简述两种示波器测量眼图的差别
Agilent-眼图、抖动、相噪

Agilent——眼图、抖动、相噪随着数据速率超过Gb/s水平,工程师必须能够识别和解决抖动问题。
抖动是在高速数据传输线中导致误码的定时噪声。
如果系统的数据速率提高,在几秒内测得的抖动幅度会大体不变,但在位周期的几分之一时间内测量时,它会随着数据速率成比例提高,进而导致误码。
新兴技术要求误码率(BER),亦即误码数量与传输的总码数之比,低于一万亿分之一(10-12)。
随着数据通信、总线和底板的数据速率提高,市场上已经出现许多不同的抖动检定技术,这些技术采用各种不同的实验室设备,包括实时数字示波器、取样时间间隔分析仪(TIA)、等时取样示波器、模拟相位检波器和误码率测试仪(BERT)。
为解决高数据速率上难以解决的抖动问题,工程师必需理解同步和异步网络中使用的各种抖动分析技术本文重点介绍3 Gb/s以上新兴技术的数据速率。
低于3 Gb/s的实时示波器可以捕获连续的数据流,可以同时在时域和频域中分析数据流;在更高的数据速率上,抖动分析要更具挑战性。
本文将从数字工程师的角度,介绍应对SONET/SDH挑战的各种经验。
抖动分析基本上包括比较抖动时钟信号和参考时钟信号。
参考时钟是一种单独的黄金标准时钟,或从数据中重建的时钟。
在高数据速率时,分析每个时钟的唯一技术是位检测和误码率测试;其它技术则采用某种取样技术。
如图1所示,眼图是逻辑脉冲的重叠。
它为测量信号质量提供了一种有用的工具,即使在极高的数据速率时,也可以在等时取样示波器上简便生成。
边沿由‘1’到‘0’转换和‘0’到‘1’转换组成,样点位于眼图的中心。
如果电压(或功率)高于样点,则码被标为逻辑‘1’;如果低于样点,则标为‘0’。
系统时钟决定着各个位的样点水平位置。
图1: 具有各项定义的眼图E1是逻辑‘1’的平均电压或功率电平,E0是逻辑‘0’的平均电压或功率电平。
参考点t = 0在左边的交点进行选择,右边的交点及其后是位周期TB。
Eye Crossing Point: 眼图交点Left Edge: 左沿Right Edge: 右沿Nominal Sampling Point: 标称样点幅度噪声可能会导致逻辑‘1’的电压或功率电平垂直波动,低于样点,导致逻辑‘1’码错误地标为逻辑‘0’码,即误码。
信号完整性分析基础系列之一——眼图测量

信号完整性分析基础系列之一——关于眼图测量(上)汪进进美国力科公司深圳代表处内容提要:本文将从作者习惯的无厘头漫话风格起篇,从四个方面介绍了眼图测量的相关知识:一、串行数据的背景知识; 二、眼图的基本概念; 三、眼图测量方法; 四、力科示波器在眼图测量方面的特点和优势。
全分为上、下两篇。
上篇包括一、二部分。
下篇包括三、四部分。
您知道吗?眼图的历史可以追溯到大约47年前。
在力科于2002年发明基于连续比特位的方法来测量眼图之前,1962年-2002的40年间,眼图的测量是基于采样示波器的传统方法。
您相信吗?在长期的培训和技术支持工作中,我们发现很少有工程师能完整地准确地理解眼图的测量原理。
很多工程师们往往满足于各种标准权威机构提供的测量向导,Step by Step,满足于用“万能”的Sigtest软件测量出来的眼图给出的Pass or Fail结论。
这种对于Sigtest的迷恋甚至使有些工程师忘记了眼图是可以作为一项重要的调试工具的。
在我2004年来力科面试前,我也从来没有听说过眼图。
那天面试时,老板反复强调力科在眼图测量方面的优势,但我不知所云。
之后我Google“眼图”,看到网络上有限的几篇文章,但仍不知所云。
刚刚我再次Google“眼图”,仍然没有找到哪怕一篇文章讲透了眼图测量。
网络上搜到的关于眼图的文字,出现频率最多的如下,表达得似乎非常地专业,但却在拒绝我们的阅读兴趣。
“在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。
为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。
如果将输入波形输入示波器的Y轴,并且当示波器的水平扫描周期和码元定时同步时,适当调整相位,使波形的中心对准取样时刻,在示波器上显示的图形很象人的眼睛,因此被称为眼图(Eye Map)。
眼图

在实际的通信系统中,数字信号经过非理想的传输系统必定要产生畸变,信号通过信道后,也会引入噪声和干扰,也就是说,总是在不同程度上存在码间干扰的。
在码间干扰和噪声同时存在情况下,系统性能很难进行定量的分析,常常甚至得不到近似结果。
为了便于实际评价系统的性能,常用所谓“眼图”。
眼图可以直观地估价系统的码间干扰和噪声的影响,是一种常用的测试手段。
所谓“眼图”,就是由解调后经过低通滤波器输出的基带信号,以码元定时作为同步信号在示波器屏幕上显示的波形。
干扰和失真所产生的传输畸变,可以在眼图上清楚地显示出来。
因为对于二进制信号波形,它很象一只人的眼睛。
在图1中画出两个无噪声的波形和相应的“眼图”,一个无失真,另一个有失真(码间串扰)。
图1中可以看出,眼图是由虚线分段的接收码元波形叠加组成的。
眼图中央的垂直线表示取样时刻。
当波形没有失真时,眼图是一只“完全张开”的眼睛。
在取样时刻,所有可能的取样值仅有两个:+1或-1。
当波形有失真时,在取样时刻信号取值分布在小于+1或大于-1附近,“眼睛”部分闭合。
这样,保证正确判决所容许的噪声电平就减小了。
换言之,在随机噪声的功率给定时,将使误码率增加。
“眼睛”张开的大小就指明失真的严重程度。
为便于说明眼图和系统性能的关系,我们将它简化成图2的形状。
由此图可以看出:(1)最佳取样时刻应选择在眼睛张开最大的时刻;(2)眼睛闭合的速率,即眼图斜边的斜率,表示系统对定时误差灵敏的程度,斜边愈陡,对定位误差愈敏感;(3)在取样时刻上,阴影区的垂直宽度表示最大信号失真量;(4)在取样时刻上,上下两阴影区的间隔垂直距离之半是最小噪声容限,噪声瞬时值超过它就有可能发生错误判决;(5)阴影区与横轴相交的区间表示零点位置变动范围,它对于从信号平均零点位置提取定时信息的解调器有重要影响。
衡量眼图质量的几个重要参数有:1.眼图开启度(U-2ΔU)/U指在最佳抽样点处眼图幅度“张开”的程度。
无畸变眼图的开启度应为100%。
什么是眼图

什么是眼图眼图,是由于示波器的余辉作用,将扫描所得的每一个码元波形重叠在一起,从而形成眼图。
本文将带领大家了解PCB上的眼图是什么,眼图是怎样形成的,眼图中包含有哪些信息,如何根据眼图情况分辨信号质量。
想看懂示波器眼图需要掌握以下4点:一、什么是眼图?眼图是一系列数字信号在示波器上累积而显示的图形,它包含了丰富的信息,从眼图上可以观察出码间串扰和噪声的影响,体现了数字信号整体的特征,从而估计系统优劣程度,因而眼图分析是高速互连系统信号完整性分析的核心。
另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰,改善系统的传输性能。
用一个示波器跨接在接收滤波器的输出端,然后调整示波器扫描周期,使示波器水平扫描周期与接收码元的周期同步,这时示波器屏幕上看到的图形就称为眼图。
示波器一般测量的信号是一些位或某一段时间的波形,更多的反映的是细节信息,而眼图则反映的是链路上传输的所有数字信号的整体特征。
观察眼图的方法是:用一个示波器跨接在接收滤波器的输出端,然后调整示波器扫描周期,使示波器水平扫描周期与接收码元的周期同步,这时示波器屏幕上看到的图形像人的眼睛,故称为“眼图”。
从“眼图”上可以观察出码间串扰和噪声的影响,从而估计系统优劣程度。
另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能。
二、眼图是怎么形成的?对于数字信号,其高电平与低电平的变化可以有多种序列组合。
以3个bit为例,可以有000-111共8中组合,在时域上将足够多的上述序列按某一个基准点对齐,然后将其波形叠加起来,就形成了眼图。
如下图。
对于测试仪器而言,首先从待测信号中恢复出信号的时钟信号,然后按照时钟基准来叠加出眼图,最终予以显示。
三、眼图中包含的信息有哪些?对于一幅真实的眼图,如下图,首先我们可以看出数字波形的平均上升时间(RiseTime)、下降时间(FallTime)、上冲(Overshoot)、下冲(Undershoot)、门限电平(Threshold/CrossingPercent)等基本的电平变换的参数。
眼图测量

眼图——概念与测量(摘记)中文名称:眼图英文名称:eyediagram;eye pattern定义:示波器屏幕上所显示的数字通信符号,由许多波形部分重叠形成,其形状类似“眼”的图形。
“眼”大表示系统传输特性好;“眼”小表示系统中存在符号间干扰。
一.概述“在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。
为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。
在无码间串扰和噪声的理想情况下,波形无失真,每个码元将重叠在一起,最终在示波器上看到的是迹线又细又清晰的“眼睛”,“眼”开启得最大。
当有码间串扰时,波形失真,码元不完全重合,眼图的迹线就会不清晰,引起“眼”部分闭合。
若再加上噪声的影响,则使眼图的线条变得模糊,“眼”开启得小了,因此,“眼”张开的大小表示了失真的程度,反映了码间串扰的强弱。
由此可知,眼图能直观地表明码间串扰和噪声的影响,可评价一个基带传输系统性能的优劣。
另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能。
通常眼图可以用下图所示的图形来描述,由此图可以看出:(1)眼图张开的宽度决定了接收波形可以不受串扰影响而抽样再生的时间间隔。
显然,最佳抽样时刻应选在眼睛张开最大的时刻。
(2)眼图斜边的斜率,表示系统对定时抖动(或误差)的灵敏度,斜率越大,系统对定时抖动越敏感。
(3)眼图左(右)角阴影部分的水平宽度表示信号零点的变化范围,称为零点失真量,在许多接收设备中,定时信息是由信号零点位置来提取的,对于这种设备零点失真量很重要。
(4)在抽样时刻,阴影区的垂直宽度表示最大信号失真量。
(5)在抽样时刻上、下两阴影区间隔的一半是最小噪声容限,噪声瞬时值超过它就有可能发生错误判决。
(6)横轴对应判决门限电平。
Agilent——眼图、抖动、相噪

Agilent——眼图、抖动、相噪2009-02-25 22:31随着数据速率超过Gb/s水平,工程师必须能够识别和解决抖动问题。
抖动是在高速数据传输线中导致误码的定时噪声。
如果系统的数据速率提高,在几秒内测得的抖动幅度会大体不变,但在位周期的几分之一时间内测量时,它会随着数据速率成比例提高,进而导致误码。
新兴技术要求误码率(BER),亦即误码数量与传输的总码数之比,低于一万亿分之一(10-12)。
随着数据通信、总线和底板的数据速率提高,市场上已经出现许多不同的抖动检定技术,这些技术采用各种不同的实验室设备,包括实时数字示波器、取样时间间隔分析仪(TIA)、等时取样示波器、模拟相位检波器和误码率测试仪(BERT)。
为解决高数据速率上难以解决的抖动问题,工程师必需理解同步和异步网络中使用的各种抖动分析技术本文重点介绍3 Gb/s以上新兴技术的数据速率。
低于3 Gb/s的实时示波器可以捕获连续的数据流,可以同时在时域和频域中分析数据流;在更高的数据速率上,抖动分析要更具挑战性。
本文将从数字工程师的角度,介绍应对SONET/SDH挑战的各种经验。
抖动分析基本上包括比较抖动时钟信号和参考时钟信号。
参考时钟是一种单独的黄金标准时钟,或从数据中重建的时钟。
在高数据速率时,分析每个时钟的唯一技术是位检测和误码率测试;其它技术则采用某种取样技术。
如图1所示,眼图是逻辑脉冲的重叠。
它为测量信号质量提供了一种有用的工具,即使在极高的数据速率时,也可以在等时取样示波器上简便生成。
边沿由…1‟到…0‟转换和…0‟到…1‟转换组成,样点位于眼图的中心。
如果电压(或功率)高于样点,则码被标为逻辑…1‟;如果低于样点,则标为…0‟。
系统时钟决定着各个位的样点水平位置。
图1: 具有各项定义的眼图E1是逻辑…1‟的平均电压或功率电平,E0是逻辑…0‟的平均电压或功率电平。
参考点t = 0在左边的交点进行选择,右边的交点及其后是位周期TB。
透彻解析眼图测量技术(lecroy)_力科

Slice 1
Slice 2
Slice 3
3
Slice 4
Slice 12
Slice 11
Slice 5
Slice 6
Slice 7
Slice 8
Slice 9
数据按单位间隔逐 位与恢复时钟比较 重叠形成眼图
4
ZERO TRIGGER JITTER
• 数据是根据单位间隔排列而不是触发点. • 零时钟恢复抖动,零触发抖动.
用户自定义模板可直接 输入示波器使用
19
力科示波器在眼图测量方面的特点
力科在眼图测量领域的解决方案拥有如下功能或特点: 力科在业界最先采用实时眼图生成方法来绘制眼图,如今该方法已成 为眼图测量的现实行业标准 力科SDAII串行数据分析软件包为您提供全面的眼图及抖动分析能力 力科Zi系列示波器拥有业界最为领先的硬件指标与全面的响应优化模 式,确保眼图测量结果权威精确 流程图式的操作界面与可拆卸式的前控面板确保眼图测量轻松顺畅 创新的 X-Stream II 架构与先进的计算机系统确保快速完成眼图测量 眼图故障定位功能助力您轻松完成眼图失效分析 IsoBER功能帮助您深入预测眼图张开程度 力科独有的ISI Plot功能帮助您分析眼图中的码间干扰 力科独有的光电转换器帮助您完成光信号眼图测量 眼图医生工具EyeDoctor II为您提供了最佳的信号完整性分析工具
23
速度需求 -- 眼图测量需要采集并处理大量数据
18M个UI叠加的眼图
18M个UI叠加的眼图,每周期采集8个样点,总共需要处理150M样点。
24
速度需求-- 测量环境改变需要重复眼图测量
10英寸长的传输线,眼高 = 592mV
20英寸长的传输线,眼高 = 457mV
眼图--概念与测量

眼图——概念与测量(摘记)中文名称:眼图英文名称:eye diagram;eye pattern定义:示波器屏幕上所显示的数字通信符号,由许多波形部分重叠形成,其形状类似“眼”的图形。
“眼”大表示系统传输特性好;“眼”小表示系统中存在符号间干扰。
一.概述“在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。
为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。
在无码间串扰和噪声的理想情况下,波形无失真,每个码元将重叠在一起,最终在示波器上看到的是迹线又细又清晰的“眼睛”,“眼”开启得最大。
当有码间串扰时,波形失真,码元不完全重合,眼图的迹线就会不清晰,引起“眼”部分闭合。
若再加上噪声的影响,则使眼图的线条变得模糊,“眼”开启得小了,因此,“眼”张开的大小表示了失真的程度,反映了码间串扰的强弱。
由此可知,眼图能直观地表明码间串扰和噪声的影响,可评价一个基带传输系统性能的优劣。
另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能。
通常眼图可以用下图所示的图形来描述,由此图可以看出:(1)眼图张开的宽度决定了接收波形可以不受串扰影响而抽样再生的时间间隔。
显然,最佳抽样时刻应选在眼睛张开最大的时刻。
(2)眼图斜边的斜率,表示系统对定时抖动(或误差)的灵敏度,斜率越大,系统对定时抖动越敏感。
(3)眼图左(右)角阴影部分的水平宽度表示信号零点的变化范围,称为零点失真量,在许多接收设备中,定时信息是由信号零点位置来提取的,对于这种设备零点失真量很重要。
(4)在抽样时刻,阴影区的垂直宽度表示最大信号失真量。
(5)在抽样时刻上、下两阴影区间隔的一半是最小噪声容限,噪声瞬时值超过它就有可能发生错误判决。
(6)横轴对应判决门限电平。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如果您在使用的是 XXK 的老软件包 RT-EYE,那幺您需要在 C:\下的某个 文件夹中找到某个 tdsrt-eye 文件进行手工修改,去掉这个限制,但在去掉之 后如果您捕获数据超过 5Mpts 会容易死机。 如果您是在用 XXK 示波器新的 DPOJET 软件包,那幺需要在”Analyze”菜单下的“Perferences setup”子菜单的 又一个子菜单“Measu不到的呵!
简述两种示波器测量眼图的差别
简述两种示波器测量眼图的差别 中心议题: 力科示波器进行眼图测量 新旧两款软件包使用方法不同 力科示波器捕获了 50MS 的数据,并一次性地对所有这些数据进行眼图测 量,得到了 18.73449M 个比特位(UI)的眼图。如下图所示。 XXK 的示波器捕获了 574996 个比特位(UI),但一次只能对这些 UI 中的 8000 个 UI 做眼图测量。如下图显示了“UIs:8000:574996,Total:8000:574966 ”。 如何才能对捕获到的所有的数据做眼图呢? 这是个问题。