安徽省高中数学联赛试题2018
2018年高中数学联赛

2018年高三文科数学联赛试题本试题卷共2页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合(){}22,|,2M x y x y x y =+=为实数,且,(){},|,2N x y x y x y =+=为实数,且,则M N I 的元素个数为() A .0B .1C .2D .32.已知甲、乙两组数据的茎叶图如图所示,若它们的中位数相同,则甲组数据的平均数为()A .30B .31C .32D .333.已知双曲线方程为2212015x y -=,则该双曲线的渐近线方程为()A .34y x =±B .43y x =±C .32y x =±D .233y x =±4.如图所示,黑色部分和白色部分图形是由曲线1y x =,1y x=-,y x =,y x =-及圆构成的.在圆内随机取一点,则此点取自黑色部分的概率是()A .14B .18C .π4D .π85.已知等差数列{}n a 的前n 项和为n S ,且233215S S -=,则数列{}n a 的公差为() A .3B .4-C .5-D .66.设α与β均为锐角,且1cos 7α=,53sin()αβ+=,则cos β的值为()A .7198B .12C .7198或12D .7198或59987.如果函数()()()()2128122f x m x n x m =-+-+>在区间[]2,1--上单调递减,那么mn 的最大值为() A .16B .18C .25D .308.某四棱锥的三视图如图所示,其中正视图是斜边为2等腰直角三角形,侧视图和俯视图均为两个边长为1的正方形,则该四棱锥的高为()A .B .1CD 9.南宋时期的数学家秦九韶独立发现的计算三角形面积的“三斜求积术”,与著名的海伦公式等价,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减小,余四约之,为实.一为从隅,开平方得积.”若把以上这段文字写成公式,即S =))sin :sin :sin 11A B C =的ABC △,则其面积为()A .B C D 10.数列{}n a 的前n 项和为21n S n n =++,()()1N*nn n b a n =-∈.则数列{}n b 的前50项和为() A .49B .50C .99D .10011.阿波罗尼斯(约公元前262-190年)证明过这样一个命题:平面内到两定点距离之比为常数k (0k >且1k≠)的点的轨迹是圆.后人将这个圆称为阿氏圆.若平面内两定点A ,B 间的距离为2,动点P 与A ,B ,当P ,A ,B 不共线时,PAB △面积的最大值是()A .BCD 12.已知不等式12x m x -<-在[]0,2上恒成立,且函数()e x f x mx =-在()3,+∞上单调递增,则实数m 的取值范围为() A .()(),25,-∞+∞U B .()(3,15e ⎤-∞⎦U , C .()(2,25,e ⎤-∞⎦UD .()(3,25,e ⎤-∞⎦U第Ⅱ卷卷包括必考题和选考题两部分。
2018年安徽数学竞赛(初赛)试题及答案word版

2018全国高中数学联赛安徽省初赛试卷(考试时间:2018年6月30日上午9:00—11:30) 题号 一 二总分9 10 11 12 得分 评卷人复核人注意: 1.本试卷共12小题,满分150分; 2.请用钢笔、签字笔或圆珠笔作答;3.书写不要超过装订线; 4.不得使用计算器.一、填空题(每题8分,共64分,结果须化简)1. 设三个复数l,i,z 在复平面上对应的三点共线,且|z |=5,则z =____.2. 设n 是正整数,且满足n 5=438427732293,则n =____.3. 函数f (x )=|sin(2x)+sin(3x )+sin(4x )|的最小正周期=____.4. 设点P ,Q 分别在函数y =2x 和y =log 2x 的图象上,则|PQ |的最小值=____.5. 从l,2,…,10中随机抽取三个各不相同的数字,其样本方差s 2≤l 的概率=____6. 在边长为1的正方体ABCD -A 1B 1C 1D 1内部有一小球,该小球与正方体的对角线段AC 1相切,则小球半径的最大值=____.7. 设H 是△ABC 的垂心,且3HA +4HB +5HC =0,则cos ∠AHB =____.8. 把l,2,…,n 2按照顺时针螺旋方式排成n 行n 列的表格T n ,第一行是l,2,…,n. 例如:T 3=.设2018在T 100的第i 行第j 列,则(i ,j )= .二、解答题(第9—10题每题21分,第11—12题每题22分,共86分)9. 如图所示,设ABCD 是矩形,点E ,F 分别是线段AD ,BC 的中点,点G 在线段EF 上,点D ,H 关于线段AG 的垂直平分线l 对称.求证:∠HAB =3∠GAB .A BCD E FG H l10.设O是坐标原点,双曲线C:22221x ya b上动点M处的切线交C的两条渐近线于A,B两点:(1)求证:△AOB的面积S是定值.(2)求△AOB的外心P的轨迹方程。
2018年安徽省黄山市高三第一次联理科数学试题及答案

黄山市2018届高中毕业班第一次质量检测数学(理科)试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,全卷满分150分,考试时间120分钟.参考公式:如果事件A B 、互斥,那么()()()P A B P A P B +=+.第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有 一项是符合题目要求的.3. m 、n 是不同的直线,α、β、γ是不同的平面,有以下四命题:① 若γαβα//,//,则γβ//; ②若αβα//,m ⊥,则β⊥m ;③ 若βα//,m m ⊥,则βα⊥; ④若α⊂n n m ,//,则α//m .其中真命题的序号是 ( ) A .①③ B .①④ C .②③ D .②④ 4.设函数()3cos(2)sin(2)(||)2f x x x πϕϕϕ=+++<,且其图象关于直线0x =对称,则 ( )A.()y f x =的最小正周期为π,且在(0,)2π上为增函数 B.()y f x =的最小正周期为π,且在(0,)2π上为减函数C.()y f x =的最小正周期为2π,且在(0,)4π上为增函数 D.()y f x =的最小正周期为2π,且在(0,)4π上为减函数5.如右图,若程序框图输出的S 是126,则判断框①中应为 ( ) A .?5≤n B .?6≤n C .?7≤n D .?8≤n6.若定义在R 上的偶函数()f x 满足(2)()f x f x +=,且当[0,1]x ∈时,(),f x x =则方程3()log ||f x x =的解个数是( )A .0个B .2个C .4个D .6个7.若{}n a 是等差数列,首项公差0d <,10a >,且201320122013()0a a a +>,则使数列{}n a 的前n 项和0n S >成立的最大自然数n 是 ( ) A .4027 B .4026 C .4025 D .40248.已知00(,)M x y 为圆222(0)x y a a +=>内异于圆心的一点,则直线200x x y y a +=与该圆的位置关系是 ( )A 、相切B 、相交C 、相离D 、相切或相交 9.已知n为正偶数,用数学归纳法证明11111111...2(...)2341242n n n n -+-++=++++++ 时,若已假设2(≥=k k n 为偶数)时命题为真,则还需要用归纳假设再证n =( )时等式成立 ( )A .1n k =+B .2n k =+C .22n k =+D .2(2)n k =+ 10. 已知向量α、β、γ满足||1α=,||||αββ-=,()()0αγβγ-⋅-=.若对每一确定的β,||γ的最大值和最小值分别为m 、n ,则对任意β,m n -的最小值是 ( )A .12 B .1 C .2D .2第Ⅱ卷(共100分)二、填空题:本大题共共5小题,每小题5分,共25分11.为了了解“预防禽流感疫苗”的使用情况,某市卫生部门对本地区9月份至11月份注射3主视图 俯视图侧视图疫苗的所有养鸡场进行了调查,根据下图表提供的信息,可以得出这三个月本地区每月注射了疫苗的鸡的数量平均为 万只.12.二项式1022⎪⎪⎭⎫⎝⎛+x x 展开式中的第________项是常数项.13.一个几何体的三视图如右图所示,主视图与俯视图都是一边长为3cm 的矩形,左视图是一个边长为2cm 的等边三角形,则这个几何体的体积为________.14.已知z=2x +y ,x ,y 满足,2,,y x x y x a ≥⎧⎪+≤⎨⎪≥⎩且z 的最大值是最小值的4倍,则a 的值是 . 15.给出如下四个结论:① 若“p 且q ”为假命题,则p 、q 均为假命题; ② 命题“若a b >,则221ab >-”的否命题为“若a b ≤,则221a b ≤-”;③ 若随机变量~(3,4)N ζ,且(23)(2)P a P a ζζ<-=>+,则3a =; ④ 过点A (1,4),且横纵截距的绝对值相等的直线共有2条. 其中正确结论的序号是______________________________.[来源:状.元.源Z.y.y.100]三、解答题:本大题共共6小题,共75分,解答应写出必要的文字说明、证明过程或演算步骤 16. (本小题满分12分)已知函数()23sin cos cos f x x x x m =-+()R m ∈的图象过点π(,0)12M .(Ⅰ)求m 的值;(Ⅱ)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c .若cos +cos =2cos c B b C a B ,求()f A 的取值范围.17.(本小题满分12分) 已知函数()exf x tx =+(e为自然对数的底数).(Ⅰ)当e t =-时,求函数()f x 的单调区间;(Ⅱ)若对于任意(0,2]x ∈,不等式()0f x >恒成立,求实数t 的取值范围.18.(本小题满分12分)如图,已知多面体ABCDE 中,AB ⊥平面ACD ,DE ⊥平面ACD ,AC=AD=CD=DE=2,AB=1,F 为CD 的中点. (Ⅰ)求证:AF ⊥平面CDE ;(Ⅱ)求面ACD 和面BCE 所成锐二面角的大小.19.(本小题满分12分)某高校设计了一个实验学科的实验考查方案:考生从6道备选题中一次性随机抽取3题,按照题目要求独立完成全部实验操作。
2018届安徽省示范高中(皖江八校)高三第八联考数学理试题word版含答案

2018届安徽省示范高中(皖江八校)高三第八联考数学理试题word版含答案2018届安徽省示范高中(皖江八校)高三第八联考数学理试题第Ⅰ卷(选择题共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合,,若,则()A. B. C. D.【答案】B【解析】分析:由题3是方程的一个根,从而得到由此能求出集合.详解:∵,∴,即,∴故选B.点睛:本题考查集合的求法,考查交集定义等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.2. 已知是的共轭复数,且,则的虚部是()A. B. C. D.【答案】D【解析】分析:设,则,由此可求出.详解:设,则,∴.故选D.点睛:本题考查了复数的定义和复数的模以及共轭复数的定义,属于基础题.3. 已知等差数列的前项和为,且,则()A. B. C. D.【答案】C【解析】分析:由得,由等差数列的性质可得,又,则,由此可求出详解:由得,,又,∴,即.故选C.点睛:本题考查等差数列的有关性质,属中档题.4. 如下图是2017年第一季度五省GDP情况图,则下列陈述中不正确的是()A. 2017年第一季度GDP增速由高到低排位第5的是浙江省.B. 与去年同期相比,2017年第一季度的GDP总量实现了增长.C. 去年同期河南省的GDP总量不超过4000亿元 .D. 2017年第一季度GDP总量和增速由高到低排位均居同一位的省只有1个.【答案】D【解析】分析:解决本题需要从统计图获取信息,解题的关键是明确图表中数据的来源及所表示的意义,依据所代表的实际意义获取正确的信息.详解:由折线图可知A、B正确;,故C正确;2017年第一季度GDP总量和增速由高到低排位均居同一位的省有江苏均第一;河南均第四,共2个.故D错误.故选D.点睛:本题考查条形统计图和折线统计图的综合运用,读懂统计图,从不同的统计图得到必要的住处是解决问题的关键.5. 已知双曲线,四点,中恰有三点在双曲线上,则该双曲线的离心率为()A. B. C. D.【答案】C【解析】分析:由对称性分析可得点在双曲线上,代入求得,计算离心率.详解:由双曲线对称性可知,点在双曲线上,且点一定不再双曲线上,则点在双曲线上,代入可得,则,所以,故选C.点睛:本题解题的关键是能够根据对称性判断出哪三个点在双曲线上,进而求解的值,利用公式求出离心率.6. 执行如下图所示的程序框图,则输出的结果为()A. B. C. D.【答案】B【解析】分析:根据框图的流程依次运行程序,直到满足条件s≤-1,确定输出的i值即可得解.详解:否;否;否;否;是,输出故选B.点睛:本题考查了循环结构的程序框图,根据框图的流程依次运行程序是解答此类问题的常用方法,属于基础题.7. 已知满足时, 的最大值为,则直线过定点()A. B. C. D.【答案】A【解析】分析:由约束条件作出可行域,得到使目标函数取得最大值的最优解,求出最优解的坐标,代入目标函数得到的关系,再代入直线由直线系方程得答案.详解:由,得,画出可行域,如图所示,数学结合可知在点处取得最大值,,即:,直线过定点. 故选A.点睛:本题考查了简单的线性规划,考查了数形结合的解题思想方法,考查了数学转化思想方法,属中档题.8. 2018年1月31日晚上月全食的过程分为初亏、食既、食甚、生光、复圆五个阶段,月食的初亏发生在19时48分,20时51分食既,食甚时刻为21时31分,22时08分生光,直至23时12分复圆.全食伴随有蓝月亮和红月亮,全食阶段的“红月亮”将在食甚时刻开始,生光时刻结東,一市民准备在19:55至21:56之间的某个时刻欣赏月全食,则他等待“红月亮”的时间不超过30分钟的概率是()A. B. C. D.【答案】C【解析】分析:由市民准备在19:55至21:56之间的某个时刻欣赏月全食知这是一个几何概型,由题可知事件总数包含的时间长度是121,而他等待的时间不多于30分钟的事件包含的时间长度是55,两值一比即可求出所求.详解:如图,时间轴点所示,概率为故选C.点睛:本题主要考查了几何概型,本题先要判断该概率模型,对于几何概型,它的结果要通过长度、面积或体积之比来得到,属于中档题.9. 设点在的内部,且有,则的面积与的面积之比为()A. B. C. D.【答案】A【解析】分析:取中点,则,进而得到,从而确定点的位置,进而求得的面积与的面积之比.详解:如图,取中点,,则,∴,∵,∴,∴.故选A.点睛:本题考查向量在几何中的应用,以及向量加法的平行四边形法则和向量共线定理等基础知识,同时考查学生灵活应用知识分析解决问题的能力和计算能力.属基础题.10. 函数,若在区间上是单调函数,且则的值为()A. B. 或 C. D. 或【答案】B【解析】分析:由在区间是有单调性,可得范围,从而得;由,可得函数关于对称,又,有对称中心为;讨论与是否在同一周期里面相邻的对称轴与对称中心即可.详解:因为在单调,∴,即,而;若,则;若,则是的一条对称轴,是其相邻的对称中心,所以,∴.故选B.点睛:本题考查三角函数的周期性及其求法,确定与是否为同一周期里面相邻的对称轴与对称中心是关键,也是难点,属于难题.11. 某棱锥的三视图如下图所示,则该棱锥的外接球的表面积为()A. B. C. D.【答案】A【解析】分析:由三视图可知该几何体是如图所示的三棱锥,外接球球心在过中点且垂直于平面的直线上,可知是直线与面的交点,也是直线与直线的交点没有此可求三棱锥外接球的半径,得到棱锥的外接球的表面积详解:由三视图可知该几何体是如图所示的三棱锥,外接球球心在过中点且垂直于平面的直线上,又点到距离相等,∴点又在线段的垂直平分面上,故是直线与面的交点,可知是直线与直线的交点(分别是左侧正方体对棱的中点)∴,,故三棱锥外接球的半径,表面积为.故选A.点睛:本题考查了三棱锥的性质、空间几何位置关系、三垂线定理、球的性质,考查了推理能力与计算能力,属于中档题.12. 已知函数,若存在,使得关于的方程有解,其中为自然对数的底数则实数的取值范围是()A. B.C. D.【答案】D【解析】分析:由题得,令,,利用导数性质能求出实数的取值范围.详解:由,得,得,即,令,,则,显然是函数的唯一零点,易得,∴,即.故选D.点睛:本题考查实数的取值范围的求法解题时要认真审题,注意导数性质、构造法的合理运用.,属中档题,第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分,请把正确的答案填在横线上.13. 的值为__________.【答案】1【解析】分析:由,即两角差的余弦公式展开即可求值.详解:原式即答案为1 .点睛:本题主要考察了三角函数中的恒等变换应用,熟练运用相关公式和特殊角的关系是解题的关键,属基础题.14. 已知则__________.【答案】24【解析】分析:由题意根据,利用二项展开式的通项公式,求得a2的值.详解:由题意根据,.即答案为24 .点睛:本题主要考查二项式定理的应用,二项展开式的通项公式,属于基础题.15. 是抛物线上一点, 是抛物线的焦点, 为坐标原点着是抛物线的准线与轴的交点,则__________.【答案】【解析】分析:设,得,所以,由向量的夹角公式可求. 详解:由抛物线的对称性不妨设,则,得,因为,所以,可得,,所以.点睛:本题考查抛物线的方程与定义,考查向量的夹角公式的应用,属基础题.16. 设为数列的前项和,已知,对任意 ,都有,则的最小值为__________.【答案】30【解析】分析:当时,,∴数列是首项为,公比为的等比数列,由此得到,由可得,利用基本不等式可求的最小值详解:当时,,∴数列是首项为,公比为的等比数列,∴,∴,,∴当且仅当即时,等号成立,点睛:本题考查了等差数列的通项公式与求和公式、利用基本不等式求函数的最值,考查了推理能力与计算能力,属于中档题.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的制定区域内.17. 在锐角中,(I)求角;(Ⅱ)若,求的取值范围.【答案】(Ⅰ) (Ⅱ)【解析】试题分析:(Ⅰ)由题根据余弦定理化简所给条件可得,所以,根据角的范围可得角A;(Ⅱ)由题根据所给条件可得,根据正弦定理可得,所以,然后根据可得bc的范围.试题解析:(1)由且4分(2)又8分12分考点:正弦定理、余弦定理的应用18. 如图,在几何体中,平面底面,四边形是正方形, 是的中点,且,.(I)证明: ;(Ⅱ)求直线与平面所成角的正弦值 .【答案】(Ⅰ)见解析(Ⅱ)【解析】分析:(Ⅰ)设法证明四边形是平行四边形,则,由即可求出证明,(Ⅱ)以为原点,分别为轴和轴建立空间直角坐标系,建立空间直角坐标系,利用向量法能求出直线与平面所成角的正弦值 ..详解:(Ⅰ)如图1所示,连接交于点,连接.∵四边形是正方形,∴是的中点又已知是的中点,∴又∵且,∴即四边形是平行四边形,∴,∵,∴(Ⅱ) 如图2所示,以为原点,分别为轴和轴建立空间直角坐标系,令,则,,∴,,,设平面的法向量为,则由,,可得:,可令,则,∴平面的一个法向量设直线与平面所成角为,则.点睛:本题考查线面垂直的证明,考查线面角的正弦值的求法,考查空间向量、线面角、线面平行的判定定理等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、函数与方程思想、数形结合思想,是中档题.19. 2017年5月,来自“一带一路”沿线的国青年评选出了中国的“新四大发明”:高铁、扫码支付、共享单车和网购.为发展业务,某调研组对两个公司的扫码支付准备从国内个人口超过万的超大城市和个人口低于万的小城市随机抽取若干个进行统计,若一次抽取个城市,全是小城市的概率为. (I)求的值;(Ⅱ)若一次抽取个城市,则:①假设取出小城市的个数为,求的分布列和期望; ②取出个城市是同一类城市求全为超大城市的概率. 【答案】(Ⅰ)(Ⅱ)①见解析②【解析】分析:(Ⅰ)根据题意,共个城市,取出个的方法总数是,其中全是小城市的情况有,由古典概型可求全是小城市的概率;(Ⅱ)①.,根据超几何分布可得到的分布列和期望;②若4球全是超大城市,共有种情况;若4球全是小城市,共有种情况;由此可求全为超大城市的概率详解:(Ⅰ)共个城市,取出个的方法总数是,其中全是小城市的情况有,故全是小城市的概率是,∴,∴,故.(Ⅱ)①.;;;;.故的分布列为.②若4球全是超大城市,共有种情况;若4球全是小城市,共有种情况;故全为超大城市的概率为.点睛:本题考查古典概型的概率,离散型随机变量的分布列、数学期望和方差的求法,是中档题,解题时要认真审题,注意超几何分布分布的性质的合理运用.20. 已知椭圆的左焦点为,右顶点为,点的坐标为的面积为,过点的动直线被椭圆所截得的线段长度的最小值为 .(I)求椭圆的方程;(Ⅱ) 是椭圆上异于顶点的一点,且直线是线段延长线上一点,且,的半径为是的两条切线,切点分别为,求的最大值,并求出取得最大值时直线的斜率 .【答案】(Ⅰ) (Ⅱ)的最大值为,取得最大值时直线的斜率为.【解析】分析:(Ⅰ)由已知,可得,解得设椭圆方程:,当直线斜率不存在时,线段长为;当直线斜率存在时,设方程:,由弦长公式可得的长小于,易知当时,的最小值为,从而,由此得到椭圆的方程;(Ⅱ)由(Ⅰ)知,,而的半径,。
安徽省示范高中(皖江八校)2018届高三第八联考(理)数学试题及答案解析

安徽省示范高中(皖江八校)2018届高三第八联考数学试题(理)第Ⅰ卷(选择题)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合,,若,则()A. B. C. D.2. 已知是的共轭复数,且,则的虚部是()A. B. C. D.3. 已知等差数列的前项和为,且,则()A. B. C. D.4.如下图是2017年第一季度五省GDP情况图,则下列陈述中不正确的是()A. 2017年第一季度GDP增速由高到低排位第5的是浙江省.B. 与去年同期相比,2017年第一季度的GDP总量实现了增长.C. 去年同期河南省的GDP总量不超过4000亿元 .D. 2017年第一季度GDP总量和增速由高到低排位均居同一位的省只有1个.5. 已知双曲线,四点,中恰有三点在双曲线上,则该双曲线的离心率为()A. B. C. D.6. 执行如下图所示的程序框图,则输出的结果为()A. B. C. D.7. 已知满足时, 的最大值为,则直线过定点()A. B. C. D.8. 2018年1月31日晚上月全食的过程分为初亏、食既、食甚、生光、复圆五个阶段,月食的初亏发生在19时48分,20时51分食既,食甚时刻为21时31分,22时08分生光,直至23时12分复圆.全食伴随有蓝月亮和红月亮,全食阶段的“红月亮”将在食甚时刻开始,生光时刻结東,一市民准备在19:55至21:56之间的某个时刻欣赏月全食,则他等待“红月亮”的时间不超过30分钟的概率是()A. B. C. D.9. 设点在的内部,且有,则的面积与的面积之比为()A. B. C. D.10. 函数,若在区间上是单调函数,且则的值为()A. B. 或 C. D. 或11. 某棱锥的三视图如下图所示,则该棱锥的外接球的表面积为()A. B. C. D.12. 已知函数,若存在,使得关于的方程有解,其中为自然对数的底数则实数的取值范围是()A. B. C. D.第Ⅱ卷二、填空题13. 的值为__________.14. 已知则__________.15. 是抛物线上一点, 是抛物线的焦点, 为坐标原点着是抛物线的准线与轴的交点,则__________.16. 设为数列的前项和,已知,对任意,都有,则的最小值为__________.三、解答题(解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的制定区域内.)17. 在锐角中,(I)求角;(Ⅱ)若,求的取值范围.18. 如图,在几何体中,平面底面,四边形是正方形,是的中点,且,.(I)证明: ;(Ⅱ)求直线与平面所成角的正弦值.19. 2017年5月,来自“一带一路”沿线的国青年评选出了中国的“新四大发明”:高铁、扫码支付、共享单车和网购.为发展业务,某调研组对两个公司的扫码支付准备从国内个人口超过万的超大城市和个人口低于万的小城市随机抽取若干个进行统计,若一次抽取个城市,全是小城市的概率为.(I)求的值;(Ⅱ)若一次抽取个城市,则:①假设取出小城市的个数为,求的分布列和期望;②取出个城市是同一类城市求全为超大城市的概率.20. 已知椭圆的左焦点为,右顶点为,点的坐标为的面积为,过点的动直线被椭圆所截得的线段长度的最小值为.(I)求椭圆的方程;(Ⅱ) 是椭圆上异于顶点的一点,且直线是线段延长线上一点,且,的半径为是的两条切线,切点分别为,求的最大值,并求出取得最大值时直线的斜率.21. 已知函数(I)若,函数的极大值为,求实数的值;(Ⅱ)若对任意的在上恒成立,求实数.请考生从第22、23题中任选一题做答.22. 选修4-4:坐标系与参数方程在直角坐标系中,直线,圆,以坐标原点为极点, 轴的正半轴为极轴建立极坐标系.(I)求的极坐标方程;(Ⅱ)若直线的极坐标方程为,设与的交点为与的交点为,求的面积.23. 选修4-5:不等式选讲已知函数(I)若不等式的解集为,求实数的值;(Ⅱ)若不等式对任意恒成立,求实数的取值范围.【参考答案】第Ⅰ卷(选择题)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1. 【答案】B【解析】由题3是方程的一个根,从而得到由此能求出集合.详解:∵,∴,即,∴故选B.2.【答案】D【解析】设,则,由此可求出详解:设,则,∴.故选D.3. 【答案】C【解析】由得,由等差数列的性质可得,又,则,由此可求出详解:由得,,又,∴,即.故选C.4. 【答案】D【解析】解决本题需要从统计图获取信息,解题的关键是明确图表中数据的来源及所表示的意义,依据所代表的实际意义获取正确的信息.详解:由折线图可知A、B正确;,故C正确;2017年第一季度GDP总量和增速由高到低排位均居同一位的省有江苏均第一;河南均第四,共2个.故D错误.故选D.5. 【答案】C【解析】由对称性分析可得点在双曲线上,代入求得,计算离心率. 详解:由双曲线对称性可知,点在双曲线上,且点一定不再双曲线上,则点在双曲线上,代入可得,则,所以,故选C.6. 【答案】B【解析】根据框图的流程依次运行程序,直到满足条件s≤-1,确定输出的i值即可得解.详解:否;否;否;否;是,输出故选B.7. 【答案】A【解析】分析:由约束条件作出可行域,得到使目标函数取得最大值的最优解,求出最优解的坐标,代入目标函数得到的关系,再代入直线由直线系方程得答案.详解:由,得,画出可行域,如图所示,数学结合可知在点处取得最大值,,即:,直线过定点.故选A.8. 【答案】C【解析】由市民准备在19:55至21:56之间的某个时刻欣赏月全食知这是一个几何概型,由题可知事件总数包含的时间长度是121,而他等待的时间不多于30分钟的事件包含的时间长度是55,两值一比即可求出所求.详解:如图,时间轴点所示,概率为故选C.9. 【答案】A【解析】分析:取中点,则,进而得到,从而确定点的位置,进而求得的面积与的面积之比.详解:如图,取中点,,则,∴,∵,∴,∴.故选A.10. 【答案】B【解析】由在区间是有单调性,可得范围,从而得;由,可得函数关于对称,又,有对称中心为;讨论与是否在同一周期里面相邻的对称轴与对称中心即可.详解:因为在单调,∴,即,而;若,则;若,则是的一条对称轴,是其相邻的对称中心,所以,∴.故选B.11. 【答案】A【解析】由三视图可知该几何体是如图所示的三棱锥,外接球球心在过中点且垂直于平面的直线上,可知是直线与面的交点,也是直线与直线的交点没有此可求三棱锥外接球的半径,得到棱锥的外接球的表面积详解:由三视图可知该几何体是如图所示的三棱锥,外接球球心在过中点且垂直于平面的直线上,又点到距离相等,∴点又在线段的垂直平分面上,故是直线与面的交点,可知是直线与直线的交点(分别是左侧正方体对棱的中点)∴,,故三棱锥外接球的半径,表面积为.故选A.12. 【答案】D【解析】由题得,令,利用导数性质能求出实数的取值范围.由,得,得,即,令,,则,显然是函数的唯一零点,易得,∴,即. 故选D.第Ⅱ卷二、填空题13.【答案】1【解析】由,即两角差的余弦公式展开即可求值.详解:原式即答案为1 .14.【答案】24【解析】由题意根据,利用二项展开式的通项公式,求得a2的值.详解:由题意根据,.即答案为24 .15.【答案】【解析】设,得,所以,由向量的夹角公式可求.详解:由抛物线的对称性不妨设,则,得,因为,所以,可得,,所以.16.【答案】30【解析】当时,,∴数列是首项为,公比为的等比数列,由此得到,由可得,利用基本不等式可求的最小值.详解:当时,,∴数列是首项为,公比为的等比数列,∴,∴,,∴当且仅当即时,等号成立,三、解答题(解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的制定区域内.)17. 解:(I)由且4分(Ⅱ)又8分12分考点:正弦定理、余弦定理的应用18. (I)证明:如图1所示,连接交于点,连接.∵四边形是正方形,∴是的中点又已知是的中点,∴又∵且,∴即四边形是平行四边形,∴,∵,∴(Ⅱ) 解:如图2所示,以为原点,分别为轴和轴建立空间直角坐标系,令,则,,∴,,,设平面的法向量为,则由,,可得:,可令,则,∴平面的一个法向量设直线与平面所成角为,则.19. 解:(I)共个城市,取出个的方法总数是,其中全是小城市的情况有,故全是小城市的概率是,∴,∴,故.(Ⅱ)①.;;;;.故的分布列为3.0②若4球全是超大城市,共有种情况;若4球全是小城市,共有种情况;故全为超大城市的概率为.20. 解:(I)由已知,可得.又由,可得,解得设椭圆方程:,当直线斜率不存在时,线段长为;当直线斜率存在时,设方程:,由,得,从而,易知当时,的最小值为,从而,因此,椭圆的方程为:(Ⅱ)由第(I)问知,,而的半径,又直线的方程为,由,得,因此,由题意可知,要求的最大值,即求的最小值而,令,则,因此,,当且仅当,即时等号成立,此时,所以,因此,所以的最大值为.综上所述,的最大值为,取得最大值时直线的斜率为.21. 解:(I)由题意,.①当时,,令,得;,得,所以在单调递增,单调递减.所以的极大值为,不合题意.②当时,,令,得;,得或,所以在单调递增,,单调递减.所以的极大值为,得.综上所述.(Ⅱ)令,,当时,,则对恒成立等价于,即,对恒成立.①当时,,,,此时,不合题意.②当时,令,,则,其中,,令,则在区间上单调递增,时,,所以对,,从而在上单调递增,所以对任意,,即不等式在上恒成立.时,由,及在区间上单调递增,所以存在唯一的使得,且时,.从而时,,所以在区间则时,,即,不符合题意.综上所述,.点睛:本题考查了导函数的综合应用和函数的构造,二次求导问题,综合性强,难度较大请考生从第22、23题中任选一题做答.22.解:(I)因为,,所以的极坐标方程为,即,的极坐标方程为.(Ⅱ)代入,得,解得.代入,得,解得.故的面积为.23. 解:(I),由条件得,得或,∴,即或.(Ⅱ)原不等式等价于恒成立,而,∴,则恒成立,∵,∴,等号成立当且仅当时成立.。
安徽省示范高中培优联盟2018-2019学年高二下学期春季联赛数学(文)试题Word版含解析

安徽省示范高中培优联盟2018-2019学年下学期春季联赛高二数学(文)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,则()A. B. C. D.【答案】C【解析】分析:由题意,求得,利用集合的交集运算,即可得到结果.详解:由题意,所以,故选C.点睛:本题主要考查了集合的运算,正确求解集合是解答的关键,着重考查了推理与运算能力.2. 若,则()A. B. C. D.【答案】A【解析】分析:由题意,再由代入即可求解.详解:由题意,则,故选A.点睛:本题主要考查了三角函数的化简求值,其中熟记三角恒等变换的公式是解答的关键,着重考查了推理与运算能力.3. “”是“”的()A. 充要条件B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件【答案】B【解析】分析:由题意,则或,根据充要条件的判定方法,即可得到判定.详解:由题意,则或,所以“”是“”的必要不充分条件,故选B.点睛:本题主要考查了必要不充分条件的判定,着重考查了分析问题和解答问题的能力.4. 七巧板是我们祖先的一项创造,被誉为“东方魔板”,它是由五块等腰直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形)、一块正方形和一块平行四边形组成的.如图是一个用七巧板拼成的正方形,在此正方形中任取一点,则此点取自阴影部分的概率是()A. B. C. D.【答案】D【解析】分析:求出阴影部分的面积,根据几何概型,即可求解满足条件的概率.详解:如图所示,设,所以,所以点取自阴影部分的概率为,故选D.点睛:本题主要考查了几何概型及其概率的求解,其中解答中正确求解阴影部分的面积是解答的关键,着重考查了数形结合思想和考生的推理与运算能力.5. 已知命题且,命题.下列命题为真命题的是()A. B. C. D.【答案】B【解析】命题:,且,例如当a大于0,b 小于0时,表达式就成立;命题:,,故表达式成立。
【竞赛试题】2018全国高中数学联赛安徽省初赛试卷

1【竞赛试题】2018全国高中数学联赛安徽省初赛试卷(考试时间:2018年6月30日上午9:00)一、填空题(每题8分,共64分,结果须化简)1、设三个复数1, i, z 在复平面上对应的三点共线,且|z|=5,则z=2、设n 是正整数,且满足n 5=438427732293,则n=3、函数f(x) =sin(2x) + sin(3x) + sin(4x)的最小正周期=4.设点P,Q 分别在函数y=2x 和y=log 2x 的图象上,则|PQ|的最小值=5、从1,2,…,10中随机抽取三个各不相同的数字,其样本方差s 2≤1的概率=6、在边长为I 的正方体ABCD-A 1B 1C 1D 1内部有一小球,该小球与正方体的对角线段AC 1相切,则小球半径的最大值=7、设H 是△ABC 的垂心,且3450HA HB HC ++=,则cos ∠AHB=8、把1,2,…,n 2按照顺时针螺旋方式排成n 行n 列的表格T n ,第一行是1,2,…,n.例如:3123894765T ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦设2018在T 100的第i 行第j 列,则(i,j)= · 二、解答题(第9-10题每题21分,第11-12题每题22分,共86分)9、如图所示,设ABCD 是矩形,点E, F 分别是线段AD, BC 的中点,点G 在线段EF 上,点D, H 关于线段AG 的垂直平分线L 对称.求证:∠HAB=3∠GAB.10、设O 是坐标原点,双曲线C:上动点M 处的切线交C 的两条渐近线于A,B 两点。
(1)减B 两点:`(1)求证:△AOB 的面积S 是定值。
(2)求△AOB 的外心P 的轨迹方程.11、(1)求证:对于任意实数x,y,z都有: ) 222x23y z xy yz zx ++≥++.(2)是否存在实数x.y,z下式恒成立?()222x23y z k xy yz zx++≥++,试证明你的结论.12.在正2018边形的每两个顶点之间均连一条线段,并把每条线段染成红色或蓝色.求此图形中三边颜色都相同的三角形的最小个数.232018全国高中数学联赛安徽省初赛试卷考试时间:2019年6月30日上午9:001.设三个复数1,i,z 在复平面上对应的三点共线,且5z =,则z =4-3i,34i -+.2.设n 是正整数,且满足5438427732293n =,则n =213.3.函数()sin2sin3sin4f x x x x =++的最小正周期=2π.4.设点,P Q 分别在函数2x y =和2log y x =的图象上,则PQ 的最小值=5、从1,2,,10⋅⋅⋅中随机抽取三个各不相同的数字,其样本方差21s ≤的概率=115. 6、在边长为1的正方体1111ABCD A BC D -内部有一小球,该小球与正方体的对角线段1AC 相切,则小球半径的最大值 7、设H 是ABC ∆的垂心,且3450HA HB HC ++=,则cosAHB ∠=6-. 8、把21,2,,n ⋅⋅⋅按照顺时针螺旋方式排成n 行n 列的表格n T ,第一行是1,2,,n ⋅⋅⋅.例如:3123894765T ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦设2018在100T 的第i 行第j 列,则(),i j =()34,95.9、如图所示,设ABCD 是矩形,点,E F 分别是线段,AD BC 的中点,点G 在线段EF 上,点,D H 关于线段AG 的垂直平分线L 对称.求证:3HAB GAB ∠=∠.。
安徽省示范高中培优联盟2017-2018学年高二下学期春季联赛数学(文)试题+Word版含答案

安徽省示范高中培优联盟2017-2018学年高二下学期春季联赛数 学(文)试 题 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{{},2,xA x yB y y x A ====∈,则AB =( )A .(],1-∞B .[]0,1C .(]0,1D .[)0,22. 若cos 2πα⎛⎫-=⎪⎝⎭,则()cos 2πα-=( ) A . 2125-B .2125C .225-D .2253.“x y ≠”是“x y ≠”的( )A . 充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件4.七巧板是我们祖先的一项创造,被誉为“东方魔板”,它是由五块等腰直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形)、一块正方形和一块平行四边形组成的.如图是一个用七巧板拼成的正方形,在此正方形中任取一点,则此点取自阴影部分的概率是( )A .316 B .38 C .18 D .145.已知命题:,,p a b R a b ∃∈>且11a b >,命题3:,sin cos 2q x R x x ∀∈+<.下列命题为真命题的是( )A . p q ⌝∧B .p q ∧ C. p q ∧⌝ D .p q ⌝∧⌝ 6.某同学在研究性学习中,收集到某制药厂今年前5个月甲胶囊生产产量(单位:万盒)的数据如下表所示:若,x y 线性相关,线性回归方程为0.6y x a =+,估计该制药厂6月份生产甲胶囊产量为( ) A . 7.2万盒 B .7.6万盒 C. 7.8万盒 D .8.6万盒 7.将函数()2sin 06y x πωω⎛⎫=+> ⎪⎝⎭的图像向右移23π个单位后,所得图像关于y 轴对称,则ω的最小值为( )A . 2B .1 C.12 D .148.如图是某四棱锥的三视图,其中正视图是边长为2的正方形,侧视图是底边长分别为2和1的直角梯形,则该几何体的体积为( )A .43 B .839.函数ln xy x=的图像大致为( )A .B . C. D .10.设函数()()[)1,0,121,1,ax x f x ax x ⎧-∈⎪=⎨-∈+∞⎪⎩,()ln g x x =,若对任意实数()0,x ∈+∞,()()0f x g x ⋅≥恒成立,则实数a 的取值范围为( )A .φB .[)1,1,2⎛⎤-∞+∞ ⎥⎝⎦ C. 1,12⎡⎫⎪⎢⎣⎭ D .1,12⎡⎤⎢⎥⎣⎦11.若函数()2y f x =-的图像与函数32log y =+y x =对称,则()f x =( )A .223x - B .23x C. 213x - D .223x +12.已知函数()222,0,0x x x a x f x e ax e x ⎧++<⎪=⎨-+-≥⎪⎩在R 上恰有两个零点,则实数a 的取值范围是( )A .()0,1B .(),e +∞ C. ()()0,1,e +∞ D .()()20,1,e +∞第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知平面向量()2,1a =,()2,b x =,且()()2//23a b a b -+,则实数x = .14.执行下面的程序框图,如果输入的0.02t =,则输出的n = .15.已知点M 的坐标为()2,1,点(),N x y 满足1122x y y x x y +≥⎧⎪-≤⎨⎪+≤⎩,则MN 的最小值为 .16.,则其表面积(各面面积之和)之比=S S 正四面体正方体.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知n S 为数列{}n a 的前n 项和,且满足()24*n n S a n n N -=-∈. (1)证明{}2n S n -+为等比数列; (2)设数列{}n S 的前n 项和为n T ,求n T .18. 已知函数()12sin cos 3,0,64f x x x x ππ⎛⎫⎡⎤=+-∈ ⎪⎢⎥⎝⎭⎣⎦. (1)求函数()f x 的最大值()max f x 和最小值()min f x ;(2)CD 为ABC ∆的内角平分线,已知()()max min ,CD AC f x BC f x ===,求角C 的大小.19. 南航集团与波音公司2018年2月在广州签署协议,双方合作的客改货项目落户广州空港经济区.根据协议,双方将在维修技术转让、支持项目、管理培训等方面开展战略合作.现组织者对招募的100名服务志愿者培训后,组织一次知识竞赛,将所得成绩制成如下频率分布直方图(假定每个分数段内的成绩均匀分布),组织者计划对成绩前20名的参赛者进行奖励.(1)试求受奖励的分数线;(2)从受奖励的20人中利用分层抽样抽取5人,再从抽取的5人中抽取2人在主会场服务,试求2人成绩都在90分以上(含90分)的概率.20. 如图,在四棱锥P ABCD -中,090ABC ∠=,//AB CD ,APD ∆是等边三角形,3BP =,2,AB AP AD BP ==⊥.(Ⅰ)求BC 的长度;(Ⅱ)求直线BC 与平面ADP 所成的角的正弦值.21. 已知椭圆()2222:10x y C a b a b+=>>与直线:0l bx ay -=都经过点(M .直线m 与l 平行,且与椭圆C 交于,A B 两点,直线,MA MB 与x 轴分别交于,E F 两点.(1)求椭圆C 的方程;(2)证明:MEF ∆为等腰三角形. 22.已知()2ln f x x x ax =-,(Ⅰ)若()f x 有两个零点,求实数a 的范围; (Ⅱ)若()f x 有两个极值点,求实数a 的范围;(Ⅲ)在(Ⅱ)的条件下,若()f x 的两个极值点为()1212,x x x x <,求证:()112f x >-.试卷答案一、选择题1-5:CABDB 6-10:CBBDD 11、12:BD二、填空题13. 1 14. 6 15. 5 16. 3三、解答题17.解:(Ⅰ)当1=n 时,2;4211≥=+-n S 时原式转化为:4)(21-=---n S S S n n n , 即421+-=-n S S n n ,所以]2)1([221+--=+--n S n S n n ,所以{}2+-n S n 为首项为4,公比为2的等比数列.122+=+-n n n S , 所以221-+=+n S n n . (Ⅱ)由(1)知:n n T n n 2)21()222(132-+++++++=+nn n n 22)1(21)214-++--=( =4232222--++n n n . 18.解:()12sin()cos 36f x x x π=+-112cos cos 32x x x ⎫=+-⎪⎪⎝⎭()231cos3x x=++-6sin26xπ⎛⎫=+⎪⎝⎭()f x在)6,0[π上单增,]4,6(ππ上单减,()()max min6,3f x f x∴==;(2)ADC∆中,,sinsin2AD ACBDCC ADC=∆∠中,sinsin2BD BCC BDC=∠,∵sin sinADC BDC∠=∠,6AC=,3BC=,2AD BD∴=,BCD∆中,2176822C CBD=-=-,ACD∆中,2446822C CAD=-=-,cos2C∴=2Cπ∴=.19. 解:(Ⅰ)由频率分布直方图知,竞赛成绩在[]90,100分的人数为0.0121010012⨯⨯=,竞赛成绩在[)80,90的人数为0.021010020⨯⨯=,故受奖励分数线在[)80,90之间,设受奖励分数线为x,则()900.020.012100.20x-⨯+⨯=,解得86x=,故受奖励分数线为86.(Ⅱ)由(Ⅰ)知,受奖励的20人中,分数在[)86,90的人数为8,分数在[]90,100的人数为12,利用分层抽样,可知分数在[)86,90的抽取2人,分数在[]90,100的抽取3人,设分数在[)86,90的2人分别为12,A A,分数在[]90,100的3人分别为123,,B B B,所有的可能情况有()12,A A,()11,A B,()12,A B,()13,A B,()21,A B,()22,A B,()23,A B,()12,B B,()13,B B,()23,B B,满足条件的情况有()12,B B,()13,B B,()23,B B,所求的概率为310P=.20.解:(Ⅰ)取AD中点F,连,PF BF,ADP ∆是等边三角形,PF AD ∴⊥,又AD BP ⊥ AD ⊥平面PFB ,BF ⊂平面PFB ,AD BF ∴⊥,2BD AB ∴==∴BC =(Ⅱ)AD ⊥平面PFB ,AD ∴⊂平面APD∴平面PFB ⊥平面APD . 作BG PF ⊥交PF 于G ,则BG ⊥平面APD ,,AD BC 交于H ,BHG ∠直线BC 与平面ADP 所成的角.由题意得PF BF ==, 又3BP =0360,2GFB BG ∴∠==,0901ABC BCD CD BH ∠=∠=∴=∴=,, ,sin BHG ∴∠=. 21.解:(Ⅰ)椭圆C 的方程为221164x y +=. (Ⅱ)设直线m 为:()()11221,,,,2y x t A x y B x y =+ 联立: 22116412x y y x t ⎧+=⎪⎪⎨⎪=+⎪⎩,得222280x tx t ++-=,于是82,222121-=-=+t x x t x x .设直线,MA MB 的斜率为,MA MB k k ,要证MEF ∆为等腰三角形,只需证0MA MB k k +=,MA MB k k ==,()221212MA MB x x t x x t k k +-+--+===.所以MEF ∆为等腰三角形 .22.解:方法一:(Ⅰ)()()ln ,0f x x x ax x =->,()f x 有两个零点,()ln g x x ax ∴=-有两个零点,()1g x a x'=-, 0a ∴≤时()()0,g x g x '>在()0,+∞上单调,最多有一个零点,不合题意;()0,a g x ∴>在10,a ⎛⎫ ⎪⎝⎭上单增,在1,a ⎛⎫+∞ ⎪⎝⎭上单减,111ln 10,0g a a a e ⎛⎫∴=->∴<< ⎪⎝⎭,又10a e<<时,()232221111133110,3ln 310a a g a g a a a a a a -+-⎛⎫⎛⎫=-<=-<--=< ⎪ ⎪⎝⎭⎝⎭,()g x ∴必有两个零点,10a e∴<<. (Ⅱ)()ln 12f x x ax '=+-有两个改变()f x '符号的零点, 设()ln 12h x x ax =+-,则()12h x a x'=-, 0a ≤时,()0h x '>恒成立,()h x 在()0,+∞上单调,最多有一个零点,不合题意;0a ∴>,由()0h x '=得:12x a=, ()h x ∴在10,2a ⎛⎫ ⎪⎝⎭上单增,在1,2a ⎛⎫+∞ ⎪⎝⎭上单减,111ln 120222h a a a a ⎛⎫∴=+-⨯> ⎪⎝⎭,即102a << .又212112120,2ln 121110a h h e e a a a a a ⎛⎫⎛⎫⎛⎫=-<=+-<-+-=-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()h x ∴在21111,,,22e a a a ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭各有一个零点,102a ∴<<. (Ⅲ)由(Ⅱ),结合()1120h a =->,知()111111,ln 120x h x x ax e<<=+-=, ()21111111ln ln 2x x x f x x x ax -=-=,设()()ln ,ln 0k x x x x k x x '=-=<,()k x ∴在()0,1上单减,()()11k x k ∴>=-()112f x ∴>- .方法二:分离参数法 (Ⅰ)ln xa x=,两图象有两交点, 令()()2ln 1ln ,x xg x g x x x -'==,当()()()0,,0,x e g x g x '∈>单增, 当()()(),,0,x e g x g x '∈+∞<单减,()1g e e= 结合图像,10a e<<. (Ⅱ)()ln 12f x x ax '=+-有两个改变()f x '符号的零点,等价于ln 12x a x +=对应的两函数的图像有两交点. 令()()2ln 1ln ,2x xx x x xϕϕ+-'==,当()()()0,1,0,x x x ϕϕ'∈>单增, 当()()()1,,0,x x x ϕϕ'∈+∞<单减,()112ϕ=,结合图象,102a << .(Ⅲ)由(Ⅱ)101x <<,下同方法一()112f x ∴>-.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 1 页
2018 年全国高中数学联赛安徽省初赛试卷
(考试时间:2018 年 6 月 30 日上午 9:00—11:30)
题号
一
二
总分
9
10
11
12
得分 评卷人
复核人
注意:1.本试卷共 12 小题,满分 150 分; 2.用钢笔、签字笔或圆珠笔作答;
3.书写不要超过装订线;
4.不得使用计算器.
一、 填空题(每题 8 分,共 64 分,结果须化简)
1:设三个复数1, i, z 在复平面上对应的三点共线,且| z |=5 ,则 z =________.
2
:设n 是正整数,且满足n 5 = 438427732293 ,则 n =________
.
3:函数 f (x)=| sin(2x)+sin(3x)+sin(4x) | 的最小正周期=________
.
4:设点 P, Q 分别在函数y = 2x
和y = log x 的图象上,则| PQ | 的最小值__________.
5:从1, 2,,10 中随机抽取三个各不相同的数字,其样本方差 s 2 ≤ 1 的概率为_________
.
6:在边长为 1 的正方体ABCD - A 1B 1C 1D 1内部有一小球,该小球与正方体的对角线段 AC1 相切,则
小球半径的最大值为_________
.
7:设 H 是△ABC 的垂心,且3HA 4HB 5HC 0 ,则cos AHB ________
8:把1,2,……, n 2按照顺时针螺旋方式排成n 行n 列的表格Tn ,第一行是1,2,……,n 例如(图1):设
2018在T100的第i 行第j 列,则(i,j)=________
(图1)
二、解答题(第 9—10 题每题 21 分,第 11—12 题每题 22 分,共 86 分)
3. 如图所示,设 ABCD 是矩形,点 E , F 分别是线段 AD , BC 的中点,点G 在线段 EF 上,点 D , H 关于
线段 AG 的垂直平分线l 对称.求证: ∠HAB = 3∠GAB .
D
C
E
F
A
B
4.设O 是坐标原点,双曲线C : x
a2
y2
-=1(a > 0, b > 0) 上动点M 处的切线交C 的两条渐近线于A, B b2
两点.
(1)求证: △AOB 的面积S 是定值;
(2)求△AOB 的外心P 的轨迹方程.
5.(1)求证:对于任意实数x, y, z 都有x2 + 2 y2 + 3z2 ≥3(xy +yz +zx) .
(2)是否存在实数k >,使得对于任意实数x, y, z 下式恒成立?
x2 + 2 y2 + 3z2 ≥k (xy +yz +zx)
试证明你的结论.
6.在正2018 边形的每两个顶点之间均连一条线段,并把每条线段染成红色或蓝色.
求此图形中三边颜色都相同的三角形的最小个数
2
第 2 页。