激光加工技术发展的研究

合集下载

激光微纳加工技术的发展及其应用研究

激光微纳加工技术的发展及其应用研究

激光微纳加工技术的发展及其应用研究激光微纳加工技术是指利用激光精密加工制造微细结构的技术,通常被应用于微电子、微机械、生物医学等领域。

随着科技的不断进步,激光微纳加工技术得到了越来越广泛的应用和研究。

本文将从技术的发展历程、应用领域的扩展以及未来的发展趋势三个方面进行详述。

技术的发展历程激光微纳加工技术最初的起源可以追溯到20世纪60年代,那时候激光微加工还只是一个比较新颖的技术,仅限于表面处理和简单的开槽加工。

1965年,曾在贝尔实验室工作的Theodore Harold Maiman发明了激光,之后激光加工技术得到了快速发展,1970年代末与1980年代初先后涌现出了保护材料法、铜制蚀刻法、氧化退火法等用于激光微纳加工工艺的方法,这大大促进了激光微纳加工技术的应用。

随着半导体工厂在微米制造方面的发展,激光微纳加工技术得以进一步推广,并达到了新的发展阶段。

其中,连续激光加工和脉冲激光加工是最常用的两种激光加工方式,前者主要应用于材料切割和钻孔加工等领域,后者则主要应用于表面处理和蚀刻加工等领域。

应用领域的扩展激光微纳加工技术的应用领域非常广泛,包括微电子技术、MEMS技术、微机械技术、光电子技术、生物医学等多个领域。

其中,微电子技术是激光微纳加工技术最早应用的领域之一,主要应用于电路板的制造和封装。

MEMS技术则是一种微型机电系统技术,其利用激光微纳加工技术来制造出微型传感器、执行器和其他微型机械元件,将其安装在薄膜上,实现微型化处理。

随着科技的不断发展,MEMS技术应用的领域也不断扩展,包括气体传感器、惯性传感器、微药物泵等。

微机械技术则是利用微纳加工技术来制造微小机构的技术,如微型齿轮、微型弹簧等,将其应用于机器人、航空飞行器等领域。

光电子技术则是利用光电子器件来进行光信号处理的技术,其常用于制造芯片和半导体材料。

生物医学则是激光微纳加工技术的新兴应用领域,其应用主要集中在医疗器械的制造与研究上。

激光加工技术的研究进展与应用前景

激光加工技术的研究进展与应用前景

激光加工技术的研究进展与应用前景激光加工技术是一种高新技术,具有高精度、高速度、高效率等优点,在制造、材料加工、医疗等领域有着广泛的应用前景。

本文将从激光加工技术的研究进展及其应用前景方面进行探讨。

一、激光加工技术的研究进展自从激光加工技术出现以来,其快速发展已有50多年的历史。

激光加工技术的研究重点包括激光加工光学系统、激光加工控制系统、激光加工数控技术等内容。

激光加工光学系统包括激光器、光纤、反射镜、平台等组件。

随着激光技术的不断发展,激光器的功率越来越高,光纤的传输损失也越来越小,反射镜和平台的准确度也得到了极大地提高,从而使得激光加工的高精度和高效率得到保证。

激光加工控制系统是激光加工技术中的关键环节,它涉及到激光加工过程中的位置控制、速度控制、功率控制等方面。

在这个领域,计算机的应用以及软硬件的提高,为激光加工技术的精度和效率提供了坚实的支撑。

激光加工数控技术是指数字化控制技术在激光加工领域的应用。

数控技术使得激光加工技术变得更加智能化,为精密加工提供了良好的手段。

目前,数控技术已广泛应用于激光加工领域,成为激光加工的主要手段之一。

二、激光加工技术的应用前景1. 制造领域在制造领域,激光加工技术可以用于各种各样的精密加工,如微细孔加工、激光切割、激光打标、激光焊接等处理过程。

激光加工技术可以实现高精度、高效率的加工,使得制造业实现了从传统的手工制造向智能化、数字化等方向的转型,从而在产品品质、生产效率等方面实现了质的飞跃。

2. 材料加工领域在材料加工领域,激光加工技术可以进行复杂的材料加工,如激光精密切割、激光打孔等。

激光加工技术对材料的切割、打孔等操作可以达到无损伤效果,避免了机械切割方式中可能产生的热变形、剪切毛刺等问题,同时也可以使材料加工速度快速的提高,从而为材料加工领域的进一步发展提供了重要的技术支撑。

3. 医疗领域在医疗领域,激光加工技术也得到了广泛的应用。

如激光治疗、激光切割等。

激光加工技术的应用及未来发展趋势

激光加工技术的应用及未来发展趋势

激光加工技术的应用及未来发展趋势激光加工技术是目前应用最广泛的高精度、高效率加工技术之一,在诸多领域发挥着重要的作用。

本文将从激光加工技术的应用、现状及未来发展趋势等方面展开分析讨论。

一、激光加工技术的应用激光加工技术的应用范围非常广泛,主要涵盖以下几个方面:1. 材料切割。

激光切割技术被广泛应用于金属、非金属材料的加工中,如通过对金属板材进行激光切割,可以高效地完成各种金属零件的制作。

2. 焊接。

激光焊接技术被广泛应用于汽车、机械、电子、航空等诸多领域,可以完成各种材料的高精度焊接,提高了产品的质量和生产效率。

3. 雕刻。

激光雕刻技术是目前应用最广泛的激光加工技术之一,被广泛应用于玉石、皮革、木材、彩金等材料的加工。

4. 理疗医疗。

激光技术在医疗领域应用的最为广泛的领域是激光治疗、激光手术、激光检测等。

二、激光加工技术的现状当前,激光加工技术已经成为了高精度、高效率的加工方法之一。

随着工业加工需求的不断增长,激光加工技术的应用范围也在不断扩大,其应用领域和发展方向也更加多样化。

目前,激光加工技术在中国的应用也非常广泛,尤其在汽车、航空、机械、电子、建筑等领域,激光加工技术的应用已经成为一种趋势。

虽然激光加工技术已经有了广泛的应用,但目前激光加工技术面临的问题也不容忽视。

例如,激光加工过程中的废气处理和粉尘处理问题、激光加工机器的成本昂贵等问题。

三、激光加工技术的未来发展趋势随着科技的不断进步,激光加工技术的应用前景也越来越广阔。

未来,激光加工技术的应用领域还将不断拓展,同时优化激光加工设备也将成为厂家竞争的重点。

未来激光加工技术的发展趋势主要体现在以下几个方面:1. 优化设备、成本更低。

未来的激光加工机将更加高效、便捷,操作起来更加人性化。

同时,通过技术革新和成本的降低,未来激光加工设备的成本会不断被压缩,这对于提高激光加工技术的普及和应用来说非常重要。

2. 更加精细化和智能化。

未来激光加工技术将更加智能化,加工精度将得到更大的提高。

激光加工技术的发展和应用

激光加工技术的发展和应用

激光加工技术的发展和应用激光加工技术是一种高精度、高效率的加工方式,随着科学技术的不断进步,激光加工技术在工业制造、医疗、通信等领域得到广泛应用。

本文将从发展历程、工艺特点、应用领域几个方面来探讨激光加工技术的发展和应用。

一、发展历程激光加工技术起源于20世纪60年代,当时我们还没有现在所熟知的连续激光器,只有脉冲激光器。

脉冲激光器能够产生高能量密度的光束,用于切割、打孔等加工操作。

激光加工技术的发展主要依赖于光学、电子等各方面技术的发展,随着科技的进步,激光器出现了许多新的形态,如CO2激光器、光纤激光器、半导体激光器等。

同时,激光加工技术也不断发掘新的加工方法,如激光刻蚀、激光沉积、激光转移等。

二、工艺特点激光加工技术与传统加工技术的主要区别在于:激光加工是利用光束将工件表面局部加热,使其融化、气化或发生化学反应,实现加工形状的改变。

这一特点使激光加工具有以下几个突出的优点:1.高精度:激光加工可精确控制激光束的能量密度和加工轨迹,从而获得高精度的加工结果。

2.高效率:激光加工速度快,工艺质量好,且节省能源和材料。

3.灵活性:激光加工不受材料硬度、形状等限制,可对各种材料进行加工,且加工形式多样,如切割、打孔、雕刻、焊接等。

4.环保:激光加工没有污染、噪音和振动,可以实现工艺无废。

三、应用领域激光加工技术在众多领域得到了广泛应用,主要包括以下几个方面:1.工业制造激光加工技术在工业制造中几乎涵盖了所有的制造行业,例如,汽车制造、手机制造、空调制造、家电制造等。

激光加工技术可以用于零部件的切割、作标、打孔等操作,还可以用于三维打印、表面改性等方面。

2.医疗激光加工技术在医疗领域也有很多应用,例如,激光美容、激光治疗、激光手术等。

其中,激光手术是激光加工技术在医疗领域的重要应用之一。

激光手术与传统手术相比,具有切口小、止血快、恢复快等优势。

3.通信现代通信技术中,激光光纤通信技术是一项十分重要的技术。

激光应用在材料加工中的研究

激光应用在材料加工中的研究

激光应用在材料加工中的研究一、引言激光作为一种集光、电、机等多学科于一体的综合应用技术,在材料加工领域发挥着重要的作用。

本文将就激光应用在材料加工中的研究进行探讨,分别从激光切割、激光焊接和激光钻孔三个方面进行讨论,以期对相关领域的科研和实践工作提供参考。

二、激光切割技术及其应用激光切割是激光加工技术中的重要分支之一,其将高能密度的激光束直接作用于材料表面,通过瞬间的能量转化,使材料迅速升温并融化、汽化,从而实现切割目的。

激光切割技术在材料加工领域具有广泛的应用。

首先,激光切割技术对于薄板材料的切割具有独特优势。

激光束的高能量密度和小热影响区使其能够实现精细、高速的切割,广泛应用于金属薄板的制作。

其次,激光切割技术对于非金属材料的切割也有成熟的应用。

如对于石材、玻璃等材料,激光切割技术能够实现精细的切割,并避免了传统机械切割中易产生的缺陷和损伤。

三、激光焊接技术及其应用激光焊接是利用激光束的高能量密度和小热影响区,将材料加热至熔点以上并进行熔化的一种焊接方法。

激光焊接技术具有焊缝狭窄、熔深度大、焊缝成形好等特点,在材料加工领域得到广泛应用。

激光焊接技术在汽车制造、航空航天、电子设备等领域具有重要的应用。

在汽车制造中,激光焊接技术可以实现车身零部件的高效焊接,提高产品质量和生产效率。

在航空航天领域,激光焊接技术可以应对复杂结构的焊接需求,提高焊接质量和可靠性。

在电子设备制造中,激光焊接技术可以实现微观焊接,满足电子器件的小型化和高密度集成要求。

四、激光钻孔技术及其应用激光钻孔技术是利用激光束的高能量密度和小热影响区,在材料表面产生融化、汽化等热效应,从而实现对材料的钻孔。

激光钻孔技术在制造业中得到了广泛应用,尤其在微细孔加工中具有独特优势。

激光钻孔技术可以实现无接触、高精度的孔加工,广泛应用于微电子器件的制作、精密模具加工等领域。

此外,激光钻孔技术还可以应对复杂材料的孔加工需求,如钨、钛合金等高强度材料。

激光加工技术的发展及应用研究

激光加工技术的发展及应用研究

激光加工技术的发展及应用研究激光加工技术相信大家已经不会陌生了。

它是一种以激光束为工具进行加工的技术,由于具有高精度、高效率、无损伤、无污染、无接触等优点,激光加工技术在领域中被广泛应用,它有望成为未来工业制造的主流技术之一。

一、激光加工技术的历史与发展激光加工技术的历史可以追溯到20世纪60年代。

1965年,美国一位科学家发明了被称作激光的新型光源,由于其单色性、相干性和高亮度,很快就引起了工业界的关注。

1982年,德国的魏德梅尔(Karl-Otto Mende)博士首次将激光应用于金属加工中。

当时的激光能量仅为几十瓦,但其加工效率已经超过传统的加工方法。

随着激光技术的发展,其在工业制造中的应用也越来越广泛。

特别是现在的高功率激光技术,使得激光加工效率得到了大幅提升。

目前,激光加工技术已经被广泛应用于金属、非金属和复合材料的加工中,成为了现代制造业的一项重要技术。

二、激光加工技术的分类根据激光加工的模式和处理特点,激光加工可以分为以下几类:1. 激光切割技术:主要应用于金属材料的切割,具有高效、高精度、无接触且无热影响等优点,可以在制造过程中减少材料的浪费。

2. 激光钻孔技术:主要应用于金属材料的开孔、钻孔和放电加工,具有高精度、高效率、非接触性等优点,可以实现对规则和不规则形状的孔洞加工。

3. 激光焊接技术:主要应用于金属材料的焊接,具有高强度、高可靠性、无杂质、无变形等优点,可以实现对不同材料与不同厚度的焊接。

4. 激光刻蚀技术:主要应用于半导体微机电系统、热敏电路、4G手机行业等领域,具有高精度、无刻蚀液、无腐蚀残留等优点,可以实现对非接触性的刻蚀加工。

三、激光加工技术的应用1. 机械制造业激光加工技术在机械制造业中的应用领域很广,如金属零部件、工业机器人、汽车和航空零部件等制造中。

从机械加工的角度,激光加工的加工速度比传统加工快,精度高,能够研究制造一些新颖、微小、薄肉、复杂、高精度的工件,具有无可比拟的优势。

激光技术在材料加工中的应用研究

激光技术在材料加工中的应用研究

激光技术在材料加工中的应用研究随着科学技术的发展,激光技术作为一种非常先进的科技手段,已经被广泛应用于很多领域,其中之一就是材料加工。

激光加工技术可以在宏观上有效地改善加工质量,同时在微观上也能够对材料的性能进行调整,从而实现精确的加工和定制,成为材料加工技术的一大热点之一。

1. 激光切割激光切割是激光加工技术最常见的应用之一。

传统切割技术由于加工难度较高,容易出现变形等缺陷,在样品加工效率,工艺与成本等方面都受到了一定程度的限制。

与传统切割技术相比,激光切割具有出色的加工精度、加工速度和产品质量。

通过激光切割技术可以在不破坏原材料物的情况下,对任意尺寸和形状的材料进行精确切割。

同时激光切割也能够大幅提高加工质量,实现一次性加工成型的目标。

2. 激光打标除了切割,激光加工技术还可以应用于激光打标。

激光打标是采用激光高温烧蚀材料表面得到指定形状或图案的刻纹方式。

与传统的刻划外观方式相比,激光打标技术具有铭刻速度快、质量优、传输方便等优点。

通过激光打标技术可以轻松地刻表盘、标志、图像、二维码以及LOGO等。

3. 激光焊接激光焊接是指采用激光束作为热源,通过向材料表面直接注入能量,使材料在瞬间受热并熔化,然后通过材料表面张力等相互作用力均匀的接合。

与传统的焊接方式比较,激光焊接技术在最终的焊接质量、焊缝的外观、表面光洁度、限制线宽度方面都具有很大的改善。

同时,其还具有简单强大的操作特性,能够在更短的时间内得到更高的生产效率,并优化产品的质量。

4. 激光钻孔激光加工技术还可以应用于激光钻孔。

传统的钻孔方式通常会出现较大的误差和摩擦,同时在通孔时较易出现断切或中心,这些缺陷都会影响工作的效率和产品的质量。

通过激光钻孔不仅可以减少误差,还能够钻出更小的孔,提高效率和工艺水平。

同时,激光加工技术也逐渐展现出在材料加工技术中所具备的重要性,成为改进现有工艺、开展新型产品加工、培养材料加工人才的新途径,吸引着越来越多的材料加工企业的目光。

激光制造技术的研究与开发

激光制造技术的研究与开发

激光制造技术的研究与开发一、引言激光制造技术是一种高性能、高效率的制造技术,它已经被广泛应用于各个领域。

如今,随着科学技术的不断发展,激光制造技术也在不断地创新和推广。

本文将对激光制造技术的研究与开发进行分析与探讨。

二、激光的基本原理激光制造技术最基础的就是激光的使用。

那么,什么是激光呢?激光是一种特殊的光源,与传统的光源不同之处在于,激光具有高亮度、高单色性、高光强度、高相干性和高直线偏振、方向性等特征。

激光器所产生的光,是利用聚集于光腔中的粒子(如气体、半导体等)在受到一定光能量作用后,产生从原来的低能态跃迁到高能态的过程中所放出的光子,经过增强和激发之后,激光产生。

激光的基本原理是激光器仪器与工具的开发的基础。

三、激光制造技术的应用领域激光制造技术已被广泛应用于各个领域。

其中,塑料焊接、表面处理、3D打印、激光切割、激光打标、激光清洗、激光表面精加工、激光雷达遥感等是其主要应用领域。

塑料焊接:激光焊接技术是将高能量密度的激光束直接照射在塑料表面,使其局部熔融、形成一定的熔池,然后通过保温和压力,实现相互切合的焊接方法。

表面处理:利用激光将表面材料做成一定的锥形坑,能够使光在表面反射后,反射的角度分散,使加工后的表面具有类似漫反射的效果,从而达到控制材料表面反射率和吸收率、强化材料表面等的作用。

3D打印:激光3D打印技术是通过激光束来将粉末材料熔化和熔接来制造3D打印的制品。

激光塑料加工技术能够使3D打印制品具有良好的表面质量、较高的密度和较高的力学性能等优势。

激光切割:激光在工业生产中最常使用的一项应用就是激光切割。

激光切割技术能够实现对各种材料的高速、高精度、无变形的切割,而且切割宽度比较小、切口比较光滑,所以激光切割技术在珠宝、模具、机械、电子、轨道交通、轻工、煤矿和建筑等工业领域都得到了广泛的应用。

激光打标:激光打标是用高能量激光在某种物质表面上雕刻出文字、图案或者其他形状。

该技术具有只减不增的方法,不会承受任何磨损或磨损,因此具有出色的耐久性和稳定性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

激光加工技术发展的探究摘要:激光加工是将激光束照射到工件的外表,以激光的高能量来切除、熔化质料以及转变物体外表性能。

由于激光束的能量和光束的移动速率均可调治,因此激光加工可应用于任意层面和领域上。

本文分别从激光加工技术的原理及其应用综合品评了激光加工较传统加工技术的良好性,说明其在制造行业中不行替换的作用.结合我国激光加工制造现状与国际的差距,对我国激光加工业发展做了良好的预测.在阐发外国研究动向的基础上,指出激光制造技术的发展趋向,将重点定位在微结构、微刻蚀、微工具以及多功效性微技术、微工程的研究与开发上。

可以预测,三维微纳尺度的激光微制造技术必将成为新世纪的主流制造技术。

关键词:激光加工激光制造体系技术发展1.前言激光的研究及其在各个领域的应用得到了迅速的发展。

其高相干性在高细密丈量、物质结构阐发、信息存储及通讯等领域得到了普遍应用。

激光的高单色性,可在光化学领域对一些相距很近的能级作选择引发,进行重金属的同位素疏散;激光的高偏向性和高亮度可普遍应用于加工制造业(大到航天器、飞机、汽车工业,小到微电子、信息、生物细胞疏散等微技术)。

随着激光器件、新型受激辐射光源,以及相应工艺的不停改造与优化,尤其是近20年来,激光制造技术已渗透到诸多高新技术领域和产业,并开始取代或革新某些传统的加工行业。

2.正文激光制造技术包括两方面的内容,一是制造激光光源的技术,二是使用激光作为工具的制造技术。

前者为制造业提供性能优良、稳固可靠的激光器以及加工体系,后者使用前者进行各种加工和制造,为激光体系的不停发展提供广阔的应用空间。

两者是激光制造技术中不可或缺的部分,不行偏废。

激光制造技术具有许多传统制造技术所没有的优点,是一种切合可持续发展战略的绿色制造技术。

比如,质料浪费少,在大规模生产中制造资本低;凭据生产流程进行编程控制(自动化),在大规模制造中生产屈从高;可靠近或到达“冷”加工状态,实现通例技术不能实验的高细密制造;对加工工具的顺应性强,且不受电磁干扰,对制造工具和生产情况的要求低;噪声低,不孕育发生任何有害的射线与剩余,生产历程对情况的污染小等等。

因此,为顺应21世纪高新技术的产业化、满足宏观与微观制造的需要,研究和开发高性能光源势在必行。

现在正在积极研制超紫外、超短脉冲、超大功率、高光束质量等特性的激光,尤其是能顺应微制造技术要求的激光光源更是倍受关注,并已形成国际性竞争。

可以预测,激光制造技术必将以其无可替换的优势成为21世纪迅速普及的高新技术。

2.1激光加工技术概述激光加工技术是利用激光束与物质相互作用的特性对质料(包括金属与非金属)举行切割、焊接、外表处理、打孔及微加工等的一门加工技术。

激光加工技术是涉及到光、机、电、材料及检测等多门学科的一门综合技术,它的研究领域一般可分为:2.1.1激光加工体系包括激光器、导光体系、加工机床、控制体系及检测体系。

2.1.2激光加工工艺包括切割、焊接、外表处理、打孔、打标、划线、微调等各种加工工艺。

2.2 激光加工技术应用激光器以切割和焊接应用最广,分别占到70%和激光加工应用领域中,CO220%,外表处理则不到10%。

而YAG激光器的应用则以焊接、打标(50%)和激光器占到了70~80%。

我国激光加工中切割(15%)为主。

在美国和欧洲CO2以切割为主的占10%,其中98%以上的CO2激光器,功率在1.5kW~2kWX围内,而以热处理为主的约占15%,大多数是进行激光处理汽车发动机的汽缸套。

这项技术的经济性和社会效益都很高,故有很大的市场远景。

在汽车工业中,激光加工技术充分发挥了其先进、快速、机动地加工特点。

如在汽车样机和小批量生产中大量使用三维激光切割机,不仅节省了样板及工装配置,还大大缩短了生产准备周期;激光束在高硬度质料和庞大而弯曲的外表打小孔,速率快而不孕育发生破坏;激光焊接在汽车工业中已成为尺度工艺,日本Toyota早已将激光用于车身面板的焊接,将差异厚度和差异外表涂敷的金属板焊接在一起,然后再进行冲压。

虽然激光热处理在外国不如焊接和切割广泛,但在汽车工业中仍应用普遍,如缸套、曲轴、活塞环、换向器、齿轮等零部件的热处理。

在工业发达国家,激光加工技术和计算机数控技术及柔性制造技术相结合,派生出激光快速成形技术。

该项技术不仅可以快速制造模具,而且还可以直接由金属粉末熔融,制造出金属模具。

现在,外国激光打孔主要应用在航空航天、汽车制造、电子仪表、化工等行业。

随着激光打孔的迅速发展,如今,重要表面打孔用YAG激光器的均匀输出功率已由5年前的400w前进到了800w至1000w。

打孔峰值功率高达30~50kw,打孔用的脉冲宽度越来越窄,重复频率越来越高,激光器输出参数的前进,很大程度上改进了打孔质量,推进了打孔速率,也扩大了打孔的应用领域。

国内现在比较成熟的激光打孔的应用是在人造金刚石和自然金刚石拉丝模的生产及腕表宝石轴承的生产中。

2.3激光加工技术较传统加工技术的良好性2.3.1特种质料特别要求的加工激光焊接与大多数传统的焊接要领相比具有突出的优势。

激光能量的高度会集和加热、冷却历程的极其迅速,可破坏一些难熔金属外表的应力阈值,或使高导热系数和高熔点金属快速熔化,完成某些特种金属或合金质料的焊接,而且在激光焊接过程中无机器接触,容易保证焊接部位不因热压缩而变形,还扫除了无关物质落入焊接部位的可能;如果采用大焦深的激光体系,还可实现特别场所下的焊接,比如,由软件控制的需断绝的远间隔在线焊接、高细密防污染的真空情况焊接等;在不孕育发生质料外表蒸发的情况下可熔化最大数目的物质,达到高质量的焊接。

以上特点是传统的焊接工具很难或完全不能做到的。

如今,在汽车、国防、航空航天等一些特别行业,已广泛采用激光焊接技术。

比如欧洲一些国家,对高档汽车车壳与底座、飞机机翼、航天器机身等一些特种质料的焊接,激光的应用已基本取代了传统的焊接工具和要领。

2.3.2特别精度的加工制造这里指的高精度除通常意义下的准确定位外,主要表现在质料内部热传导效应量级上的控制。

激光的显着特点之一,即是可接纳一连和脉冲要领输出。

以固体的钻孔与切割为例,激光能量高度会集,以及加热、冷却速率快的特点可实现传统技术到达不了的广泛要求,加工属热化学历程。

这里要突出的是,脉冲式激光辐射可到达靠近“冷”加工的光化学动力历程。

一方面选择脉冲的时间宽度,使得质料内的热传导历程和热化学反应来不及孕育发生;另一方面控制激光的功率密度和脉冲计数,按要求到达确定的去除深度,从而实现高精度的“线”切割和“点”钻孔加工。

西方一些国家在许多有特别要求的领域和产业中已广泛采用这种脉冲光制造技术。

2.3.3微细加工制造激光微细加工技术的应用是在20世纪后半叶发展起来的微电子学领域。

激光微细加工为微电子集成工艺中的单元微加工技术之一,现已形成固定模式并投入规模化生产。

除此之外,能突显其优势的领域还有精密光学仪器的制造、高密度信息的写入存储、生物细胞构造的医疗等。

选择适当波长的激光,利用各种优化工艺和迫近衍射极限的聚焦体系,得到高质量光束、高稳固性、微小尺寸焦斑的输出。

使用其锋芒尖锐的“光刀”特性,进行高密微痕的刻制、高密信息的直写;也可使用其光阱的“力”效应,进行微小透明球状物的夹持操作。

比如,高细密光栅的刻制(细密光刻);利用CAD/CAM软件进行仿真图案控制,实现高保真打标;使用光阱的“束缚力”,对生物细胞实验移动操作(生物光镊)。

值得一提的是,高密度信息的激光纪录和微细机器零部件的光制造。

无论是数字纪录还是扫描纪录,照旧图像的模仿纪录,激光纪录要领(光刻)都具有特别的优势并取得了重要突破,以数字纪录为例:①信息纪录密度高(107~108bit/cm2以上),刻录槽宽0.7μm、深0.1μm,比磁纪录密度前进两个数量级以上;②纪录、检索、读出速率快,单波道达50Mbit/s,多波道可达320Mbit/s;信息的检索和读出速率远远小于1秒;③资本低、使用寿命长。

在微细机器零部件的光制造方面,近几年外国已将其列为攻关项目,成为未来高新技术前期研究的热门。

日本采用激光技术,制造出微米量级的三维“纳米牛”,这说明在微纳量级的三维激光微成型机制上已经取得了巨大的突破。

工业大学激光工程研究院应用准分子激光,利用掩模要领,已经加工出10齿/50μm和108齿/500μm的微型齿轮。

2.3.4高效的自动流程加工制造由于激光输出的可控制性,使激光制造过程能够利用软件实现自动化流程的智能控制。

凭据生产性子的需要,既可实现加工台的定位控制亦可利用激光的光纤传输实现加工板手定位控制,从而实现高效的自动化、智能化激光制造。

比如,汽车车身笼罩件的三维定位切割、车身骨构架的焊接、齿轮盘及其他零部件的焊接加工等,已形成激光加工、组装一条龙的生产线。

2.4激光加工技术现状及国内外发展趋向2.4.1激光加工技术现状和各领域的发展作为20世纪科学技术发展的重要标志和现代信息社会光电子技术的支柱之一,激光技术和激光产业的发展受到世界先进国家的高度重视。

激光加工是国外激光应用中最大的项目,也是对传统产业革新的重要手段,主要是kW级到10kW级CO2激光器和百瓦到千瓦级YAG激光器实现对种种质料的切割、焊接、打孔、刻划和热处理等。

据1997~1998年的最新激光市场品评和预测,1997年全世界总激光器市场贩卖额达32.2亿美元,比1996年增长14%,其中质料加工为8.29亿美元,医疗应用3亿美元,研究领域1.5亿美元。

1998年总收入预计增长19%,可到达38.2亿美元。

其中占第一位的质料加工预计凌驾10亿美元,医用激光器是外国第二大应用。

2.4.2激光制造体系的发展用于制造业中的激光体系即激光制造体系,由激光器、激光传输体系、激光聚焦体系、控制体系、活动体系、传感与检测体系组成,其焦点为激光器。

激光作为热源或光源(能量)是激光制造中的“刀具”或“工具”。

该“刀具”或“工具”的质量直接影响着加工制造的效果。

激光光束质量的好坏可以采用光束远场发散角、光束聚焦特性参数值Kf和衍射极限倍因子M2(M)或光束传输因子K值来表现。

对小功率激光器,如果物质均匀稳固,通常可以实现基模输出,其光束横截面能量散布为高斯散布,且在传输过程中连结稳固,光束质量较好;对于大功率激光器,一般不易得到基模输出,输出的通常为多模激光束,激光光束质量变差。

现在工业上常用的大功率激光器有CO2激光器和YAG 激光器两种。

大功率激光器的工业应用领域很广,激光切割、激光焊接都需要优良的光束质量,而寻求高光束质量的大功率激光是工业用激光器不停发展的目的。

从1964年第一台CO2激光器出现到如今,经过四十多年的发展,从封离式CO2激光器、慢速轴流CO2激光器、横流CO2激光器,到高频罗兹泵型快速轴流、射频turbo型快速轴流以至现在出现的扩散型Slab CO2激光器的发展中可以看到,一方面激光输出功率不断前进,体积不断缩小,另一方面激光器的屈从不断发激光器光束横截面上光强分布靠近高展,光束质量越来越好。

相关文档
最新文档