方程特点:方程右端为已知函数)(x f . 解法:对)()(x f yn =连续积分n 次,即可得含有n 个任意常数的通解.2. 形如),(y x f y '=''的微分方程 特点:方程右端不显含未知函数y .解法: 令)(x p y =',则)(x p y '=''.于是,原方程可化为),(p x f p ='.这是关于p p ',的一阶微分方程.设其通解为),()(1C x x p ϕ=,即),(1C x y ϕ='.两边积分,即可得原方程通解21),(C dx C x y +=⎰ϕ,其中21C C 、为任意常数.3. 形如),(y y f y '=''的微分方程 特点:方程右端不显含自变量x . 解法:令)(y p y =',则dydp p dy dp y dx dy dy dp y ='=⋅=''.于是,原方程可化为 ),(p y f p p ='.这是关于p p ',的一阶微分方程.设其通解为),()(1C y y p ψ=,即 ),(1C y dx dyψ=.分离变量,得dx C y dy =),(1ψ.然后两边积分,即可得原方程通解 21),(C x C y dy+=⎰ψ,其中21C C 、为任意常数.例5-7 求微分方程x x y cos sin -='''的通解.解 两边积分,得12sin cos )cos (sin C x x dx x x y +--=-=''⎰两边再积分,得()2112cos sin 2sin cos Cx C x x dx C x x y +++-=+--=⎰第三次积分,得()322121sin cos 2cos sin C x C x C x x dx C x C x x y ++++=+++-=⎰所以,原方程的通解为3221sin cos C x C x C x x y ++++=,其中321C C C 、、为常数.例5-8 求微分方程0='-''y y x 的通解.解 令)(x p y =',则)(x p y '=''.原方程可化为0=-'p p x ,即01=-'p xp .这是关于p p ',的一阶线性齐次微分方程.其通解为:x C e C eC x p x dxx 1ln 111222)(==⎰=,即x C y 12='.两边积分,即得原方程通解22112C x C dx x C y +==⎰,其中21C C 、为任意常数.例5-9 求微分方程x xe y xy -='-''1的通解. 解 令)(x p y =',则)(x p y '=''.于是,原方程可化为x xe p xp -=-'1.这是关于p p ',的一阶线性非齐次微分方程.其通解为⎥⎦⎤⎢⎣⎡+⎰⎰=⎰--1112)(C dx e xe e x p dx xx dx x ()1ln ln 2C dx e xee x xx +=⎰--()12C dx exx+=⎰-()12C e x x +-=-即()12C ex y x+-='-.两边积分,即得原方程通解()()⎰⎰+-=+-=--dx x C xedx C e x y xx 1122()21x C e xd x +=⎰-21x C dx e xe x x +-=⎰--221)1(C x C e x x +++=-其中21C C 、为任意常数.例5-10 求微分方程()02='-''y y y 的通解.解 令)(y p y =',则)(y p p y '=''.于是,原方程可化为02=-'p p yp ,即01=-'p yp .这是关于p p ',的一阶线性齐次微分方程.其通解为 y C e C eC y p y dyy 1ln 111)(==⎰=,即y C y 1='.所以原方程通解为x C dxC e C e C y 1122=⎰=,其中21C C 、为任意常数.5.3.2 二阶常系数齐次线性微分方程 定义5.4 形如常数 0为、,q p qy y p y =+'+'' (5-5) 的微分方程,称为二阶常系数齐次线性微分方程.1. 二阶常系数齐次线性微分方程解的结构定理5.1 如果函数)(1x y 和)(2x y 是方程(5-5)的两个解,那么为任意常数)()(212211C C x y C x y C y 、,+= (5-6) 也是方程(5-5)的解.(证明略)定理 5.1表明,二阶常系数齐次线性微分方程的解具有叠加性.那么叠加起来的解)()(2211x y C x y C y +=就是通解吗?不一定.例如,设函数)(1x y 是方程(5-5)的一个解,则函数)(2)(12x y x y =也是方程(5-5)的一个解.由定理5.1可知,)()2()(2)(1211211x y C C x y C x y C y +=+=是方程(5-5)的解.但C C C =+212仍是一个任意常数,所以)()()2(1121x Cy x y C C y =+=不是方程(5-5)的通解.那么在什么条件下才能保证)()(2211x y C x y C y +=就是通解呢?定义5.5 设)(1x y 和)(2x y 是定义在某区间I 上的两个函数,如果存在两个不全为零的常数1k 和2k ,使0)()(2211=+x y k x y k 在区间I 上恒成立,则称函数)(1x y 与)(2x y 在区间I 上线性相关,否则称线性无关.由定义5.5可知,判断函数)(1x y 与)(2x y 线性相关或线性无关的方法: 当=-=2112)()(k k x y x y 常数时,)(1x y 与)(2x y 线性相关.当≠)()(12x y x y 常数时,)(1x y 与)(2x y 线性无关.定理 5.2 如果函数)(1x y 和)(2x y 是方程(5-5)的两个线性无关的特解,那么 (5-6)是方程(5-5)的通解.(证明略)2. 二阶常系数齐次线性微分方程的解法由上述关于解的结构分析可知,欲求方程(5-5)的通解,首先需讨论如何求出方程(5-5)的两个线性无关的特解.猜想方程(5-5)有形如rx e y =的解,其中r 为待定常数.将rxe y =代入该方程,得0)()()()(22=++=++=+'+''rx rx rx rx rx rx rx e q pr r qe pre e r e q e p e ,由于0≠rx e ,所以只要r 满足方程为常数、,q p q pr r 02=++ (5-7)即当r 是方程(5-7)的根时,函数rxe y =就是方程(5-5)的解.定义5.6 方程(5-7)称为方程(5-5)的特征方程.特征方程的根称为特征根. 设21r r 、为特征方程(5-7)的两个特征根.根据特征根的不同情形,确定方程(5-5)的通解有以下三种情况:(1)若方程(5-7)有两个不相等的实根21r r ≠,则xr e y 11=和xr ey 22=是方程(5-5)的两个线性无关的特解,故方程(5-5)的通解为x r xr e C e C y 2121+=,其中21C C 、为任意常数.(2)若方程(5-7)有两个相等实根221p r r r -===,则仅得到一个特解rxe y =1,利用常数变易法可得到与rxe y =1线性无关的另一个特解rxxe y =2,故方程(5-5)的通解为x r xr xe C eC y 21+=,其中21C C 、为任意常数.(3)若方程(5-7)有一对共轭复根βαi r +=1与βαi r -=2,则xi ey )(1βα+=和x i e y )(2βα-=是方程(5-5)的两个复数特解.为便于在实数范围内讨论问题,在此基础上可找到两个线性无关的实数特解x exβαcos 和x e x βαsin .故方程(5-5)的通解为)s in cos (21x C x C e y x ββα+=,其中21C C 、为任意常数.由定理5.1可知,以上两个函数x e xβαcos 和x e x βαsin 均为方程(5-5)的解,且它们线性无关.上述依据特征根的不同情形来求二阶常系数齐次线性微分方程通解的方法,称为特征根法.一般步骤:第一步 写出所给微分方程的特征方程;第二步 求出特征根;第三步 根据特征根的三种不同情形,写出通解.(特征根与通解的关系参见表5-1)表5-1 特征根与通解的关系特征方程02=++q pr r 的两个根21r r , 微分方程0=+'+''qy y p y 的通解一 两个不相等实根21r r ≠ x r x r e C e C y 2121+=二 两个相等实根221pr r r -=== x r e x C C y )(21+=三一对共轭复根βαi r +=1,βαi r -=2)sin cos (21x C x C e y x ββα+=例5-11 求微分方程032=-'-''y y y 的通解.解 该方程的特征方程0322=--r r 的特征根为11-=r ,32=r (21r r ≠). 所以,方程的通解为x xe C eC y 321+=-.例5-12 求微分方程02=+'+''y y y 满足初始条件0)0(=y ,1)0(='y 的特解. 解 该方程的特征方程0122=++r r 的特征根为121-==r r .所以方程的通解为x e x C C y -+=)(21上式对x 求导,得: x xe x C C eC y --+-=')(212将0)0(=y ,1)0(='y 代入上两式,解得01=C ,12=C .因此,所求特解为xxey -=.例5-13 求微分方程052=+'-''y y y 的通解.解 该方程的特征方程0522=+-r r 的特征根为i r 211+=,i r 212-=. 所以,方程的通解为)2sin 2cos (21x C x C e y x+=.5.3.3 二阶常系数非齐次线性微分方程 定义5.7 形如常数 )(为、,q p x f qy y p y =+'+'' (5-8)的微分方程,称为二阶常系数非齐次线性微分方程.1. 二阶常系数非齐次线性微分方程解的结构定理5.3 如果函数)(x y *是方程(5-8)的一个特解,)(x Y 是该方程所对应的线性齐次方程(5-5)的通解,那么)()(x y x Y y *+= (5-9)是方程(5-8)的通解.定理5.4 如果函数)(1x y *是方程)(1x f qy y p y =+'+''的特解,函数)(2x y *是方程)(2x f qy y p y =+'+''的特解,那么)()(21x y x y y ***+= (5-10)就是方程)()(21x f x f qy y p y +=+'+''的特解.2. 二阶常系数非齐次线性微分方程的解法二阶常系数齐次线性微分方程的通解问题已经解决,根据定理 5.3,求二阶常系数非齐次线性微分方程的通解的关键在于求其自身的一个特解.以下介绍当自由项)(x f 为几类特殊函数时求特解的方法:(1)xn e x P x f λ)()(=,)(x P n 是x 的n 次多项式,λ是常数微分方程的特解可设为⎪⎩⎪⎨⎧====*2,1,0,)(k k k e x Q x y x n k 是二重特征根时是单特征根时不是特征根时,λλλλ其中)(x Q n 是与)(x P n 同次待定多项式.(2)x x P x f n ωcos )()(=(或x x P n ωsin )(),)(x P n 是x 的n 次多项式,ω是常数 微分方程的特解可设为⎩⎨⎧==+=*10]sin )(cos )([k i k i x x R x x Q x y n n k是特征根时,非特征根时,,ωωωω 其中)(x Q n 和)(x R n 是与)(x P n 同次待定多项式.(3)x ex f xωλcos )(=(或x e x ωλsin ),λ与ω均为常数微分方程的特解可设为⎩⎨⎧=+=++=*1]sin cos [k i k i x B x A e x y x k 是特征根时,非特征根时,,ωλωλωωλ (4)当)(x f 为上述任意两类函数之和时,根据定理5.4处理即可. 例5-14 求微分方程132+='-''x y y 的通解.解 方程02='-''y y 的特征方程022=-r r 的特征根为21=r ,02=r .于是方程02='-''y y 的通解为221C e C y x +=又因为13)(+=x x P n ,0=λ是单特征根,所以原方程的特解可设为)()(B Ax x x xQ y n +==*代入原方程,解得43-=A ,45-=B .故原方程的通解为 x x C e C y x 45432221--+=.例5-15 求微分方程xe y y y 23=+'+''的一个特解.解 方程0=+'+''y y y 的特征方程012=++r r 的特征根为i r 23211+-=,i r 23212--=.x e x f 23)(=,2=λ非特征根,所以原方程的特解可设为 x Ae y 2=*代入原方程,解得73=A .故所求特解为x e y 273=*. 例5-16 求微分方程xxey y y 223-=+'+''的一个特解.解 方程023=+'+''y y y 的特征方程0232=++r r 的特征根为21-=r ,12-=r .x xe x f 2)(-=,x x P n =)(,2-=λ是单特征根,所以原方程的特解可设为x e B Ax x y 2)(-*+=代入原方程,解得21-=A ,1-=B .故所求特解为xe x x y 2)12(-*--=. 例5-17 求微分方程x y y sin =+''的通解.解 方程0=+''y y 的特征方程012=+r 的特征根为i r =1,i r -=2.于是方程0=+''y y 的通解为x C x C y sin cos 21+=又因为x x f sin )(=,i i =+ωλ是特征根,所以原方程的特解可设为)sin cos (x B x A x y +=*代入原方程,解得21-=A ,0=B .故原方程的通解为 x x x C x C y cos 21sin cos 21-+=.例5-18 求微分方程x x y y 2cos =+''的一个特解.解 方程0=+''y y 的特征方程012=+r 的特征根为i r =1,i r -=2.x x x f 2cos )(=,i i 2=+ωλ不是特征根,所以原方程的特解可设为x D Cx x B Ax y 2sin )(2cos )(+++=*代入原方程,解得31-=A ,0=B ,0=C ,94=D .故所求特解为x x x y 2sin 942cos 31+-=*.例5-19 求微分方程x e y y y x2cos 3=-'+''的一个特解.解 方程03=-'+''y y y 的特征方程0132=-+r r 的特征根为213231+-=r ,213232--=r .x e x f x2cos )(=,i i 21+=+ωλ不是特征根,所以原方程的特解可设为)2sin 2cos (x B x A e y x +=*代入原方程,解得1011-=A ,10110=B .故所求特解为 )2sin 101102cos 1011(x x e y x +-=*.例5-20 求微分方程x e y y y xsin 212+=+'-''的一个特解.解 方程02=+'-''y y y 的特征方程0122=+-r r 的特征根为121==r r .xe xf 21)(1=,x x f sin )(2=,1=λ是二重特征根,i i =ω不是特征根,所以两个分解方程的特解可分别设为x e Ax y 21=*与x C x B y sin cos 2+=*分别代入两个分解方程,解得41=A ,21=B ,0=C .故所求特解为x e x y x cos 21412+=*.习题5.31.求下列各微分方程的通解:(1)x x y sin +=''; (2)xxe y ='''; (3)0='+''y y x ; (4)x xe y xy ='-''1;(5)2)(1y y '+=''; (6)0)(122='-+''y yy . 2.求下列各微分方程满足所给初始条件的特解:(1)x e y 2=''',0)1()1()1(=''='=y y y ;(2)0)(32='-''y y ,0)0(=y ,1)0(-='y .3.判断下列各函数组是线性相关还是线性无关:(1)x 与2x ;(2)x e 2与x e 26;(3)x 与x xe ;(4)x e x cos 与x e xsin . 4.求下列各微分方程的通解:(1)0='-''y y ; (2)04=+''y y ;(3)02510=+'-''y y y ; (4)0=+'+''y y y .5.求下列各微分方程满足所给初始条件的特解:(1)034=+'-''y y y ,6)0(=y ,10)0(='y ;(2)044=+'-''y y y ,1)0(=y ,4)0(='y .6.求下列各微分方程的一个特解:(1)1332+=-'-''x y y y ; (2)x ey y y 244=+'-''; (3)x e y y y x sin 22-=+'-''; (4)x x y y sin 14++=+''.7.求下列各微分方程的通解:(1)22x y y y =+'-''; (2)xe y y y =-'+''32;(3)x e y y x cos +=+''; (4)x x y y y 2cos 2+=-'-''.8.求下列各微分方程满足所给初始条件的特解:(1)523=+'-''y y y ,1)0(=y ,2)0(='y ;(2)x xe y y 4=-'',0)0(=y ,1)0(='y .5.4 微分方程应用举例微分方程在实践中有着广泛的应用.在实际应用中,常常需要应用微分方程寻求实际问题中的未知函数.而要建立微分方程,除了需要数学知识外,往往还需要许多专业方面的知识.本节通过举例来介绍微分方程在几何学、电工学及力学方面的一些简单应用.例5-21 曲线L 上点),(y x M 处的法线与x 轴的交点为N ,且线段MN 被y 轴平分.求曲线L 的方程.解 如图5-2,设曲线的方程为)(x y y =.先建立法线MN 的方程.设法线上的动点坐标为),(Y X ,由于法线MN 的的斜率为y k '-=1法,于是法线MN 的方程为 )(1x X yy Y -'-=- 又因为线段MN 被y 轴平分,从而MN 与y 轴交点坐标为)2,0(yP ,代入上式,得 )0(12x y y y -'-=-,即x y y 2-=' 用分离变量法解得C y x =+222,其中C 为任意正数.yy M (x ,y )L xN O x图5—2例5-22 设有一C R 电路如图5-3所示,电阻Ω10=R ,电容F C 1.0=,电源电压)(sin 10V t u =,开关K 闭合前,电容电压0=C u ,求开关K 闭合后电容电压随时间而变化的规律)(t u C .KuCiR图5-3解 设开关K 闭合后电路中的电流为)(t i ,电容极板上的电荷为)(t q ,则有C Cu q =,dtdu C dt Cu d dt dq i C C ===)(, 根据回路电压定律:电容电压与电阻电压之和等于电源电压,即u Ri u C =+,于是有u dtdu RC u C C =+.将10=R ,1.0=C ,t u sin 10=代入,得t u u C C sin 10=+'.又因为开关K 闭合前,电容电压0=C u ,即0)0(=C u .从而问题转化为初值问题:⎩⎨⎧==+'0)0(sin 10CC C u t u u 用通解公式求得通解)c o s (s i n5t t Ae u t C -+=- 将初始条件0)0(=C u 代入通解,求得5=A .所以,所求特解为)cos (sin 55t t e u t C -+=-此即为所求规律)(t u C 的表达式.例5-23 设跳伞员开始跳伞后所受的空气阻力与其下落的速度成正比(比例系数为常数0>k ),起跳时的速度为0.求跳伞员下落的速度与时间之间的函数关系.解 这是一个运动问题,可利用牛顿第二定律ma F =建立微分方程.设跳伞员下落的速度与时间之间的函数关系为)(t v v =,则加速度)(t v a '=.由于跳伞员在下落过程中所受外力只有重力和空气阻力,于是有kv mg F -=,由牛顿第二定律ma F =可得速度)(t v v =应满足的微分方程为v m kv mg '=-.又因为起跳时的速度为0,即其初始条件为0)0(=v .所以,这个运动问题可化为初值问题:⎩⎨⎧='=-0)0(v v m kv mg 用分离变量法求出通解为t m k Ce kv mg -=-.将初始条件为0)0(=v 代入通解,解得mg C =.因此,所求特解为)1(t m k e kmg v --=,T t ≤≤0(T 为降落伞着地时间),此即为所求函数关系.例5-24 物体冷却过程.将某高温物体置于空气中冷却,假定空气温度恒为C ︒24,在时刻0=t 时,测得其温度为C ︒150,10分钟后测得温度为C ︒100.已知牛顿冷却定律:物体冷却速率与物体和介质的温差成正比.求物体的温度与时间的函数关系,并计算20分钟后该物体的温度.解 设物体的温度与时间的函数关系为)(t T T =.因为热量总是从温度高的物体向温度低的物体传导,从而物体随时间增加而逐渐冷却,所以冷却速率(温度的变化速度)0)(<'t T ,而物体和空气的温差恒为正.所以,根据牛顿冷却定律可得)24(--=T k dtdT .又因为在时刻0=t 时,测得其温度为C ︒150,即有150)0(=T .从而问题转化为初值问题:⎪⎩⎪⎨⎧=--=150)0()24(T T k dt dT ,其中0>k 为比例常数. 用分离变量法或通解公式解得t k e T -+=12624.将100)10(=T 代入,求得051.076126ln 101≈=k .故物体的温度与时间的函数关系为t e T 051.012624-+=.将20=t 代入,得)(6412624)20(20051.0C e T ︒≈+=⨯-.例5-25 弹簧振动问题.设有一弹簧上端固定,下端挂着一个质量为m 的物体.当弹簧处于平衡位置时,物体所受的重力与弹簧恢复力大小相等,方向相反.设给物体一个初始位移0x ,初速度0v ,则物体便在其平衡位置附近上下振动.已知阻力与其速度成正比,求振动过程中位移x 的变化规律.Ox图5-4解 建立坐标系如图5-4所示,平衡位置为原点.位移x 是时间t 的函数)(t x x =.物体在振动过程中受到弹簧恢复力f 与阻力R 的作用.由虎克定律,有kx f -=,其中0>k 为弹性系数,负号表示弹簧恢复力与位移方向相反;v R μ-=,其中0>μ为比例系数(或称阻尼系数),负号表示阻力与速度方向相反.根据牛顿第二定律ma F =,可得v kx ma μ--=.又因为)(t x a ''=,)(t x v '=,记m n μ=2,mk =2ω,0>n ,0>ω,所以上述弹簧振动问题化为初值问题:⎪⎩⎪⎨⎧='==++0022)0(,)0(02v x x x x dt dx n dt x d ω 这是一个二阶常系数齐次线性方程,其特征方程为0222=++ωnr r ,特征根为222,1ω-±-=n n r .具体情况讨论如下:(1)大阻尼情形,即ω>n .这时,特征根是两个不相等实根,所以方程的通解为t n n t n n e C e C x )(2)(12222ωω-+----+=.(2)临界阻力情形,即ω=n . 这时,特征根n r r -==21,所以方程的通解为nt e t C C x -+=)(21.(3)大阻尼情形,即ω>n . 这时,特征根是一对共轭复根i n n r 222,1-±-=ω,所以方程的通解为)sin cos (222221t n C t n C e x nt -+-=-ωω.上述三种情形中的任意常数均可由初始条件确定.这类振动问题均会因阻尼的作用而停止,称为弹簧的阻尼自由振动.习题5.41.设过点)1,1(的曲线L 上任意点),(y x M 处的切线分别与x 轴、y 轴交于点A 、B ,且线段AB 被点M 平分.求曲线L 的方程.2.在如图5-5所示的C R 电路中,已知开关S 闭合前,电容上没有电荷,电容两端电压为零,电阻为R ,电容为C ,电源电压为E .把开关S 合上,电源对电容充电,电容电压C u 逐渐升高.求电容电压C u 随时间t 变化的规律.SECiR图5-53.将温度为C ︒100的沸水注入杯中,放在室温为C ︒20的环境中自然冷却,min 5后测得温度为C ︒60.求水温与时间的函数关系,并计算水温自C ︒100降至C ︒30所需时间.4.设有一弹簧上端固定,下端挂着一个质量为kg 025.0的物体.先将物体用手拉到离平衡位置m 04.0处,然后放手,让物体自由振动.若物体所受的阻力大小与运动速度成正比,方向相反,弹簧的弹性系数m N k /625.0=,阻尼系数m s N /2.0⋅=μ.求物体的运动规律.知识拓展:马尔萨斯(Malthus )模型马尔萨斯(Malthus )模型是最简单的生态学模型.给定一个种群,我们的目的是确定种群的数量是如何随着时间发展变化的.为此,我们作出如下假设:模型假设:1.初始种群规模已知0)0(x x =,种群数量非常大,世代互相重叠,因此种群的数量可以看作是连续变化的;2.种群在空间分布均匀,没有迁入和迁出(或迁入和迁出平衡);3.种群的出生率和死亡率为常数,即不区分种群个体的大小、年龄、性别等;4.环境资源是无限的.确定变量和参数:为把问题转化为数学问题,我们首先确定建模中所需变量和参数:t :时间(自变量),)(t x :t 时刻的种群密度,b :瞬时出生率,d :瞬时死亡率. 模型的建立与求解:考察时间段],[t t t ∆+(不失一般性,设0>t ∆),由物质平衡原理,在此时间段内种群的数量满足:t t ∆+时刻种群数量t -时刻种群数量t ∆=内新出生个体数t ∆-内死亡个体数,即t t dx t t bx t x t t x ∆∆∆)()()()(-=-+亦即)()()()(t x d b tt x t t x -=-+∆∆ 令0→t ∆,可得 )(:)()()(t x t x d b dtt dx λ=-= 满足初始条件0)0(x x =的解为t t d b e x e x t x λ0)(0)(==-于是有0>λ时,即d b >,则有+∞=∞→)(lim t x t , 0=λ时,即d b =,则有0)(lim x t x t =∞→, 0<λ时,即d b <,则有0)(lim =∞→t x t . 马尔萨斯(Malthus )模型的积分曲线)(t x 呈“J ”字型,因而种群的指数增长又称为“J ”型增长.人也是一种生物种群,人口预测问题就是在马尔萨斯(Malthus )模型的基础上通过修改而得以解决。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§8-5 微分方程应用举例在前面几节,已经举了一些力学、运动学方面应用微分方程的实例,本节将再集中学习几个在其他方面的应用实例,说明微分方程在许多实际领域中都有着广泛的应用.应用微分方程解决实际问题通常按下列步骤进行:(1)建立模型:分析实际问题,建立微分方程,确定初始条件;(2)求解方程:求出所列微分方程的通解,并根据初始条件确定出符合实际情况的特解; (3)解释问题:从微分方程的解,解释、分析实际问题,预计变化趋势.例1 有一个30⨯30⨯12(m 3)的车间,空气中CO 2的容积浓度为0.12%.为降低CO 2的含量,用一台风量为1500(m 3/min )的进风鼓风机通入CO 2浓度为0.04%的新鲜空气,假定通入的新鲜空气与车间内原有空气能很快混合均匀,用另一台风量为1500(m 3/min )的排风鼓风机排出,问两台鼓风机同时开动10min 后,车间中CO 2的容积浓度为多少?解 车间体积为10800m 3.设鼓风机开动t (min )后,车间空气中CO 2的含量为x =x (t ),那么容积浓度为10800x. 记在t 到t +dt 这段时间内,车间CO 2含量的改变量为dx ,则 dx =该时间段内CO 2通入量-该时间段内CO 2排出量=单位时间进风量⨯进风CO 2的浓度⨯时间-单位时间排风量⨯排风CO 2浓度⨯时间 =1500⨯0.04%⨯dt -1500⨯10800x⨯dt , 于是有dtdx=1500⨯0.04% -1500⨯10800x即dt dx =365(4.32-x ) 初始条件x (0)=10800⨯0.12%=12.96.方程为可分离变量的方程,其通解为 x (t )=4.32+C t e365-.将初始条件代入上式,得C =8.64.于是在t 时刻车间内空气中CO 2的含量为 x (t )=4.32(1+2t e365-).所以鼓风机打开10min 后,车间中CO 2浓度为1080047.610800)10(=x =0.06%. 例2 (马尔萨斯人口方程)英国人口学家马尔萨斯在1798年提出了人口指数增长模型:人口的增长率与当时的人口总数成正比.若已知t =t 0时人口总数为x 0,试根据马尔萨斯模型,确定时间t 与人口总数x (t )之间的函数关系.据我国有关人口统计的资料数据,1990年我国人口总数为11.6亿,在以后的8年中,年人口平均增长率为14.8‰,假定年增长率一直保持不变,试用马尔萨斯方程预测2005年我国的人口总数.解 记t 时的人口总数为x =x (t ),则人口的增长率为dtdx,据人口指数增长模型为dtdx=rx (t ),(r 为比例系数,即马尔萨斯增长指数) (1) 并附初始条件:x (t 0)=x .方程是可分离变量方程,易得它的通解为x =C e rt .将初始条件x (t 0)=0x 代入,得C =x 00rt e -.于是时间t 与人口总数x (t )之间的函数关系为x (t )=x 0)(0t t r e -.将t =2005, t 0= 1990, x 0=11.6, r =0.0148代入,可预测出2005年我国的人口总数为 x |t =2005=11.6e 0.0148⨯(2005-1990) ≈14.5(亿).例3 有一由电阻、电感串接而成的电路,如图8-6所示,其中电源电动势E =E 0sin ωt ,(E 0,ω为常量),电阻R 和电感L 为常量,在t =0时合上开关S ,其时电流为零,求此电路中电流i 与时间t 的函数关系.解 由电学知识,电感L 上的感应电动势为Ldtdi,根据回路电压定律,有 E =R i+Ldtdi , 即LE i L Rdt di 0=+sin ωt , (1) 初始条件为i (0)=0.方程是一阶非齐次线性微分方程,它的通解为 i (t )=C t LR e-+2220LR E ω+ (R sin ωt -ωL cos ωt ).将初始条件i (0)=0代入上式,得C =2220LR LE ωω+.于是所求电流为 i (t )=2220L R E ω+(ωL t LR e-+ R sin ωt -ωL cos ωt ), (t ≥0).例4 轻质油料滴入静水中后会迅速扩散,在水面形成一层圆形油膜.设油膜半径的增加速度与油膜厚度成正比,滴入油料的体积为V 0,油料在水中扩散过程中的形状近似看做圆柱体,初始t =0时圆柱高度为h 0,求油膜半径与时间t 的关系. 解 设圆柱体油料半径r =r (t ),厚度h =h (t ),则在任何时刻t 有 πr 2(t )⋅h (t )=V 0. (1) 两边对t 求导,得 2πr (t )dt dr h (t )+πr 2(t )dtdh =0, 据油膜半径的增加速度与油膜厚度成正比,)(t kh dtdr=,得图8-6LS图8-72kh 2(t )+)(0t h V πdt dh =0,即 dt dh =-2k 25h V π(t ).分离变量后成为 )(25t h-dh =-2kV πdt ,两边积分得31)(23t h -=k 0V πt +C ,或h (t )=⎥⎥⎦⎤⎢⎢⎣⎡+C t V k 0(31π.代入(1),得 r (t )=31003⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+⋅C t V k V ππ (2) 由初始条件πr 2(0)h (0)=πr 2(0)h 0=V 0,得r (0)=00h V π;代入(2)得C =23)3(10kh .回代到(2),最终得油膜半径与时间t 的关系为 r (t )= 312300])(3[h V t kV ππ+.例5 一边长为3m 的立方体形状的木材浮于水面上处于平衡位置,然后向水里按下x 0(m )后松手,物体会在上面上下沉浮振动(图8-8).已知振动的周期为2s ,水的密度 为1,试求物体的质量及物体沉浮振动的规律.解 设物体的质量为m ,物体在时刻t 相对于平衡位 置的位移为x ,振动规律为x =x (t ).因为x 是相对于平衡位置的位移,物体所受重力已经被抵消,故物体在振动过程中只要考虑浮力的作用.假设x 以向下为正向.由阿基米德原理,当物体位移为x 时所受浮力F (x )与x 的符号相反,大小为:F (x )=-3⨯3⨯x ⨯1000g=-9000x g, (g=9.8m/s 2为重力加速度). 由牛顿第二定律得 m22dt x d =-9000g x ,即 m 22dtxd +9000g x =0 这是一个二阶常系数齐次方程,满足初始条件x (0)=x 0, x '(0)=0.其特征方程为r 2+m9000=0,特征根为r 1,2=±m g 9000i ,通解为x (t )=C 1cosm g 9000t +C 2sin mg9000t . 图8-8由周期T =mg 90002π=2,解得π=m g 9000,m =29000πg ≈8937(kg). 所以x (t )=C 1cos πt +C 2sin πt . 由初始条件,得C 1=x (0)=x 0,C 2=π)0(x '=0,所以物体的位移规律为x (t )=x 0cos πt .例6 在例3的电路上,若再串接一个的电容C ,且R 2-CL4<0, (电路中电阻较小或电容较小).求合上开关后电路上电流的变化的 一般形式.解 以Q (t )表示电路上流动的电量,则由电学知识,电容两 端的电动势为E C =C 1Q ;电感两端的电动势E L = L dt di= L 22dtQ d ; 电阻两端的电动势E R =Ri =RdtdQ.据回路电压定律,有 L 22dt Q d + R dt dQ +C 1Q=E 0sin ωt ,或22dt Q d +L R dt dQ +CL1Q =L E 0sin ωt , (3) 方程(3)是二阶线性常系数的,对应的特征方程为 r 2+L R r +CL 1=0,特征根r 1 =L 21(-R -C L R 42-), r 2=L21(-R +C L R 42-).因为R 2-CL4<0,所以(3)对应的齐次方程的通解为 Q *(t )=tL R e2-(C 1sin2)2(1L R CL -t +C 2cos 2)2(1LR CL -t ). 设Q **(t )为(3)的一个特解,据公式可得 Q **(t )=t r e 1⎰⎰--⋅dt dt e t LE e t r t r r ]sin [2120)(ω. 应用积分公式Cbx b bx a b a e bxdx e axax+-+=⎰)cos sin (sin 22C bx a bx b b a e bxdx eaxax+++=⎰)cos sin (cos 22,可得 Q **(t )=-)(2220r L E +ωtr e 1⎰+-dt t t r e t r )cos sin ([21ωωω =-))((212222r r L E ++ωω[r 2(-r 1sin ωt -ωcos ωt )+ω(ωsin ωt -r 1cos ωt )]图8-7=-))((212222r r L E ++ωω[(ω2-r 1r 2)sin ωt -ω(r 1+r 2)cos ωt ] =-))((2122220r r L E ++ωω[(ω2-CL 1)sin ωt +ωLRcos ωt ] =-])()[(22120L R CL L E ωω+-[(ω2-CL 1)sin ωt +L R ωcos ωt ] 即 Q **(t )=-21])()[(2212LR CLL E ωω+-sin (ωt +ϕ), tan ϕ=CLLR12-ωω. (4)所以方程(3)的通解为 Q (t )=tL R e 2-(C 1sin2)2(1L R CL -t +C 2cos 2)2(1LR CL -t ) -21])()[(2212LR CLL E ωω+-sin (ωt +ϕ).根据i =dtdQ,即得电路上电流变化的一般形式为 i (t )= tL R e 2-(23)2(1sinLR CL C - +C 4cos 2)2(1L R CL -t )-21])()[(22120L R CL L E ωωω+-cos (ωt +ϕ),其中ϕ由(3)确定.且21242213)2(12,)2(12LRCL C L RC C L R CL C L RC C -+-=---= 习题8-51. 一曲线过点(1,1),且曲线上任意点M (x ,y )处的切线与过原点的直线OM 垂直,求此曲线方程.2. 设质量为m 的降落伞从飞机上下落后,所受空气阻力与速度成正比,并设降落伞离开飞 机时(t =0)速度为零.求降落伞下落的速度与时间的函数关系.3. 设火车在平直的轨道上以16m/s 的速度行驶.当司机发现前方约200m 处铁轨上有异物 时,立即以加速度-0.8m/s 2制动(刹车).试问: (1)自刹车后需经多长时间火车才能停车? (2)自开始刹车到停车,火车行驶了多少路程?4 太阳能热水器加热水时,在某时间段水温度升高的速度与水温成反比.现设某型号的太 阳能热水器的比例系数为0.1.试求把水从10︒C 加热到80︒C 需要多少时间? 5. 如图是一个由电阻R ,电容C 及直流电源E 串联而成的电 路.当开关S 闭合时,电路中有电流i 通过,电容器逐渐 充电,电容器的电压U C 逐渐升高,求电容器上电压U C 随 时间t 变化的规律.(提示:由电学知识知,U C =CQ,于是有i =dtdQ,再利用回路定律E =U C +Ri .)。