人教版八下数学第十八章《平行四边形》复习教案

合集下载

新人教版八年级数学下册《平行四边形》教案设计(10篇)

新人教版八年级数学下册《平行四边形》教案设计(10篇)

新人教版八年级数学下册《平行四边形》教案设计(10篇)八年级数学下册《平行四边形》教案设计篇1教学准备教师准备:投影仪,教具:课本“探究”内容;补充材料制成投影片.学生准备:复习,平行四边形性质;学具:课本“探究”内容.学法解析1.认知题后:学习了三角形全等、平行四边形定义、•性质以后学习本节课内容.2.知识线索:3.学习方式:采用动手操作来发现新的知识,通过交流形成知识体系.教学过程一、回顾交流,逆向思索教师提问:1.平行四边形定义是什么?如何表示?2.平行四边形性质是什么?如何概括?学生活动:思考后举手回答:回答:1.•两组对边分别平行的四边形叫做平行四边形(教师在黑板上画出下图:帮助学生直观理解)回答:2.平行四边形性质从边考虑:(1)对边平行,(2)对边相等,(3)•对边平行且相等(“”);从角考虑:对角相等;从对角线考虑:两条对角线互相平分.(借助上图直观理解).教师归纳:(投影显示)平行四边形【活动方略】教师活动:操作投影仪,显示课本P96和P97“探究”的问题.用问题牵引学生动手操作、思考、发现、归纳、论证,可以让学生分成4人小组讨论,•然后再进行小组汇报,教师同时也拿出教具同学在一起探索.学生活动:分四人小组,拿出准备好的学具探究.在活动中发现:(1)•将两长两短的四根细木条(或用硬纸片),用小钉铰合在一起,做成四边形,如果等长的木条成对边,那么无论如何转动这四边形,它的形状都是平行四边形;(2)•若将两根细木条中点用钉子钉合在一起,用像皮筋连接木条的顶点,做成一个四边形,转动两根木条,这个四边形是平行四边形.(3)将两条等长的木条平行放置,•另外用两根木条(不一定等长)用钉子予以加固,得到的四边形一定是平行四边形。

八年级数学下册《平行四边形》教案设计篇2教材分析:平行四边形的面积计算教学是在学生掌握了平行四边形的特征以及长方形、正方形面积计算的基础上进行的,它同时又是进一步学习三角形面积、梯形面积、圆的面积和立体图形表面积计算的基础。

人教版初中数学八年级下册第十八章《平行四边形》教案

人教版初中数学八年级下册第十八章《平行四边形》教案
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了平行四边形的基本概念、重要性质和判定方法。同时,我们也通过实践活动和小组讨论加深了对平行四边形的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(4)面积计算的灵活运用:学生在计算平行四边形面积时,有时难以确定底和高。
突破方法:通过讲解不同形状的平行四边形面积计算方法,让学生学会根据实际情况确定底和高,并运用到实际问题中。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《平行四边形》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过形状像梯子斜靠在墙上的图形?”(如平行四边形)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索平行四边形的奥秘。
人教版初中数学八年级下册第十八章《平行四边形》教案
一、教学内容
人教版初中数学八年级下册第十八章《平行四边形》主要包括以下内容:
1.平行四边形的定义及性质:平行四边形的定义、对边平行且相等、Байду номын сангаас角相等、对角线互相平分。
2.特殊平行四边形:矩形、菱形、正方形的性质及判定方法。
3.平行四边形的判定:两组对边分别平行的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形。
2.提升逻辑推理能力:在学习平行四边形的判定方法及性质证明过程中,培养学生严谨的逻辑思维和推理能力。

人教版八年级下册数学第十八章四边形平行四边形教案

人教版八年级下册数学第十八章四边形平行四边形教案
另外,我发现同学们在总结回顾环节提出的问题很有价值,这说明大家在学习过程中是积极思考的。我会在课后针对这些问题进行总结,看看是否需要在下一节课中调整教学方法和内容,以便更好地满足同学们的学习需求。
1.针对难点内容,增加讲解和练习的力度,确保同学们能够熟练掌握;
2.引入更多有趣的案例和实际操作,提高同学们的学习兴趣和参与度;
1.讨论主题:学生将围绕“平行四边形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
人教版八年级下册数学第十八章四边形平行四边形教案
一、教学内容
人教版八年级下册数学第十八章“四边形”中的平行四边形部分,主要包括以下内容:
1.平行四边形的定义及性质:对边平行且相等的四边形;
2.平行四边形的判定:两组对边分别平行或一组对边平行且相等的四边形;
3.平行四边形的对角线性质:对角线他们的疑惑;
4.关注每个同学的学习状态,尽量让每个同学都能在课堂上有所收获。
-平行四边形的判定:熟悉并运用两组对边分别平行或一组对边平行且相等的判定方法。
-矩形、菱形、正方形的特殊性质:识别并记忆这些特殊平行四边形的性质及其应用。
-平行四边形的面积计算:掌握底乘以高的计算方法。
举例:通过实际图形和日常生活中的例子,强调平行四边形在实际中的应用,如建筑图形、桌布设计等,使学生感受到数学与生活的紧密联系。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了平行四边形的基本概念、判定方法和面积计算。同时,我们也通过实践活动和小组讨论加深了对平行四边形应用的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。

人教版数学八年级下十八章《平行四边形》复习 教学设计 (2)

人教版数学八年级下十八章《平行四边形》复习 教学设计 (2)

十八章《平行四边形》复习课教学设计北京师范大学大连普湾附属学校徐冰【教学目标】一、知识与技能:1.利用导图构建平行四边形知识体系,系统地复习平行四边形与各种特殊平行四边形的定义、性质、判定方法,明确它们之间的相互联系;2.灵活应用平行四边形的性质和判定解决问题,了解四边形与三角形的密切联系。

二、过程与方法:1.通过小组活动,相互讨论交流构建知识体系,使知识系统化;2.明确“一般与特殊”的关系,感受几何的基本证明方法。

三、情感态度和价值观:经历解决问题的过程,培养学生思考能力和几何直观,感受几何变化的巧妙。

【教材分析】本节课内容选材为教材第十八章平行四边形复习,基于2011版课程标准的要求,需要对本章知识进行总理和复习。

十八章是整个八年级下册书的重点、难点,也是中考的高频考点。

本节课需要把学习时相对独立的知识系统化、结构化;进而更好的解决综合性问题。

【学情分析】授课对象是八年级的学生,经过初中快两年的学习,学生已经掌握了基本的几何知识:平行、垂直、相交、三角形等,并且掌握了进行几何研究的基本方法和思路,能够从合情推理上升到演绎推理。

通过对本章的学习,学生已经基本掌握了平行四边形、菱形、矩形、正方形的性质及它们的判定,因为在学习平行四边形、菱形、矩形和正方形时,知识都相对比较独立,学生对这些特殊的平行四边形之间的关系掌握得还不是很好,比较陌生。

因此本节教学设计主要引导学生通过所学内容和方法进行平行四边形及特殊的平行四边形的知识梳理及综合应用。

【教学重点】1.平行四边形与各种特殊平行四边形的区别和联系;2.梳理平行四边形、矩形、菱形、正方形的知识体系。

【教学难点】平行四边形与各种特殊平行四边形的定义、性质、判定的综合运用。

【教学媒体】PPT,交互式电子白板【设计理念】本节课的设计理念严格按照2011版课程标准的要求,所有内容均建立在学生已有经验的基础上,通过启发式教学,在合作探究中分析问题、解决问题,让学生充分体验知识的发生发展过程,进一步增强几何直观以及推理能力。

人教版-数学-八年级下册第十八章 平行四边形复习(二) 教学设计

人教版-数学-八年级下册第十八章 平行四边形复习(二) 教学设计

第十八章平行四边形复习(二)教学设计教学目标:1、熟练四边形的性质与判定。

2、了解几何中线段和差之间的证明。

3、了解几何中运动问题。

教学重点:几何中线段和差之间的证明以及几何中运动问题。

教学难点:理解几何中线段和差的证明思想以及几何运动问题的总体感知。

教学过程:一、情景引入我们已经复习了四边形的性质,以及判定等等,大家一起回顾其中的性质以及判定!(1)平行四边形(2)矩形(3)菱形(4)正方形(5)梯形二、活动与思考00//,40,70,ABCD DC AB A B AD AB DC∠=∠==-例一:如图,在梯形中,求证:方法一:方法二:BB F方法三:小结:线段间和差问题一般解决方法有两种①在短的线段基础上延长使得延长后的线段与最长的线段相等,再证明延长部分等于另一条短的线段。

②在最长的线段基础上截取一段使其等于其中一段较短的线段,再证剩下部分等于另外一条较短线段。

练习:1、已知:如图,在正方形ABCD 中,M ,N 分别是BC ,CD 上的点.若∠MAN =45°,求证:MB +ND =MN 。

2E F ABC 、已知点、在的边AB 所在的直线上,且AE=BF,FH//EG//AC,FH 、EG 分别交边BC 所在的直线于点H 、G.如图, 如果点E 、F 在边AB 上,求证:EG+FH=AC 。

AB例二:如图,已知在梯形ABCD 中,AD//BC,AD=24cm,BC=30cm,点p 自点A 向D 以1cm/s 的速度移动,到D 点即停止;点Q 自点C 向B 以2cm/s 的速度运动,到B 点即停止。

直线PQ 截梯形为两个四边形。

问当点P,Q 同时出发,几秒后其中一个四边形为平行四边形?BC解:(提示;一组对边平行且相等) 情况一:情况二:练习:AD NCMB1、如图,已知直线m∥n,A、B为直线n上的两点,C、P为直线m上的两点。

(1)请写出图中面积相等的各对三角形:。

(2)如果A、B、C为三个定点,点P在m上移动,那么无论P点移动到任何位置总有与△ABC的面积相等;理由是:。

人教版八年级数学下册第十八章平行四边形《特殊平行四边形复习》教学设计

人教版八年级数学下册第十八章平行四边形《特殊平行四边形复习》教学设计
五、作业布置
为了巩固学生对特殊平行四边形性质的理解,提高学生的几何素养,特布置以下作业:
1.必做题:
-请学生完成教材第十八章复习题中关于特殊平行四边形的题目,确保掌握基本性质和计算方法。
-从生活实际中选取一个特殊平行四边形的例子,描述其特点和应用,并画出图形,以加深对性质的理解。
-结合课堂学习,尝试编写一道应用特殊平行四边形性质解决实际问题的题目,并与同学互相交流、讨论。
(二)教学设想
1.教学方法:
-采用问题驱动的教学方法,通过设计具有挑战性的问题,激发学生的好奇心,引导他们主动探究特殊平行四边形的性质。
-运用比较、归纳、演绎等思维方法,帮助学生形成系统的知识结构,提高几何证明能力。
-利用现代信息技术,如几何画板、多媒体演示等,增强学生对几何图形的直观感受,提高空间想象力。
二、学情分析
八年级学生已经具备了一定的几何基础,对平行四边形的性质和判定方法有了一定的了解。在此基础上,他们对特殊平行四边形(矩形、菱形、正方形)的性质和应用已有初步的认识,但在深入理解和灵活运用方面还存在一定的困难。因此,在教学过程中,应关注以下几点:
1.学生在分析特殊平行四边形性质时,往往容易忽略性质之间的联系,需要引导他们通过比较、归纳,形成系的知识体系。
3.设计丰富的课堂活动,如小组讨论、几何画板演示、实际操作等,增强学生对特殊平行四边形性质的理解,提高学生的几何直观和空间想象力。
(三)情感态度与价值观
1.激发学生对数学学习的兴趣,培养学生积极、主动、合作的学习态度,让学生体验数学探究的乐趣。
2.培养学生严谨、细致、踏实的科学精神,使学生认识到数学的实用价值和美学价值,增强对数学的热爱。
-鼓励学生利用几何画板等工具,动态演示特殊平行四边形的性质,加深对几何图形的认识。

人教版八年级数学下册第十八章平行四边形《特殊平行四边形复习》课程教学设计

人教版八年级数学下册第十八章平行四边形《特殊平行四边形复习》课程教学设计

课题:《特殊平行四边形复习》教学设计•教材分析特殊的平行四边形是考查的重点,一般考查的是与特殊平行四边形有关的开放性、探索性问题,或是与三角形全等和相似、圆、函数等知识结合构建的综合题,每年都会在选择(填空)和解答题中对相关内容考查。

【教学目标】知识目标:1.掌握平行四边形、菱形、矩形、正方形之间的联系及区别。

2.灵活运用平行四边形、菱形、矩形、正方形的性质及判定解决问题。

能力目标:1.通过本节课的学习,培养学生合作学习的能力。

2.发展学生的合情推理能力,进一步学习有条理的思考与表达,让学生理解推理与论证的基本过程。

情感目标:让学生树立科学、严谨、理论联系实际的良好学风,让学生通过了解几何学习严谨的特点,建构学生严谨的思维模式。

教学重点:特殊平行四边形知识体系的形成。

难点:特殊平行四边形知识综合应用。

•教法分析九年级的复习面临时间少,内容多,每个学生都期望在复习中都有所提高,为此,我采用了情景教学法,导学案教学法,启发式教学法,比较教学法,多媒体辅助教学。

•学法分析整个教学过程注重学生探究,变“教学”为“导学”,采用活动教学法,小组交流合作。

•教学过程本课教学我分为两大部分:第一部分为基础的复习,第二部分为综合知识的复习。

复习思路是从梳理知识点出发,先建立知识网络,然后采用以习题带动知识点的形式,在具体的问题中,引导学生从点到线,再到形,层层推进。

(一)、情景引入让学生观察生活中的图片,借此提出了今天的课题:特殊平行四边形的复习。

再通过接力游戏,让学生拖动把平行四边形变成正方形,让学生回忆矩形、菱形、正方形的定义是什么?(二)、自主建构,知识回顾活动一:以小组为单位,将特殊平行四边形按①性质;②判定;③联系三个方面进行归纳,整理,并制作成三个知识结构图。

然后小组交流展示。

设计意图:培养学生自主学习,归纳整理的能力,小组协作,尽量让中下等学生能参与课堂。

归纳1:矩形、菱形、正方形的性质归纳3:特殊平行四边形之间关系设计意图:分类整理,易于辨别区别与联系,采用填空题形式,主要是兼顾到中下等学生归纳整理知识,形成体系。

八年级数学下册 18 平行四边形复习(二)教案 新人教版(2021学年)

八年级数学下册 18 平行四边形复习(二)教案 新人教版(2021学年)

八年级数学下册18 平行四边形复习(二)教案(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学下册18平行四边形复习(二)教案(新版)新人教版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学下册18 平行四边形复习(二)教案(新版)新人教版的全部内容。

第18章平行四边形一、复习目标1、通过对几种平行四边形的回顾与思考,使学生梳理所学的知识,系统地复习平行四边形与各种特殊平行四边形的定义、性质、判定方法等;2、正确理解平行四边形与各种特殊平行四边形的联系与区别,在反思和交流过程中,逐渐建立知识体系;3、引导学生独立思考,通过归纳、概括、实践等系统数学活动,感受获得成功的体验,形成科学的学习习惯。

二、课时安排1课时三、复习重难点重点:梳理矩形、菱形、正方形的知识体系及应用方法。

难点:各种特殊平行四边形的定义、性质、判定的综合运用。

四、教学过程(一)知识梳理1、矩形的定义:2、矩形的性质:3、直角三角形斜边上的中线等于斜边。

4、矩形的判定:5、菱形:6、菱形的性质:7、菱形的判定:8、正方形定义:9、正方形的性质:10、正方形的判定(二)题型、技巧归纳考点一矩形有关问题例1、如图,矩形ABCD沿AE折叠,使D点落在BC边上的F点处,如果∠BAF=60°,那么∠DAE等于()A.15° B.30° C.45° D.60°考点二菱形有关问题例2、如图,小强拿一张正方形的纸(图(1)),沿虚线对折一次得图(2),再对折一次得图(3),然后用剪刀沿图(3)中的虚线剪成两部分,再把所得的三角形的部分打开后的形状一定是()A.一般的平行四边形B、菱形C、矩形D、正方形考点三正方形有关问题例3、在正方形ABCD中,点P是对角线AC上一点,PE⊥AB,PF⊥BC,垂足分别是点E、F.求证:DP=EF(三)典例精讲已知:如图1,□ABCD的对角线AC、BD交于点O,EF过点O与AB、CD分别交于点E、F.求证:OE=OF.变式1:在图1中,若改为过A作AH⊥BC,垂足为H,连结HO并延长交AD于G,连结GC,则四边形AHCG是什么四边形?为什么?变式2:在图1中,若GH⊥BD,GH分别交AD、BC于G、H,则四边形BGDH是什么四边形?为什么?(四)归纳小结1.本节课学习了哪些主要内容?2.各种特殊平行四边形的综合应用时要注意哪些问题?(五)随堂检测1.如图,在菱形ABCD中,E、F分别是AB、AC的中点,如果EF=2,那么菱形ABCD 的周长是().A.4 B。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第18章平行四边形
【教学目标】
1、通过对几种平行四边形的回顾与思考,使学生梳理所学的知识,系统地复习平行四边形与各种特殊平行四边形的定义、性质、判定方法,三角形的中位线定理等;
2、正确理解平行四边形与各种特殊平行四边形的联系与区别,在反思和交流过程中,逐渐建立知识体系;
3、引导学生独立思考,通过归纳、概括、实践等系统数学活动,感受获得成功的体验,形成科学的学习习惯。

【教学重点】
1、平行四边形与各种特殊平行四边形的区别。

2、梳理平行四边形、矩形、菱形、正方形、三角形的中位线定理的知识体系及应用方法。

【教学难点】
平行四边形与各种特殊平行四边形的定义、性质、判定的综合运用。

【教学模式】
以题代纲,梳理知识-----变式训练,查漏补缺-----综合训练,总结规律-----测试练习,提高效率。

【教具准备】三角板、实物投影仪、电脑、自制课件。

【教学过程】
一、以题代纲,梳理知识
(一)开门见山,直奔主题
同学们,今天我们一起来复习《平行四边形》的相关知识,先请同学们迅速地完成下面几道练习题,请看大屏幕。

(二)诊断练习
1、根据条件判定它是什么图形,并在括号内填出,在四边形ABCD中,对角线AC和BD相交于点O:
(1)AB=CD,AD=BC (平行四边形)
(2)∠A=∠B=∠C=90°(矩形)
(3)AB=BC,四边形ABCD是平行四边形(菱形)
(4)OA=OC=OB=OD ,AC⊥BD (正方形)
(5)AB=CD, ∠A=∠C ( ?)
2、菱形的两条对角线长分别是6厘米和8厘米,则菱形的边长为5厘米。

3、顺次连结矩形ABCD各边中点所成的四边形是菱形。

4、若正方形ABCD的对角线长10厘米,那么它的面积是50平方厘米。

5、平行四边形、矩形、菱形、正方形中,轴对称图形有:矩形、菱形、正方形,中心对称图形的有:平行四边形、矩形、菱形、正方形,既是轴对称图形,又是中心对称图形的是:矩形、菱形、正方形。

(三)归纳整理,形成体系
1、性质判定,列表归纳
2、基础练习:
(1)矩形、菱形、正方形都具有的性质是(C)
A.对角线相等(距、正)
B. 对角线平分一组对角(菱、正)
C.对角线互相平分
D. 对角线互相垂直(菱、正)(2)正方形具有,矩形也具有的性质是(A)
A.对角线相等且互相平分
B. 对角线相等且互相垂直
C. 对角线互相垂直且互相平分
D.对角线互相垂直平分且相等(3)如果一个四边形是中心对称图形,那么这个四边形一定(D)
A.正方形
B.菱形
C.矩形
D.平行四边形
都是中心对称图形,A、B、C都是平行四边形
(4)矩形具有,而菱形不一定具有的性质是(B)
A. 对角线互相平分
B. 对角线相等
C. 对边平行且相等
D. 内角和为3600
问:菱形的对角线一定不相等吗?错,因为正方形也是菱形。

(5)正方形具有而矩形不具有的特征是(D)
A. 内角为3600
B. 四个角都是直角
C. 两组对边分别相等
D. 对角线平分对角
问:那么正方形具有而菱形不具有的特征是什么?对角线相等
2、集合表示,突出关系
二、查漏补缺,讲练结合 (一)一题多变,培养应变能力 〖例题1〗
已知:如图1,□ABCD 的对角线AC 、BD 交于点O ,
EF 过点O 与AB 、CD 分别交于点E 、F . 求证:OE=OF .
证明: ∵
变式1.在图1中,连结哪些线段可以构成新的平行四边形?为什么?
对角线互相平分的四边形是平行四边形。

变式2.在图1中,如果过点O 再作GH ,分别交AD 、BC 于G 、H ,你又能得到哪些新的平行四边形?为什么?
对角线互相平分的四边形是平行四边形。

B
B
B
变式3.在图1中,若EF 与AB 、CD 的延长线分别交于点E 、F ,这时仍有OE=OF 吗?你还能构造出几个新的平行四边形?
对角线互相平分的四边形是平行四边形。

变式4.在图1中,若改为过A 作AH ⊥BC ,垂足为H ,连结HO 并延长交AD 于G ,连结GC ,则四边形AHCG 是什么四边形?为什么?
可由变式1可知四边形AHCG 是平行四边形, 再由一个直角可得四边形AHCG 是矩形。

变式5.在图1中,若GH ⊥BD ,GH 分别交AD 、BC 于G 、H ,则四边形BGDH 是什么四边形?为什么?
可由变式1可知四边形BGDH 是平行四边形, 再由对角线互相垂直可得四边形BGDH 是菱形。

变式6.在变式5中,若将“□ABCD”改为“矩形ABCD ”,GH 分别交AD 、BC 于G 、H ,则四边形BGDH 是什么四边形?若AB=6,BC=8,你能求出GH 的长吗?(这一问题相当于将矩形ABCD 对折,使B 、D 重合,求折痕GH 的长。


略解:∵AB=6,BC=8 ∴BD=AC=10。

设OG = x ,则BG = GD=252 x .
在Rt △ABG 中,则勾股定理得:
B
B
A
G
AB 2 + AG 2 = BG 2 , 即(
)()
2
2
2
2
2
252586+=
+-+x
x ,
解得 4
15
=
x . ∴GH = 2 x = 7.5.
(二)一题多解,培养发散思维
〖例题2〗
已知:如图,在正方形ABCD ,E 是BC 边上一点,
F 是CD 的中点,且AE = DC + CE .
求证:AF 平分∠DAE .
证法一:(延长法)延长EF ,交AD 的延长线于G (如图2-1)。

∵四边形ABCD 是正方形,
∴AD=CD ,∠C=∠ADC=90°(正方形四边相等,四个角都是直角) ∴∠GDF=90°,
∴∠C =
∠GDF
在△EFC 和△GFD 中 ⎪⎩
⎪⎨⎧=∠=∠∠=∠DF CF GDF C 2
1 ∴△EFC ≌△GFD (ASA )
∴CE=DG ,EF=GF ∵AE = DC + CE ,
∴AE = AD + DG = AG , ∴AF 平分∠DAE .
证法二:(延长法)延长BC ,交AF 的延长线于G (如图2-2) ∵四边形ABCD 是正方形,
∴AD // BC ,DA=DC ,∠FCG=∠D=90°
(正方形对边平行,四边相等,四个角都是直角) ∴∠3=∠G ,∠FCG=90°,
∴∠FCG =∠D
E
在△FCG 和△FDA 中 ⎪⎩
⎪⎨⎧=∠=∠∠=∠DF CF D
FCG 2
1 ∴△△FCG 和△FDA (ASA ) ∴CG=DA
∵AE = DC + CE ,
∴AE = CG + CE = GE ,
∴∠4 =∠G ,
∴∠3 =∠4,
∴AF 平分∠DAE .
思考:如果用“截取法”,即在AE 上取点G ,
使AG=AD ,再连结GF 、EF (如图2-3),这样能证明吗?
三、综合训练,总结规律 (一) 综合练习,提高解题能力
1.在例2中,若将条件“AE = DC + CE”和结论“AF 平分∠DAE”对换, 所得命题正确吗?为什么?你有几种证法?
2.已知:如图,在□ABCD 中,AE ⊥BD 于E ,CF ⊥BD 于F ,
G 、H 分别是BC 、AD 的中点.
求证:四边形EGFH 是平行四边形.(用两种方法)
(二)课堂小结,领悟思想方法 1.一题多变,举一反三。

经常在解题之后进行反思——改变命题的条件,或将命题的结论延伸,或将条件和结论互换,往往会有意想不到的收获。

也只有这样,才能做到举一反三,提高应变能力。

2.一题多解,触类旁通。

在平时的作业或练习中,通过一题多解,你不仅可以从中对比选出最优方法,提高自己在应考中的解题效率,而且还能开阔你的思维,达到触类旁通的目的。

3.善于总结,领悟方法。

数学题目本身蕴含着许多数学思想方法,只要你善于总结,就能真正掌握、提炼出其中的数学方法,才能不断提高自己分析问题、解决问题的能力。

相关文档
最新文档