2019年四川省凉山州中考数学试题及答案【Word解析版】
2019年四川省凉山州中考数学试卷(答案)

2019年四川省凉山州中考数学试卷(含答案)一、选择题(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,把正确选项的宇母填涂在答题卡上相应的位置1.(4分)﹣2的相反数是()A.2 B.﹣2 C.D.﹣2.(4分)2018年凉山州生产总值约为153300000000,用科学记数法表示数153300000000是()A.1.533×109B.1.533×1010C.1.533×1011D.1.533×1012 3.(4分)如图,BD∥EF,AE与BD交于点C,∠B=30°,∠A=75°,则∠E的度数为()A.135°B.125°C.115°D.105°4.(4分)下列各式正确的是()A.2a2+3a2=5a4B.a2•a=a3C.(a2)3=a5D.=a5.(4分)不等式1﹣x≥x﹣1的解集是()A.x≥1B.x≥﹣1 C.x≤1D.x≤﹣1 6.(4分)某班40名同学一周参加体育锻炼时间统计如表所示:人数(人) 3 17 13 7时间(小时)7 8 9 10那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A.17,8.5 B.17,9 C.8,9 D.8,8.5 7.(4分)下列命题:①直线外一点到这条直线的垂线段,叫做点到直线的距离;②两点之间线段最短;③相等的圆心角所对的弧相等;④平分弦的直径垂直于弦.其中,真命题的个数是()A.1 B.2 C.3 D.48.(4分)如图,正比例函数y=kx与反比例函数y=的图象相交于A、C两点,过点A作x轴的垂线交x轴于点B,连接BC,则△ABC的面积等于()A.8 B.6 C.4 D.29.(4分)如图,在△ABC中,CA=CB=4,cosC=,则sinB的值为()A.B.C.D.10.(4分)如图,在△ABC中,D在AC边上,AD:DC=1:2,O 是BD的中点,连接AO并延长交BC于E,则BE:EC=()A.1:2 B.1:3 C.1:4 D.2:3 11.(4分)如图,在△AOC中,OA=3cm,OC=1cm,将△AOC 绕点O顺时针旋转90°后得到△BOD,则AC边在旋转过程中所扫过的图形的面积为()cm2.A.B.2πC.πD.π12.(4分)二次函数y=ax2+bx+c的部分图象如图所示,有以下结论:①3a﹣b=0;②b2﹣4ac>0;③5a﹣2b+c>0;④4b+3c>0,其中错误结论的个数是()A.1 B.2 C.3 D.4二、填空题(共5个小题,每小题4分,共20分)13.(4分)方程组的解是.14.(4分)方程+=1的解是.15.(4分)如图所示,AB是⊙O的直径,弦CD⊥AB于H,∠A=30°,CD=2,则⊙O的半径是.16.(4分)在▱ABCD中,E是AD上一点,且点E将AD分为2:3的两部分,连接BE、AC相交于F,则S△AEF:S△CBF是.17.(4分)将抛物线y=(x﹣3)2﹣2向左平移个单位后经过点A(2,2).三、解答题(共5小题,共32分)18.(5分)计算:tan45°+(﹣)0﹣(﹣)﹣2+|﹣2|.19.(5分)先化简,再求值:(a+3)2﹣(a+1)(a﹣1)﹣2(2a+4),其中a=﹣.20.(6分)如图,正方形ABCD的对角线AC、BD相交于点O,E是OC上一点,连接EB.过点A作AM⊥BE,垂足为M,AM与BD相交于点F.求证:OE=OF.21.(8分)某校初中部举行诗词大会预选赛,学校对参赛同学获奖情况进行统计,绘制了如下两幅不完整的统计图.请结合图中相关数据解答下列问题:(1)参加此次诗词大会预选赛的同学共有人;(2)在扇形统计图中,“三等奖”所对应的扇形的圆心角的度数为;(3)将条形统计图补充完整;(4)若获得一等奖的同学中有来自七年级,来自九年级,其余的来自八年级,学校决定从获得一等奖的同学中任选两名同学参加全市诗词大会比赛,请通过列表或树状图方法求所选两名同学中,恰好是一名七年级和一名九年级同学的概率.22.(8分)如图,点D是以AB为直径的⊙O上一点,过点B作⊙O的切线,交AD的延长线于点C,E是BC的中点,连接DE并延长与AB的延长线交于点F.(1)求证:DF是⊙O的切线;(2)若OB=BF,EF=4,求AD的长.四、B卷填空题(共2小题,每小题5分,共10分)23.(5分)当0≤x≤3时,直线y=a与抛物线y=(x﹣1)2﹣3有交点,则a的取值范围是.24.(5分)如图,正方形ABCD中,AB=12,AE=AB,点P在BC上运动(不与B、C重合),过点P作PQ⊥EP,交CD于点Q,则CQ的最大值为.五、解答题(共4小题,共40分)25.(8分)已知二次函数y=x2+x+a的图象与x轴交于A(x1,0)、B(x2,0)两点,且+=1,求a的值.26.(10分)根据有理数乘法(除法)法则可知:①若ab>0(或>0),则或;②若ab<0(或<0),则或.根据上述知识,求不等式(x﹣2)(x+3)>0的解集解:原不等式可化为:(1)或(2).由(1)得,x>2,由(2)得,x<﹣3,∴原不等式的解集为:x<﹣3或x>2.请你运用所学知识,结合上述材料解答下列问题:(1)不等式x2﹣2x﹣3<0的解集为.(2)求不等式<0的解集(要求写出解答过程)27.(10分)如图,∠ABD=∠BCD=90°,DB平分∠ADC,过点B 作BM∥CD交AD于M.连接CM交DB于N.(1)求证:BD2=AD•CD;(2)若CD=6,AD=8,求MN的长.28.(12分)如图,抛物线y=ax2+bx+c的图象过点A(﹣1,0)、B (3,0)、C(0,3).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P,使得△PAC的周长最小,若存在,请求出点P的坐标及△PAC的周长;若不存在,请说明理由;(3)在(2)的条件下,在x轴上方的抛物线上是否存在点M(不与C点重合),使得S△PAM=S△PAC?若存在,请求出点M的坐标;若不存在,请说明理由.。
2019年四川省凉山州中考数学试卷(含解析)完美打印版

2019年四川省凉山州中考数学试卷一、选择题(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,把正确选项的宇母填涂在答题卡上相应的位置1.(4分)﹣2的相反数是()A.2B.﹣2C.D.﹣2.(4分)2018年凉山州生产总值约为153300000000,用科学记数法表示数153300000000是()A.1.533×109B.1.533×1010C.1.533×1011D.1.533×10123.(4分)如图,BD∥EF,AE与BD交于点C,∠B=30°,∠A=75°,则∠E的度数为()A.135°B.125°C.115°D.105°4.(4分)下列各式正确的是()A.2a2+3a2=5a4B.a2•a=a3C.(a2)3=a5D.=a5.(4分)不等式1﹣x≥x﹣1的解集是()A.x≥1B.x≥﹣1C.x≤1D.x≤﹣16.(4分)某班40名同学一周参加体育锻炼时间统计如表所示:那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A.17,8.5B.17,9C.8,9D.8,8.57.(4分)下列命题:①直线外一点到这条直线的垂线段,叫做点到直线的距离;②两点之间线段最短;③相等的圆心角所对的弧相等;④平分弦的直径垂直于弦.其中,真命题的个数是()A.1B.2C.3D.48.(4分)如图,正比例函数y=kx与反比例函数y=的图象相交于A、C两点,过点A作x轴的垂线交x轴于点B,连接BC,则△ABC的面积等于()A.8B.6C.4D.29.(4分)如图,在△ABC中,CA=CB=4,cos C=,则sin B的值为()A.B.C.D.10.(4分)如图,在△ABC中,D在AC边上,AD:DC=1:2,O是BD的中点,连接AO并延长交BC 于E,则BE:EC=()A.1:2B.1:3C.1:4D.2:311.(4分)如图,在△AOC中,OA=3cm,OC=1cm,将△AOC绕点O顺时针旋转90°后得到△BOD,则AC边在旋转过程中所扫过的图形的面积为()cm2.A.B.2πC.πD.π12.(4分)二次函数y=ax2+bx+c的部分图象如图所示,有以下结论:①3a﹣b=0;②b2﹣4ac>0;③5a﹣2b+c>0;④4b+3c>0,其中错误结论的个数是()A.1B.2C.3D.4二、填空题(共5个小题,每小题4分,共20分)13.(4分)方程组的解是.14.(4分)方程+=1的解是.15.(4分)如图所示,AB是⊙O的直径,弦CD⊥AB于H,∠A=30°,CD=2,则⊙O的半径是.16.(4分)在▱ABCD中,E是AD上一点,且点E将AD分为2:3的两部分,连接BE、AC相交于F,则S△AEF:S△CBF是.17.(4分)将抛物线y=(x﹣3)2﹣2向左平移个单位后经过点A(2,2).三、解答题(共5小题,共32分)18.(5分)计算:tan45°+(﹣)0﹣(﹣)﹣2+|﹣2|.19.(5分)先化简,再求值:(a+3)2﹣(a+1)(a﹣1)﹣2(2a+4),其中a=﹣.20.(6分)如图,正方形ABCD的对角线AC、BD相交于点O,E是OC上一点,连接EB.过点A作AM ⊥BE,垂足为M,AM与BD相交于点F.求证:OE=OF.21.(8分)某校初中部举行诗词大会预选赛,学校对参赛同学获奖情况进行统计,绘制了如下两幅不完整的统计图.请结合图中相关数据解答下列问题:(1)参加此次诗词大会预选赛的同学共有人;(2)在扇形统计图中,“三等奖”所对应的扇形的圆心角的度数为;(3)将条形统计图补充完整;(4)若获得一等奖的同学中有来自七年级,来自九年级,其余的来自八年级,学校决定从获得一等奖的同学中任选两名同学参加全市诗词大会比赛,请通过列表或树状图方法求所选两名同学中,恰好是一名七年级和一名九年级同学的概率.22.(8分)如图,点D是以AB为直径的⊙O上一点,过点B作⊙O的切线,交AD的延长线于点C,E 是BC的中点,连接DE并延长与AB的延长线交于点F.(1)求证:DF是⊙O的切线;(2)若OB=BF,EF=4,求AD的长.四、B卷填空题(共2小题,每小题5分,共10分)23.(5分)当0≤x≤3时,直线y=a与抛物线y=(x﹣1)2﹣3有交点,则a的取值范围是.24.(5分)如图,正方形ABCD中,AB=12,AE=AB,点P在BC上运动(不与B、C重合),过点P 作PQ⊥EP,交CD于点Q,则CQ的最大值为.五、解答题(共4小题,共40分)25.(8分)已知二次函数y=x2+x+a的图象与x轴交于A(x1,0)、B(x2,0)两点,且+=1,求a的值.26.(10分)根据有理数乘法(除法)法则可知:①若ab>0(或>0),则或;②若ab<0(或<0),则或.根据上述知识,求不等式(x﹣2)(x+3)>0的解集解:原不等式可化为:(1)或(2).由(1)得,x>2,由(2)得,x<﹣3,∴原不等式的解集为:x<﹣3或x>2.请你运用所学知识,结合上述材料解答下列问题:(1)不等式x2﹣2x﹣3<0的解集为.(2)求不等式<0的解集(要求写出解答过程)27.(10分)如图,∠ABD=∠BCD=90°,DB平分∠ADC,过点B作BM∥CD交AD于M.连接CM 交DB于N.(1)求证:BD2=AD•CD;(2)若CD=6,AD=8,求MN的长.28.(12分)如图,抛物线y=ax2+bx+c的图象过点A(﹣1,0)、B(3,0)、C(0,3).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P,使得△P AC的周长最小,若存在,请求出点P的坐标及△P AC的周长;若不存在,请说明理由;(3)在(2)的条件下,在x轴上方的抛物线上是否存在点M(不与C点重合),使得S△P AM=S△P AC?若存在,请求出点M的坐标;若不存在,请说明理由.2019年四川省凉山州中考数学试卷参考答案与试题解析一、选择题(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,把正确选项的宇母填涂在答题卡上相应的位置1.(4分)﹣2的相反数是()A.2B.﹣2C.D.﹣【分析】根据相反数的意义,只有符号不同的数为相反数.【解答】解:根据相反数的定义,﹣2的相反数是2.故选:A.2.(4分)2018年凉山州生产总值约为153300000000,用科学记数法表示数153300000000是()A.1.533×109B.1.533×1010C.1.533×1011D.1.533×1012【分析】利用科学记数法表示即可【解答】解:科学记数法表示:153 300 000 000=1.533×1011故选:C.3.(4分)如图,BD∥EF,AE与BD交于点C,∠B=30°,∠A=75°,则∠E的度数为()A.135°B.125°C.115°D.105°【分析】直接利用三角形的外角性质得出∠ACD度数,再利用平行线的性质分析得出答案.【解答】解:∵∠B=30°,∠A=75°,∴∠ACD=30°+75°=105°,∵BD∥EF,∴∠E=∠ACD=105°.故选:D.4.(4分)下列各式正确的是()A.2a2+3a2=5a4B.a2•a=a3C.(a2)3=a5D.=a【分析】分别根据合并同类项的法则、同底数幂的乘法法则、幂的乘方法则以及二次根式的性质解答即可.【解答】解:A、2a2+3a2=5a2,故选项A不合题意;B、a2•a=a3,故选项B符合题意;C、(a2)3=a6,故选项C不合题意;D、=|a|,故选项D不合题意.故选:B.5.(4分)不等式1﹣x≥x﹣1的解集是()A.x≥1B.x≥﹣1C.x≤1D.x≤﹣1【分析】移项、合并同类项,系数化为1即可求解.【解答】解:1﹣x≥x﹣1,﹣2x≥﹣2∴x≤1.故选:C.6.(4分)某班40名同学一周参加体育锻炼时间统计如表所示:那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A.17,8.5B.17,9C.8,9D.8,8.5【分析】根据中位数、众数的概念分别求得这组数据的中位数、众数.【解答】解:众数是一组数据中出现次数最多的数,即8;由统计表可知,处于20,21两个数的平均数就是中位数,∴这组数据的中位数为=8.5;故选:D.7.(4分)下列命题:①直线外一点到这条直线的垂线段,叫做点到直线的距离;②两点之间线段最短;③相等的圆心角所对的弧相等;④平分弦的直径垂直于弦.其中,真命题的个数是()A.1B.2C.3D.4【分析】根据点到直线的距离,线段的性质,弧、弦、圆心角之间的关系以及垂径定理判断即可.【解答】解:①直线外一点到这条直线的垂线段,叫做点到直线的距离;假命题;②两点之间线段最短;真命题;③相等的圆心角所对的弧相等;假命题;④平分弦的直径垂直于弦;假命题;真命题的个数是1个;故选:A.8.(4分)如图,正比例函数y=kx与反比例函数y=的图象相交于A、C两点,过点A作x轴的垂线交x轴于点B,连接BC,则△ABC的面积等于()A.8B.6C.4D.2【分析】由于点A、C位于反比例函数图象上且关于原点对称,则S△OBA=S△OBC,再根据反比例函数系数k的几何意义作答即可.【解答】解:因为过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|.所以△ABC的面积等于2×|k|=|k|=4.故选:C.9.(4分)如图,在△ABC中,CA=CB=4,cos C=,则sin B的值为()A.B.C.D.【分析】过点A作AD⊥BC,垂足为D,在Rt△ACD中可求出AD,CD的长,在Rt△ABD中,利用勾股定理可求出AB的长,再利用正弦的定义可求出sin B的值.【解答】解:过点A作AD⊥BC,垂足为D,如图所示.在Rt△ACD中,CD=CA•cos C=1,∴AD==;在Rt△ABD中,BD=CB﹣CD=3,AD=,∴AB==2,∴sin B==.故选:D.10.(4分)如图,在△ABC中,D在AC边上,AD:DC=1:2,O是BD的中点,连接AO并延长交BC 于E,则BE:EC=()A.1:2B.1:3C.1:4D.2:3【分析】过O作BC的平行线交AC与G,由中位线的知识可得出AD:DC=1:2,根据已知和平行线分线段成比例得出AD=DG=GC,AG:GC=2:1,AO:OF=2:1,再由同高不同底的三角形中底与三角形面积的关系可求出BF:FC的比.【解答】解:如图,过O作OG∥BC,交AC于G,∵O是BD的中点,∴G是DC的中点.又AD:DC=1:2,∴AD=DG=GC,∴AG:GC=2:1,AO:OE=2:1,∴S△AOB:S△BOE=2设S△BOE=S,S△AOB=2S,又BO=OD,∴S△AOD=2S,S△ABD=4S,∵AD:DC=1:2,∴S△BDC=2S△ABD=8S,S四边形CDOE=7S,∴S△AEC=9S,S△ABE=3S,∴故选:B.11.(4分)如图,在△AOC中,OA=3cm,OC=1cm,将△AOC绕点O顺时针旋转90°后得到△BOD,则AC边在旋转过程中所扫过的图形的面积为()cm2.A.B.2πC.πD.π【分析】根据旋转的性质可以得到在旋转过程中所扫过的图形的面积=扇形OAB的面积﹣扇形OCD的面积,利用扇形的面积公式即可求解.【解答】解:∵△AOC≌△BOD,∴在旋转过程中所扫过的图形的面积=扇形OAB的面积﹣扇形OCD的面积=﹣=2π,故选:B.12.(4分)二次函数y=ax2+bx+c的部分图象如图所示,有以下结论:①3a﹣b=0;②b2﹣4ac>0;③5a ﹣2b+c>0;④4b+3c>0,其中错误结论的个数是()A.1B.2C.3D.4【分析】①对称轴为x=﹣,得b=3a;②函数图象与x轴有两个不同的交点,得△=b2﹣4ac>0;③当x=﹣1时,a﹣b+c>0,当x=﹣3时,9a﹣3b+c>0,得5a﹣2b+c>0;④由对称性可知x=1时对应的y值与x=﹣4时对应的y值相等,当x=1时a+b+c<0,4b+3c=3b+b+3c =3b+3a+3c=3(a+b+c)<0;【解答】解:由图象可知a<0,c>0,对称轴为x=﹣,∴x=﹣=﹣,∴b=3a,①正确;∵函数图象与x轴有两个不同的交点,∴△=b2﹣4ac>0,②正确;当x=﹣1时,a﹣b+c>0,当x=﹣3时,9a﹣3b+c>0,∴10a﹣4b+2c>0,∴5a﹣2b+c>0,③正确;由对称性可知x=1时对应的y值与x=﹣4时对应的y值相等,∴当x=1时a+b+c<0,∵b=3a,∴4b+3c=3b+b+3c=3b+3a+3c=3(a+b+c)<0,∴4b+3c<0,④错误;故选:A.二、填空题(共5个小题,每小题4分,共20分)13.(4分)方程组的解是.【分析】利用加减消元法解之即可.【解答】解:,②﹣①得:x=6,把x=6代入①得:6+y=10,解得:y=4,方程组的解为:,故答案为:.14.(4分)方程+=1的解是x=﹣2.【分析】去分母,把分式方程化为整式方程,求解并验根即可.【解答】解:去分母,得(2x﹣1)(x+1)﹣2=(x+1)(x﹣1)去括号,得2x2+x﹣3=x2﹣1移项并整理,得x2+x﹣2=0所以(x+2)(x﹣1)=0解得x=﹣2或x=1经检验,x=﹣2是原方程的解.故答案为:x=﹣2.15.(4分)如图所示,AB是⊙O的直径,弦CD⊥AB于H,∠A=30°,CD=2,则⊙O的半径是2.【分析】连接BC,由圆周角定理和垂径定理得出∠ACB=90°,CH=DH=CD=,由直角三角形的性质得出AC=2CH=2,AC=BC=2,AB=2BC,得出BC=2,AB=4,求出OA=2即可.【解答】解:连接BC,如图所示:∵AB是⊙O的直径,弦CD⊥AB于H,∴∠ACB=90°,CH=DH=CD=,∵∠A=30°,∴AC=2CH=2,在Rt△ABC中,∠A=30°,∴AC=BC=2,AB=2BC,∴BC=2,AB=4,∴OA=2,即⊙O的半径是2;故答案为:2.16.(4分)在▱ABCD中,E是AD上一点,且点E将AD分为2:3的两部分,连接BE、AC相交于F,则S△AEF:S△CBF是4:25或9:25.【分析】分AE:ED=2:3、AE:ED=3:2两种情况,根据相似三角形的性质计算即可.【解答】解:①当AE:ED=2:3时,∵四边形ABCD是平行四边形,∴AD∥BC,AE:BC=2:5,∴△AEF∽△CBF,∴S△AEF:S△CBF=()2=4:25;②当AE:ED=3:2时,同理可得,S△AEF:S△CBF=()2=9:25,故答案为:4:25或9:25.17.(4分)将抛物线y=(x﹣3)2﹣2向左平移3个单位后经过点A(2,2).【分析】直接利用二次函数的平移规律结合二次函数图象上点的性质进而得出答案.【解答】解:∵将抛物线y=(x﹣3)2﹣2向左平移后经过点A(2,2),∴设平移后解析式为:y=(x﹣3+a)2﹣2,则2=(2﹣3+a)2﹣2,解得:a=3或a=﹣1(不合题意舍去),故将抛物线y=(x﹣3)2﹣2向左平移3个单位后经过点A(2,2).故答案为:3.三、解答题(共5小题,共32分)18.(5分)计算:tan45°+(﹣)0﹣(﹣)﹣2+|﹣2|.【分析】分别进行特殊角的三角函数值的运算,任何非零数的零次幂等于1,负整数指数幂以及绝对值的意义化简,然后按照实数的运算法则进行计算求得结果.【解答】解:原式=1+1﹣4+(2﹣)=.19.(5分)先化简,再求值:(a+3)2﹣(a+1)(a﹣1)﹣2(2a+4),其中a=﹣.【分析】注意到(a+3)2可以利用完全平方公式进行展开,(a+1)(a﹣1)利润平方差公式可化为(a2﹣1),则将各项合并即可化简,最后代入a=进行计算.【解答】解:原式=a2+6a+9﹣(a2﹣1)﹣4a﹣8=2a+2将a=﹣代入原式=2×(﹣)+2=120.(6分)如图,正方形ABCD的对角线AC、BD相交于点O,E是OC上一点,连接EB.过点A作AM ⊥BE,垂足为M,AM与BD相交于点F.求证:OE=OF.【分析】根据正方形的性质对角线垂直且平分,得到OB=OA,根据AM⊥BE,即可得出∠MEA+∠MAE =90°=∠AFO+∠MAE,从而证出Rt△BOE≌Rt△AOF,得到OE=OF.【解答】证明:∵四边形ABCD是正方形.∴∠BOE=∠AOF=90°,OB=OA.又∵AM⊥BE,∴∠MEA+∠MAE=90°=∠AFO+∠MAE,∴∠MEA=∠AFO.∴△BOE≌△AOF(AAS).∴OE=OF.21.(8分)某校初中部举行诗词大会预选赛,学校对参赛同学获奖情况进行统计,绘制了如下两幅不完整的统计图.请结合图中相关数据解答下列问题:(1)参加此次诗词大会预选赛的同学共有40人;(2)在扇形统计图中,“三等奖”所对应的扇形的圆心角的度数为90°;(3)将条形统计图补充完整;(4)若获得一等奖的同学中有来自七年级,来自九年级,其余的来自八年级,学校决定从获得一等奖的同学中任选两名同学参加全市诗词大会比赛,请通过列表或树状图方法求所选两名同学中,恰好是一名七年级和一名九年级同学的概率.【分析】(1)利用鼓励奖的人数除以它所占的百分比得到的总人数;(2)用360°乘以二等奖人数占被调查人数的比例即可得;(3)计算出一等奖和二等奖的人数,然后补全条形统计图;(4)画树状图(用A、B、C分别表示七年级、八年级和九年级的学生)展示所有12种等可能的结果数,再找出所选出的两人中既有七年级又有九年级同学的结果数,然后利用概率公式求解.【解答】解:(1)参加此次诗词大会预选赛的同学共有18÷45%=40(人),故答案为:40;(2)扇形统计图中获三等奖的圆心角为360°×=90°,故答案为:90°.(3)获二等奖的人数=40×20%=8,一等奖的人数为40﹣8﹣10﹣18=4(人),条形统计图为:(4)由题意知,获一等奖的学生中,七年级有1人,八年级有1人,九年级有2人,画树状图为:(用A、B、C分别表示七年级、八年级和九年级的学生)共有12种等可能的结果数,其中所选出的两人中既有七年级又有九年级同学的结果数为4,所以所选出的两人中既有七年级又有九年级同学的概率=.22.(8分)如图,点D是以AB为直径的⊙O上一点,过点B作⊙O的切线,交AD的延长线于点C,E 是BC的中点,连接DE并延长与AB的延长线交于点F.(1)求证:DF是⊙O的切线;(2)若OB=BF,EF=4,求AD的长.【分析】(1)连接OD,由AB为⊙O的直径得∠BDC=90°,根据BE=EC知∠1=∠3、由OD=OB 知∠2=∠4,根据BC是⊙O的切线得∠3+∠4=90°,即∠1+∠2=90°,得证;(2)根据直角三角形的性质得到∠F=30°,BE=EF=2,求得DE=BE=2,得到DF=6,根据三角形的内角和得到OD=OA,求得∠A=∠ADO=BOD=30°,根据等腰三角形的性质即可得到结论.【解答】解:(1)如图,连接OD,BD,∵AB为⊙O的直径,∴∠ADB=∠BDC=90°,在Rt△BDC中,∵BE=EC,∴DE=EC=BE,∴∠1=∠3,∵BC是⊙O的切线,∴∠3+∠4=90°,∴∠1+∠4=90°,又∵∠2=∠4,∴∠1+∠2=90°,∴DF为⊙O的切线;(2)∵OB=BF,∴OF=2OD,∴∠F=30°,∵∠FBE=90°,∴BE=EF=2,∴DE=BE=2,∴DF=6,∵∠F=30°,∠ODF=90°,∴∠FOD=60°,∵OD=OA,∴∠A=∠ADO=BOD=30°,∴∠A=∠F,∴AD=DF=6.四、B卷填空题(共2小题,每小题5分,共10分)23.(5分)当0≤x≤3时,直线y=a与抛物线y=(x﹣1)2﹣3有交点,则a的取值范围是﹣3≤a≤1.【分析】直线y=a与抛物线y=(x﹣1)2﹣3有交点,则可化为一元二次方程组利用根的判别式进行计算.【解答】解:法一:y=a与抛物线y=(x﹣1)2﹣3有交点则有a=(x﹣1)2﹣3,整理得x2﹣2x﹣2﹣a=0∴△=b2﹣4ac=4+4(2+a)≥0解得a≥﹣3,∵0≤x≤3,对称轴x=1∴y=(3﹣1)2﹣3=1∴a≤1法二:由题意可知,∵抛物线的顶点为(1,﹣3),而0≤x≤3∴抛物线y的取值为﹣3≤y≤1∵y=a,则直线y与x轴平行,∴要使直线y=a与抛物线y=(x﹣1)2﹣3有交点,∴抛物线y的取值为﹣3≤y≤1,即为a的取值范围,∴﹣3≤a≤1故答案为:﹣3≤a≤124.(5分)如图,正方形ABCD中,AB=12,AE=AB,点P在BC上运动(不与B、C重合),过点P 作PQ⊥EP,交CD于点Q,则CQ的最大值为4.【分析】先证明△BPE∽△CQP,得到与CQ有关的比例式,设CQ=y,BP=x,则CP=12﹣x,代入解析式,得到y与x的二次函数式,根据二次函数的性质可求最值.【解答】解:∵∠BEP+∠BPE=90°,∠QPC+∠BPE=90°,∴∠BEP=∠CPQ.又∠B=∠C=90°,∴△BPE∽△CQP.∴.设CQ=y,BP=x,则CP=12﹣x.∴,化简得y=﹣(x2﹣12x),整理得y=﹣(x﹣6)2+4,所以当x=6时,y有最大值为4.故答案为4.五、解答题(共4小题,共40分)25.(8分)已知二次函数y=x2+x+a的图象与x轴交于A(x1,0)、B(x2,0)两点,且+=1,求a的值.【分析】有韦达定理得x1+x2=﹣1,x1•x2=a,将式子+=1化简代入即可;【解答】解:y=x2+x+a的图象与x轴交于A(x1,0)、B(x2,0)两点,∴x1+x2=﹣1,x1•x2=a,∵+===1,∴a=﹣1+或a=﹣1﹣;∵△=1﹣4a>0,∴a<,∴a=﹣1﹣;26.(10分)根据有理数乘法(除法)法则可知:①若ab>0(或>0),则或;②若ab<0(或<0),则或.根据上述知识,求不等式(x﹣2)(x+3)>0的解集解:原不等式可化为:(1)或(2).由(1)得,x>2,由(2)得,x<﹣3,∴原不等式的解集为:x<﹣3或x>2.请你运用所学知识,结合上述材料解答下列问题:(1)不等式x2﹣2x﹣3<0的解集为﹣1<x<3.(2)求不等式<0的解集(要求写出解答过程)【分析】(1)根据有理数乘法运算法则可得不等式组,仿照有理数乘法运算法则得出两个不等式组,分别求解可得.(2)根据有理数除法运算法则可得不等式组,仿照有理数除法运算法则得出两个不等式组,分别求解可得.【解答】解:(1)原不等式可化为:①或②.由①得,空集,由②得,﹣1<x<3,∴原不等式的解集为:﹣1<x<3,故答案为:﹣1<x<3.(2)由<0知①或②,解不等式组①,得:x>1;解不等式组②,得:x<﹣4;所以不等式<0的解集为x>1或x<﹣4.27.(10分)如图,∠ABD=∠BCD=90°,DB平分∠ADC,过点B作BM∥CD交AD于M.连接CM 交DB于N.(1)求证:BD2=AD•CD;(2)若CD=6,AD=8,求MN的长.【分析】(1)通过证明△ABD∽△BCD,可得,可得结论;(2)由平行线的性质可证∠MBD=∠BDC,即可证AM=MD=MB=4,由BD2=AD•CD和勾股定理可求MC的长,通过证明△MNB∽△CND,可得,即可求MN的长.【解答】证明:(1)∵DB平分∠ADC,∴∠ADB=∠CDB,且∠ABD=∠BCD=90°,∴△ABD∽△BCD∴∴BD2=AD•CD(2)∵BM∥CD∴∠MBD=∠BDC∴∠ADB=∠MBD,且∠ABD=90°∴BM=MD,∠MAB=∠MBA∴BM=MD=AM=4∵BD2=AD•CD,且CD=6,AD=8,∴BD2=48,∴BC2=BD2﹣CD2=12∴MC2=MB2+BC2=28∴MC=2∵BM∥CD∴△MNB∽△CND∴,且MC=2∴MN=28.(12分)如图,抛物线y=ax2+bx+c的图象过点A(﹣1,0)、B(3,0)、C(0,3).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P,使得△P AC的周长最小,若存在,请求出点P的坐标及△P AC的周长;若不存在,请说明理由;(3)在(2)的条件下,在x轴上方的抛物线上是否存在点M(不与C点重合),使得S△P AM=S△P AC?若存在,请求出点M的坐标;若不存在,请说明理由.【分析】(1)由于条件给出抛物线与x轴的交点A(﹣1,0)、B(3,0),故可设交点式y=a(x+1)(x ﹣3),把点C代入即求得a的值,减小计算量.(2)由于点A、B关于对称轴:直线x=1对称,故有P A=PB,则C△P AC=AC+PC+P A=AC+PC+PB,所以当C、P、B在同一直线上时,C△P AC=AC+CB最小.利用点A、B、C的坐标求AC、CB的长,求直线BC解析式,把x=1代入即求得点P纵坐标.(3)由S△P AM=S△P AC可得,当两三角形以P A为底时,高相等,即点C和点M到直线P A距离相等.若点M在点P上方,则有CM∥P A.由点A、P坐标求直线AP解析式,即得到直线CM解析式.把直线CM解析式与抛物线解析式联立方程组即求得点M坐标.若点M在点P下方,则此时M所在的直线到直线P A的距离等于第一种情况时CM到P A的距离,故可用平移的方法来求此时点M所在直线的解析式.【解答】解:(1)∵抛物线与x轴交于点A(﹣1,0)、B(3,0)∴可设交点式y=a(x+1)(x﹣3)把点C(0,3)代入得:﹣3a=3∴a=﹣1∴y=﹣(x+1)(x﹣3)=﹣x2+2x+3∴抛物线解析式为y=﹣x2+2x+3(2)在抛物线的对称轴上存在一点P,使得△P AC的周长最小.如图1,连接PB、BC∵点P在抛物线对称轴直线x=1上,点A、B关于对称轴对称∴P A=PB∴C△P AC=AC+PC+P A=AC+PC+PB∵当C、P、B在同一直线上时,PC+PB=CB最小∵A(﹣1,0)、B(3,0)、C(0,3)∴AC=,BC=∴C△P AC=AC+CB=最小设直线BC解析式为y=kx+3把点B代入得:3k+3=0,解得:k=﹣1∴直线BC:y=﹣x+3∴y P=﹣1+3=2∴点P(1,2)使△P AC的周长最小,最小值为.(3)存在满足条件的点M,使得S△P AM=S△P AC.∵S△P AM=S△P AC∴当以P A为底时,两三角形等高∴点C和点M到直线P A距离相等①若点M在点P上方,如图2,∴CM∥P A∵A(﹣1,0),P(1,2),设直线AP解析式为y=px+d∴解得:∴直线AP:y=x+1∴直线CM解析式为:y=x+3∵解得:(即点C),∴点M坐标为(1,4)②若点M在点P下方,如图3,则点M所在的直线l∥P A,且直线l到P A的距离等于直线y=x+3到P A的距离∴直线AP:y=x+1向下平移2个单位得y=x﹣1即为直线l的解析式∵解得:∵点M在x轴上方∴y>0∴点M坐标为(,)综上所述,点M坐标为(1,4)或(,)时,S△P AM=S△P AC.。
中考2019年四川省凉山州中考数学试题(word版含解析)

2019年四川省凉山州中考数学试题(word版含解析)2019年四川省凉山州中考数学试卷一、选择题(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,把正确选项的宇母填涂在答题卡上相应的位置1.(4分)﹣2的相反数是()A.2B.﹣2C.D.﹣2.(4分)2018年凉山州生产总值约为153300000000,用科学记数法表示数153300000000是()A.1.533×109B.1.533×1010C.1.533×1011D.1.533×1012 3.(4分)如图,BD∥EF,AE与BD交于点C,∠B=30°,∠A=75°,则∠E的度数为()A.135°B.125°C.115°D.105°4.(4分)下列各式正确的是()A.2a2+3a2=5a4B.a2•a=a3C.(a2)3=a5D.=a5.(4分)不等式1﹣x≥x﹣1的解集是()A.x≥1B.x≥﹣1C.x≤1D.x≤﹣16.(4分)某班40名同学一周参加体育锻炼时间统计如表所示:那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A.17,8.5B.17,9C.8,9D.8,8.57.(4分)下列命题:①直线外一点到这条直线的垂线段,叫做点到直线的距离;②两点之间线段最短;③相等的圆心角所对的弧相等;④平分弦的直径垂直于弦.其中,真命题的个数是()A.1B.2C.3D.48.(4分)如图,正比例函数y=kx与反比例函数y=的图象相交于A、C两点,过点A作x轴的垂线交x轴于点B,连接BC,则△ABC的面积等于()A.8B.6C.4D.29.(4分)如图,在△ABC中,CA=CB=4,cos C=,则sin B的值为()A.B.C.D.10.(4分)如图,在△ABC中,D在AC边上,AD:DC=1:2,O是BD的中点,连接AO 并延长交BC于E,则BE:EC=()A.1:2B.1:3C.1:4D.2:311.(4分)如图,在△AOC中,OA=3cm,OC=1cm,将△AOC绕点O顺时针旋转90°后得到△BOD,则AC边在旋转过程中所扫过的图形的面积为()cm2.A.B.2πC.πD.π12.(4分)二次函数y=ax2+bx+c的部分图象如图所示,有以下结论:①3a﹣b=0;②b2﹣4ac>0;③5a﹣2b+c>0;④4b+3c>0,其中错误结论的个数是()A.1B.2C.3D.4二、填空题(共5个小题,每小题4分,共20分)13.(4分)方程组的解是.14.(4分)方程+=1的解是.15.(4分)如图所示,AB是⊙O的直径,弦CD⊥AB于H,∠A=30°,CD=2,则⊙O 的半径是.16.(4分)在▱ABCD中,E是AD上一点,且点E将AD分为2:3的两部分,连接BE、AC相交于F,则S△AEF:S△CBF是.17.(4分)将抛物线y=(x﹣3)2﹣2向左平移个单位后经过点A(2,2).三、解答题(共5小题,共32分)18.(5分)计算:tan45°+(﹣)0﹣(﹣)﹣2+|﹣2|.19.(5分)先化简,再求值:(a+3)2﹣(a+1)(a﹣1)﹣2(2a+4),其中a=﹣.20.(6分)如图,正方形ABCD的对角线AC、BD相交于点O,E是OC上一点,连接EB.过点A作AM⊥BE,垂足为M,AM与BD相交于点F.求证:OE=OF.21.(8分)某校初中部举行诗词大会预选赛,学校对参赛同学获奖情况进行统计,绘制了如下两幅不完整的统计图.请结合图中相关数据解答下列问题:(1)参加此次诗词大会预选赛的同学共有人;(2)在扇形统计图中,“三等奖”所对应的扇形的圆心角的度数为;(3)将条形统计图补充完整;(4)若获得一等奖的同学中有来自七年级,来自九年级,其余的来自八年级,学校决定从获得一等奖的同学中任选两名同学参加全市诗词大会比赛,请通过列表或树状图方法求所选两名同学中,恰好是一名七年级和一名九年级同学的概率.22.(8分)如图,点D是以AB为直径的⊙O上一点,过点B作⊙O的切线,交AD的延长线于点C,E是BC的中点,连接DE并延长与AB的延长线交于点F.(1)求证:DF是⊙O的切线;(2)若OB=BF,EF=4,求AD的长.四、B卷填空题(共2小题,每小题5分,共10分)23.(5分)当0≤x≤3时,直线y=a与抛物线y=(x﹣1)2﹣3有交点,则a的取值范围是.24.(5分)如图,正方形ABCD中,AB=12,AE=AB,点P在BC上运动(不与B、C重合),过点P作PQ⊥EP,交CD于点Q,则CQ的最大值为.五、解答题(共4小题,共40分)25.(8分)已知二次函数y=x2+x+a的图象与x轴交于A(x1,0)、B(x2,0)两点,且+=1,求a的值.26.(10分)根据有理数乘法(除法)法则可知:①若ab>0(或>0),则或;②若ab<0(或<0),则或.根据上述知识,求不等式(x﹣2)(x+3)>0的解集解:原不等式可化为:(1)或(2).由(1)得,x>2,由(2)得,x<﹣3,∴原不等式的解集为:x<﹣3或x>2.请你运用所学知识,结合上述材料解答下列问题:(1)不等式x2﹣2x﹣3<0的解集为.(2)求不等式<0的解集(要求写出解答过程)27.(10分)如图,∠ABD=∠BCD=90°,DB平分∠ADC,过点B作BM∥CD交AD于M.连接CM交DB于N.(1)求证:BD2=AD•CD;(2)若CD=6,AD=8,求MN的长.28.(12分)如图,抛物线y=ax2+bx+c的图象过点A(﹣1,0)、B(3,0)、C(0,3).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P,使得△P AC的周长最小,若存在,请求出点P的坐标及△P AC的周长;若不存在,请说明理由;(3)在(2)的条件下,在x轴上方的抛物线上是否存在点M(不与C点重合),使得S=S△P AC?若存在,请求出点M的坐标;若不存在,请说明理由.△P AM2019年四川省凉山州中考数学试卷参考答案与试题解析一、选择题(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,把正确选项的宇母填涂在答题卡上相应的位置1.(4分)﹣2的相反数是()A.2B.﹣2C.D.﹣【分析】根据相反数的意义,只有符号不同的数为相反数.【解答】解:根据相反数的定义,﹣2的相反数是2.故选:A.【点评】本题考查了相反数的意义.注意掌握只有符号不同的数为相反数,0的相反数是0.2.(4分)2018年凉山州生产总值约为153300000000,用科学记数法表示数153300000000是()A.1.533×109B.1.533×1010C.1.533×1011D.1.533×1012【分析】利用科学记数法表示即可【解答】解:科学记数法表示:153 300 000 000=1.533×1011故选:C.【点评】本题主要考查科学记数法的表示,把一个数表示成a与10的n次幂相乘的形式(1≤a<10,n为整数),这种记数法叫做科学记数法.3.(4分)如图,BD∥EF,AE与BD交于点C,∠B=30°,∠A=75°,则∠E的度数为()A.135°B.125°C.115°D.105°【分析】直接利用三角形的外角性质得出∠ACD度数,再利用平行线的性质分析得出答案.【解答】解:∵∠B=30°,∠A=75°,∴∠ACD=30°+75°=105°,∵BD∥EF,∴∠E=∠ACD=105°.故选:D.【点评】此题主要考查了平行线的性质以及三角形的外角,正确掌握平行线的性质是解题关键.4.(4分)下列各式正确的是()A.2a2+3a2=5a4B.a2•a=a3C.(a2)3=a5D.=a【分析】分别根据合并同类项的法则、同底数幂的乘法法则、幂的乘方法则以及二次根式的性质解答即可.【解答】解:A、2a2+3a2=5a2,故选项A不合题意;B、a2•a=a3,故选项B符合题意;C、(a2)3=a6,故选项C不合题意;D、=|a|,故选项D不合题意.故选:B.【点评】本题主要考查了合并同类项的法则、幂的运算法则以及二次根式的性质,熟练掌握相关运算性质是解答本题的关键.5.(4分)不等式1﹣x≥x﹣1的解集是()A.x≥1B.x≥﹣1C.x≤1D.x≤﹣1【分析】移项、合并同类项,系数化为1即可求解.【解答】解:1﹣x≥x﹣1,﹣2x≥﹣2∴x≤1.故选:C.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.6.(4分)某班40名同学一周参加体育锻炼时间统计如表所示:那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A.17,8.5B.17,9C.8,9D.8,8.5【分析】根据中位数、众数的概念分别求得这组数据的中位数、众数.【解答】解:众数是一组数据中出现次数最多的数,即8;由统计表可知,处于20,21两个数的平均数就是中位数,∴这组数据的中位数为=8.5;故选:D.【点评】本题考查了中位数、众数的概念.本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.7.(4分)下列命题:①直线外一点到这条直线的垂线段,叫做点到直线的距离;②两点之间线段最短;③相等的圆心角所对的弧相等;④平分弦的直径垂直于弦.其中,真命题的个数是()A.1B.2C.3D.4【分析】根据点到直线的距离,线段的性质,弧、弦、圆心角之间的关系以及垂径定理判断即可.【解答】解:①直线外一点到这条直线的垂线段,叫做点到直线的距离;假命题;②两点之间线段最短;真命题;③相等的圆心角所对的弧相等;假命题;④平分弦的直径垂直于弦;假命题;真命题的个数是1个;故选:A.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.8.(4分)如图,正比例函数y=kx与反比例函数y=的图象相交于A、C两点,过点A作x轴的垂线交x轴于点B,连接BC,则△ABC的面积等于()A.8B.6C.4D.2【分析】由于点A、C位于反比例函数图象上且关于原点对称,则S△OBA=S△OBC,再根据反比例函数系数k的几何意义作答即可.【解答】解:因为过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|.所以△ABC的面积等于2×|k|=|k|=4.故选:C.【点评】主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y 轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|.9.(4分)如图,在△ABC中,CA=CB=4,cos C=,则sin B的值为()A.B.C.D.【分析】过点A作AD⊥BC,垂足为D,在Rt△ACD中可求出AD,CD的长,在Rt△ABD中,利用勾股定理可求出AB的长,再利用正弦的定义可求出sin B的值.【解答】解:过点A作AD⊥BC,垂足为D,如图所示.在Rt△ACD中,CD=CA•cos C=1,∴AD==;在Rt△ABD中,BD=CB﹣CD=3,AD=,∴AB==2,∴sin B==.故选:D.【点评】本题考查了解直角三角形以及勾股定理,通过解直角三角形及勾股定理,求出AD,AB的长是解题的关键.10.(4分)如图,在△ABC中,D在AC边上,AD:DC=1:2,O是BD的中点,连接AO 并延长交BC于E,则BE:EC=()A.1:2B.1:3C.1:4D.2:3【分析】过O作BC的平行线交AC与G,由中位线的知识可得出AD:DC=1:2,根据已知和平行线分线段成比例得出AD=DG=GC,AG:GC=2:1,AO:OF=2:1,再由同高不同底的三角形中底与三角形面积的关系可求出BF:FC的比.【解答】解:如图,过O作OG∥BC,交AC于G,∵O是BD的中点,∴G是DC的中点.又AD:DC=1:2,∴AD=DG=GC,∴AG:GC=2:1,AO:OE=2:1,∴S△AOB:S△BOE=2设S△BOE=S,S△AOB=2S,又BO=OD,∴S△AOD=2S,S△ABD=4S,∵AD:DC=1:2,∴S△BDC=2S△ABD=8S,S四边形CDOE=7S,∴S△AEC=9S,S△ABE=3S,∴故选:B.【点评】本题考查平行线分线段成比例及三角形的中位线的知识,难度较大,注意熟练运用中位线定理和三角形面积公式.11.(4分)如图,在△AOC中,OA=3cm,OC=1cm,将△AOC绕点O顺时针旋转90°后得到△BOD,则AC边在旋转过程中所扫过的图形的面积为()cm2.A.B.2πC.πD.π【分析】根据旋转的性质可以得到阴影部分的面积=扇形OAB的面积﹣扇形OCD的面积,利用扇形的面积公式即可求解.【解答】解:∵△AOC≌△BOD,∴阴影部分的面积=扇形OAB的面积﹣扇形OCD的面积=﹣=2π,故选:B.【点评】本题考查了旋转的性质以及扇形的面积公式,正确理解:阴影部分的面积=扇形OAB的面积﹣扇形OCD的面积是解题关键.12.(4分)二次函数y=ax2+bx+c的部分图象如图所示,有以下结论:①3a﹣b=0;②b2﹣4ac>0;③5a﹣2b+c>0;④4b+3c>0,其中错误结论的个数是()A.1B.2C.3D.4【分析】①对称轴为x=﹣,得b=3a;②函数图象与x轴有两个不同的交点,得△=b2﹣4ac>0;③当x=﹣1时,a﹣b+c>0,当x=﹣3时,9a﹣3b+c>0,得5a﹣2b+c>0;④由对称性可知x=1时对应的y值与x=﹣4时对应的y值相等,当x=1时a+b+c<0,4b+3c=3b+b+3c=3b+3a+3c=3(a+b+c)<0;【解答】解:由图象可知a<0,c>0,对称轴为x=﹣,∴x=﹣=﹣,∴b=3a,①正确;∵函数图象与x轴有两个不同的交点,∴△=b2﹣4ac>0,②正确;当x=﹣1时,a﹣b+c>0,当x=﹣3时,9a﹣3b+c>0,∴10a﹣4b+2c>0,∴5a﹣2b+c>0,③正确;由对称性可知x=1时对应的y值与x=﹣4时对应的y值相等,∴当x=1时a+b+c<0,∵b=3a,∴4b+3c=3b+b+3c=3b+3a+3c=3(a+b+c)<0,∴4b+3c<0,④错误;故选:A.【点评】本题考查二次函数的图象及性质;熟练掌握从函数图象获取信息,将信息与函数解析式相结合解题是关键.二、填空题(共5个小题,每小题4分,共20分)13.(4分)方程组的解是.【分析】利用加减消元法解之即可.【解答】解:,②﹣①得:x=6,把x=6代入①得:6+y=10,解得:y=4,方程组的解为:,故答案为:.【点评】本题考查了解二元一次方程组,正确掌握加减消元法是解题的关键.14.(4分)方程+=1的解是x=﹣2.【分析】去分母,把分式方程化为整式方程,求解并验根即可.【解答】解:去分母,得(2x﹣1)(x+1)﹣2=(x+1)(x﹣1)去括号,得2x2+x﹣3=x2﹣1移项并整理,得x2+x﹣2=0所以(x+2)(x﹣1)=0解得x=﹣2或x=1经检验,x=﹣2是原方程的解.故答案为:x=﹣2.【点评】本题考查了分式方程、一元二次方程的解法.掌握分式方程的解法是解决本题的关键.注意验根.15.(4分)如图所示,AB是⊙O的直径,弦CD⊥AB于H,∠A=30°,CD=2,则⊙O 的半径是2.【分析】连接BC,由圆周角定理和垂径定理得出∠ACB=90°,CH=DH=CD=,由直角三角形的性质得出AC=2CH=2,AC=BC=2,AB=2BC,得出BC=2,AB=4,求出OA=2即可.【解答】解:连接BC,如图所示:∵AB是⊙O的直径,弦CD⊥AB于H,∴∠ACB=90°,CH=DH=CD=,∵∠A=30°,∴AC=2CH=2,在Rt△ABC中,∠A=30°,∴AC=BC=2,AB=2BC,∴BC=2,AB=4,∴OA=2,即⊙O的半径是2;故答案为:2.【点评】本题考查的是垂径定理、圆周角定理、含30°角的直角三角形的性质、勾股定理等知识;熟练掌握圆周角定理和垂径定理是解题的关键.16.(4分)在▱ABCD中,E是AD上一点,且点E将AD分为2:3的两部分,连接BE、AC相交于F,则S△AEF:S△CBF是4:25或9:25.【分析】分AE:ED=2:3、AE:ED=3:2两种情况,根据相似三角形的性质计算即可.【解答】解:①当AE:ED=2:3时,∵四边形ABCD是平行四边形,∴AD∥BC,AE:BC=2:5,∴△AEF∽△CBF,∴S△AEF:S△CBF=()2=4:25;②当AE:ED=3:2时,同理可得,S△AEF:S△CBF=()2=9:25,故答案为:4:25或9:25.【点评】本题考查的是相似三角形的判定和性质、平行四边形的性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.17.(4分)将抛物线y=(x﹣3)2﹣2向左平移3个单位后经过点A(2,2).【分析】直接利用二次函数的平移规律结合二次函数图象上点的性质进而得出答案.【解答】解:∵将抛物线y=(x﹣3)2﹣2向左平移后经过点A(2,2),∴设平移后解析式为:y=(x﹣3+a)2﹣2,则2=(2﹣3+a)2﹣2,解得:a=3或a=﹣1(不合题意舍去),故将抛物线y=(x﹣3)2﹣2向左平移3个单位后经过点A(2,2).故答案为:3.【点评】此题主要考查了二次函数图象与几何变换,正确记忆平移规律是解题关键.三、解答题(共5小题,共32分)18.(5分)计算:tan45°+(﹣)0﹣(﹣)﹣2+|﹣2|.【分析】分别进行特殊角的三角函数值的运算,任何非零数的零次幂等于1,负整数指数幂以及绝对值的意义化简,然后按照实数的运算法则进行计算求得结果.【解答】解:原式=1+1﹣2+(2﹣)=.【点评】本题考查了实数的运算法则,属于基础题,解答本题的关键是熟练掌握负整数指数幂、特殊角的三角函数值等知识.19.(5分)先化简,再求值:(a+3)2﹣(a+1)(a﹣1)﹣2(2a+4),其中a=﹣.【分析】注意到(a+3)2可以利用完全平方公式进行展开,(a+1)(a﹣1)利润平方差公式可化为(a2﹣1),则将各项合并即可化简,最后代入a=进行计算.【解答】解:原式=a2+6a+9﹣(a2﹣1)﹣4a﹣8=2a+2将a=﹣代入原式=2×(﹣)+2=1【点评】本题主要考查整式的混合运算,灵活运用两条乘法公式:完全平方公式和平方差公式是解题的关键,同时,在去括号的过程中要注意括号前的符号,若为负号,去括号后,括号里面的符号要改变20.(6分)如图,正方形ABCD的对角线AC、BD相交于点O,E是OC上一点,连接EB.过点A作AM⊥BE,垂足为M,AM与BD相交于点F.求证:OE=OF.【分析】根据正方形的性质对角线垂直且平分,得到OB=OA,根据AM⊥BE,即可得出∠MEA+∠MAE=90°=∠AFO+∠MAE,从而证出Rt△BOE≌Rt△AOF,得到OE=OF.【解答】证明:∵四边形ABCD是正方形.∴∠BOE=∠AOF=90°,OB=OA.又∵AM⊥BE,∴∠MEA+∠MAE=90°=∠AFO+∠MAE,∴∠MEA=∠AFO.∴△BOE≌△AOF(AAS).∴OE=OF.【点评】本题主要考查了正方形的性质、三角形全等的性质和判定,在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.21.(8分)某校初中部举行诗词大会预选赛,学校对参赛同学获奖情况进行统计,绘制了如下两幅不完整的统计图.请结合图中相关数据解答下列问题:(1)参加此次诗词大会预选赛的同学共有40人;(2)在扇形统计图中,“三等奖”所对应的扇形的圆心角的度数为90°;(3)将条形统计图补充完整;(4)若获得一等奖的同学中有来自七年级,来自九年级,其余的来自八年级,学校决定从获得一等奖的同学中任选两名同学参加全市诗词大会比赛,请通过列表或树状图方法求所选两名同学中,恰好是一名七年级和一名九年级同学的概率.【分析】(1)利用鼓励奖的人数除以它所占的百分比得到的总人数;(2)用360°乘以二等奖人数占被调查人数的比例即可得;(3)计算出一等奖和二等奖的人数,然后补全条形统计图;(4)画树状图(用A、B、C分别表示七年级、八年级和九年级的学生)展示所有12种等可能的结果数,再找出所选出的两人中既有七年级又有九年级同学的结果数,然后利用概率公式求解.【解答】解:(1)参加此次诗词大会预选赛的同学共有18÷45%=40(人),故答案为:40;(2)扇形统计图中获三等奖的圆心角为360°×=90°,故答案为:90°.(3)获二等奖的人数=40×20%=8,一等奖的人数为40﹣8﹣10﹣18=4(人),条形统计图为:(4)由题意知,获一等奖的学生中,七年级有1人,八年级有1人,九年级有2人,画树状图为:(用A、B、C分别表示七年级、八年级和九年级的学生)共有12种等可能的结果数,其中所选出的两人中既有七年级又有九年级同学的结果数为4,所以所选出的两人中既有七年级又有九年级同学的概率=.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.也考查了统计图.22.(8分)如图,点D是以AB为直径的⊙O上一点,过点B作⊙O的切线,交AD的延长线于点C,E是BC的中点,连接DE并延长与AB的延长线交于点F.(1)求证:DF是⊙O的切线;(2)若OB=BF,EF=4,求AD的长.【分析】(1)连接OD,由AB为⊙O的直径得∠BDC=90°,根据BE=EC知∠1=∠3、由OD=OB知∠2=∠4,根据BC是⊙O的切线得∠3+∠4=90°,即∠1+∠2=90°,得证;(2)根据直角三角形的性质得到∠F=30°,BE=EF=2,求得DE=BE=2,得到DF =6,根据三角形的内角和得到OD=OA,求得∠A=∠ADO=BOD=30°,根据等腰三角形的性质即可得到结论.【解答】解:(1)如图,连接OD,BD,∵AB为⊙O的直径,∴∠ADB=∠BDC=90°,在Rt△BDC中,∵BE=EC,∴DE=EC=BE,∴∠1=∠3,∵BC是⊙O的切线,∴∠3+∠4=90°,∴∠1+∠4=90°,又∵∠2=∠4,∴∠1+∠2=90°,∴DF为⊙O的切线;(2)∵OB=BF,∴OF=2OD,∴∠F=30°,∵∠FBE=90°,∴BE=EF=2,∴DE=BE=2,∴DF=6,∵∠F=30°,∠ODF=90°,∴∠FOD=60°,∵OD=OA,∴∠A=∠ADO=BOD=30°,∴∠A=∠F,∴AD=DF=6.【点评】本题考查了切线的判定和性质,直角三角形的性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键.四、B卷填空题(共2小题,每小题5分,共10分)23.(5分)当0≤x≤3时,直线y=a与抛物线y=(x﹣1)2﹣3有交点,则a的取值范围是﹣3≤a≤1.【分析】直线y=a与抛物线y=(x﹣1)2﹣3有交点,则可化为一元二次方程组利用根的判别式进行计算.【解答】解:法一:y=a与抛物线y=(x﹣1)2﹣3有交点则有a=(x﹣1)2﹣3,整理得x2﹣2x﹣2﹣a=0∴△=b2﹣4ac=4+4(2+a)≥0解得a≥﹣3,∵0≤x≤3,对称轴x=1∴y=(3﹣1)2﹣3=1∴a≤1法二:由题意可知,∵抛物线的顶点为(1,﹣3),而0≤x≤3∴抛物线y的取值为﹣3≤y≤1∵y=a,则直线y与x轴平行,∴要使直线y=a与抛物线y=(x﹣1)2﹣3有交点,∴抛物线y的取值为﹣3≤y≤1,即为a的取值范围,∴﹣3≤a≤1故答案为:﹣3≤a≤1【点评】此题主要考查二次函数图象的性质及交点的问题,此类问题,通常可化为一元二次方程,利用根的判别式或根与系数的关系进行计算.24.(5分)如图,正方形ABCD中,AB=12,AE=AB,点P在BC上运动(不与B、C重合),过点P作PQ⊥EP,交CD于点Q,则CQ的最大值为4.【分析】先证明△BPE∽△CQP,得到与CQ有关的比例式,设CQ=y,BP=x,则CP =12﹣x,代入解析式,得到y与x的二次函数式,根据二次函数的性质可求最值.【解答】解:∵∠BEP+∠BPE=90°,∠QPC+∠BPE=90°,∴∠BEP=∠CPQ.又∠B=∠C=90°,∴△BPE∽△CQP.∴.设CQ=y,BP=x,则CP=12﹣x.∴,化简得y=﹣(x2﹣12x),整理得y=﹣(x﹣6)2+4,所以当x=6时,y有最大值为4.故答案为4.【点评】本题主要考查了正方形的性质、相似三角形的判定和性质,以及二次函数最值问题,几何最值用二次函数最值求解考查了树形结合思想.五、解答题(共4小题,共40分)25.(8分)已知二次函数y=x2+x+a的图象与x轴交于A(x1,0)、B(x2,0)两点,且+=1,求a的值.【分析】有韦达定理得x1+x2=﹣1,x1•x2=a,将式子+=1化简代入即可;【解答】解:y=x2+x+a的图象与x轴交于A(x1,0)、B(x2,0)两点,∴x1+x2=﹣1,x1•x2=a,∵+===1,∴a=﹣1+或a=﹣1﹣;【点评】本题考查二次函数的性质;灵活运用完全平方公式,掌握根与系数的关系是解题的关键.26.(10分)根据有理数乘法(除法)法则可知:①若ab>0(或>0),则或;②若ab<0(或<0),则或.根据上述知识,求不等式(x﹣2)(x+3)>0的解集解:原不等式可化为:(1)或(2).由(1)得,x>2,由(2)得,x<﹣3,∴原不等式的解集为:x<﹣3或x>2.请你运用所学知识,结合上述材料解答下列问题:(1)不等式x2﹣2x﹣3<0的解集为﹣1<x<3.(2)求不等式<0的解集(要求写出解答过程)【分析】(1)根据有理数乘法运算法则可得不等式组,仿照有理数乘法运算法则得出两个不等式组,分别求解可得.(2)根据有理数除法运算法则可得不等式组,仿照有理数除法运算法则得出两个不等式组,分别求解可得.【解答】解:(1)原不等式可化为:①或②.由①得,空集,由②得,﹣1<x<3,∴原不等式的解集为:﹣1<x<3,故答案为:﹣1<x<3.(2)由<0知①或②,解不等式组①,得:x>1;解不等式组②,得:x<﹣4;所以不等式<0的解集为x>1或x<﹣4.【点评】本题主要考查解不等式、不等式组的能力,将原不等式转化为两个不等式组是解题的关键.27.(10分)如图,∠ABD=∠BCD=90°,DB平分∠ADC,过点B作BM∥CD交AD于M.连接CM交DB于N.(1)求证:BD2=AD•CD;(2)若CD=6,AD=8,求MN的长.【分析】(1)通过证明△ABD∽△BCD,可得,可得结论;(2)由平行线的性质可证∠MBD=∠BDC,即可证AM=MD=MB=4,由BD2=AD•CD 和勾股定理可求MC的长,通过证明△MNB∽△CND,可得,即可求MN的长.【解答】证明:(1)∵DB平分∠ADC,∴∠ADB=∠CDB,且∠ABD=∠BCD=90°,∴△ABD∽△BCD∴∴BD2=AD•CD(2)∵BM∥CD∴∠MBD=∠BDC∴∠ADB=∠MBD,且∠ABD=90°∴BM=MD,∠MAB=∠MBA∴BM=MD=AM=4∵BD2=AD•CD,且CD=6,AD=8,∴BD2=48,∴BC2=BD2﹣CD2=12∴MC2=MB2+BC2=28∴MC=2∵BM∥CD∴△MNB∽△CND∴,且MC=2∴MN=【点评】本题考查了相似三角形的判定和性质,勾股定理,直角三角形的性质,求MC的长度是本题的关键.28.(12分)如图,抛物线y=ax2+bx+c的图象过点A(﹣1,0)、B(3,0)、C(0,3).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P,使得△P AC的周长最小,若存在,请求出点P的坐标及△P AC的周长;若不存在,请说明理由;(3)在(2)的条件下,在x轴上方的抛物线上是否存在点M(不与C点重合),使得S=S△P AC?若存在,请求出点M的坐标;若不存在,请说明理由.△P AM【分析】(1)由于条件给出抛物线与x轴的交点A(﹣1,0)、B(3,0),故可设交点式y=a(x+1)(x﹣3),把点C代入即求得a的值,减小计算量.(2)由于点A、B关于对称轴:直线x=1对称,故有P A=PB,则C△P AC=AC+PC+P A=AC+PC+PB,所以当C、P、B在同一直线上时,C△P AC=AC+CB最小.利用点A、B、C的坐标求AC、CB的长,求直线BC解析式,把x=1代入即求得点P纵坐标.(3)由S△P AM=S△P AC可得,当两三角形以P A为底时,高相等,即点C和点M到直线P A距离相等.又因为M在x轴上方,故有CM∥P A.由点A、P坐标求直线AP解析式,即得到直线CM解析式.把直线CM解析式与抛物线解析式联立方程组即求得点M坐标.【解答】解:(1)∵抛物线与x轴交于点A(﹣1,0)、B(3,0)∴可设交点式y=a(x+1)(x﹣3)把点C(0,3)代入得:﹣3a=3∴a=﹣1∴y=﹣(x+1)(x﹣3)=﹣x2+2x+3∴抛物线解析式为y=﹣x2+2x+3(2)在抛物线的对称轴上存在一点P,使得△P AC的周长最小.如图1,连接PB、BC∵点P在抛物线对称轴直线x=1上,点A、B关于对称轴对称∴P A=PB∴C△P AC=AC+PC+P A=AC+PC+PB∵当C、P、B在同一直线上时,PC+PB=CB最小∵A(﹣1,0)、B(3,0)、C(0,3)∴AC=,BC=∴C△P AC=AC+CB=最小设直线BC解析式为y=kx+3把点B代入得:3k+3=0,解得:k=﹣1∴直线BC:y=﹣x+3∴y P=﹣1+3=2∴点P(1,2)使△P AC的周长最小,最小值为.(3)存在满足条件的点M,使得S△P AM=S△P AC.∵S△P AM=S△P AC∴当以P A为底时,两三角形等高∴点C和点M到直线P A距离相等∵M在x轴上方∴CM∥P A∵A(﹣1,0),P(1,2),设直线AP解析式为y=px+d∴解得:∴直线AP:y=x+1∴直线CM解析式为:y=x+3∵解得:(即点C),∴点M坐标为(1,4)【点评】本题考查了待定系数法求二次函数解析式、一次函数解析式,轴对称的最短路径问题,勾股定理,平行线间距离处处相等,一元二次方程的解法.其中第(3)题条件给出点M在x轴上方,无需分类讨论,解法较常规而简单.2019年内蒙古包头市中考数学试题(Word版含解析)2019年内蒙古包头市中考数学试卷一、选择题:本大题共12小题,每小题3分,共36分.1.(3分)计算|﹣|+()﹣1的结果是()A.0 B.C.D.62.(3分)实数a,b在数轴上的对应点的位置如图所示.下列结论正确的是()A.a>b B.a>﹣b C.﹣a>b D.﹣a<b3.(3分)一组数据2,3,5,x,7,4,6,9的众数是4,则这组数据的中位数是()A.4 B.C.5 D.4.(3分)一个圆柱的三视图如图所示,若其俯视图为圆,则这个圆柱的体积为()A.24 B.24πC.96 D.96π5.(3分)在函数y=﹣中,自变量x的取值范围是()A.x>﹣1 B.x≥﹣1 C.x>﹣1且x≠2 D.x≥﹣1且x≠2 6.(3分)下列说法正确的是()A.立方根等于它本身的数一定是1和0B.顺次连接菱形四边中点得到的四边形是矩形C.在函数y=kx+b(k≠0)中,y的值随着x值的增大而增大D.如果两个圆周角相等,那么它们所对的弧长一定相等7.(3分)如图,在Rt△ABC中,∠B=90°,以点A为圆心,适当长为半径画弧,分别交AB、AC于点D,E,再分别以点D、E为圆心,大于DE为半径画弧,两弧交于点F,作射线AF交边BC于点G,若BG=1,AC=4,则△ACG的面积是()A.1 B.C.2 D.8.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,以BC为直径作半圆,交AB于点D,则阴影部分的面积是()A.π﹣1 B.4﹣πC.D.29.(3分)下列命题:①若x2+kx+是完全平方式,则k=1;②若A(2,6),B(0,4),P(1,m)三点在同一直线上,则m=5;③等腰三角形一边上的中线所在的直线是它的对称轴;④一个多边形的内角和是它的外角和的2倍,则这个多边形是六边形.其中真命题个数是()A.1 B.2 C.3 D.410.(3分)已知等腰三角形的三边长分别为a、b、4,且a、b是关于x的一元二次方程x2﹣12x+m+2=0的两根,则m的值是()A.34 B.30 C.30或34 D.30或36 11.(3分)如图,在正方形ABCD中,AB=1,点E,F分别在边BC和CD上,AE=AF,∠EAF=60°,则CF的长是()A.B.C.﹣1 D.12.(3分)如图,在平面直角坐标系中,已知A(﹣3,﹣2),B(0,﹣2),C(﹣3,0),M是线段AB上的一个动点,连接CM,过点M作MN⊥MC交y轴于点N,若点M、N在直线y=kx+b上,则b的最大值是()A.﹣B.﹣C.﹣1 D.0二、填空题:本大题有6小题,每小题3分,共24分.13.(3分)2018年我国国内生产总值(GDP)是900309亿元,首次突破90万亿大关,90万亿用科学记数法表示为.14.(3分)已知不等式组的解集为x>﹣1,则k的取值范围是.15.(3分)化简:1﹣÷=.16.(3分)甲、乙两班举行数学知识竞赛,参赛学生的竞赛得分统计结果如下表:。
2019年四川省凉山州中考数学试卷以及解析版

2019年四川省凉山州中考数学试卷一、选择题(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,把正确选项的宇母填涂在答题卡上相应的位置1.(4分)2的相反数是()A .2B .2C .12D .122.(4分)2018年凉山州生产总值约为153300000000,用科学记数法表示数153300000000是()A .91.53310B .101.53310C .111.53310D .121.533103.(4分)如图,//BD EF ,AE 与BD 交于点C ,30B,75A,则E 的度数为()A .135B .125C .115D .1054.(4分)下列各式正确的是()A .224235aaaB .23a a aC .235()a aD .2aa5.(4分)不等式11x x …的解集是()A .1x …B .1x …C .1x,D .1x,6.(4分)某班40名同学一周参加体育锻炼时间统计如表所示:人数(人)317137时间(小时)78910那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A .17,8.5B .17,9C .8,9D .8,8.57.(4分)下列命题:①直线外一点到这条直线的垂线段,叫做点到直线的距离;②两点之间线段最短;③相等的圆心角所对的弧相等;④平分弦的直径垂直于弦.其中,真命题的个数是()A .1B .2C .3D .48.(4分)如图,正比例函数y kx与反比例函数4yx的图象相交于A、C两点,过点A作x轴的垂线交x轴于点B,连接BC,则ABC的面积等于() A.8B.6C.4D.29.(4分)如图,在ABC中,4CA CB,1cos4C,则sin B的值为()A.102B.153C.64D.10410.(4分)如图,在ABC中,D在AC边上,:1:2AD DC,O是BD的中点,连接AO 并延长交BC于E,则:(BE EC)A.1:2B.1:3C.1:4D.2:311.(4分)如图,在AOC中,3OA cm,1OC cm,将AOC绕点O顺时针旋转90后得到BOD,则AC边在旋转过程中所扫过的图形的面积为(2)cm.A .2B .2C .178D .19812.(4分)二次函数2y ax bxc 的部分图象如图所示,有以下结论:①30ab;②240bac ;③520a bc;④430b c,其中错误结论的个数是()A .1B .2C .3D .4二、填空题(共5个小题,每小题4分,共20分)13.(4分)方程组10216x y xy 的解是.14.(4分)方程2212111x x x的解是.15.(4分)如图所示,AB 是O 的直径,弦CDAB 于H ,30A ,23CD,则O的半径是.16.(4分)在ABCD 中,E 是AD 上一点,且点E 将AD 分为2:3的两部分,连接BE 、AC相交于F ,则:AEFCBFSS是.17.(4分)将抛物线2(3)2y x 向左平移个单位后经过点(2,2)A .三、解答题(共5小题,共32分)18.(5分)计算:021tan 45(32)()|32|2.19.(5分)先化简,再求值:2(3)(1)(1)2(24)aa aa,其中12a.20.(6分)如图,正方形ABCD 的对角线AC 、BD 相交于点O ,E 是OC 上一点,连接EB .过点A 作AMBE ,垂足为M ,AM 与BD 相交于点F .求证:OEOF .21.(8分)某校初中部举行诗词大会预选赛,学校对参赛同学获奖情况进行统计,绘制了如下两幅不完整的统计图.请结合图中相关数据解答下列问题:(1)参加此次诗词大会预选赛的同学共有人;(2)在扇形统计图中,“三等奖”所对应的扇形的圆心角的度数为;(3)将条形统计图补充完整;(4)若获得一等奖的同学中有14来自七年级,12来自九年级,其余的来自八年级,学校决定从获得一等奖的同学中任选两名同学参加全市诗词大会比赛,请通过列表或树状图方法求所选两名同学中,恰好是一名七年级和一名九年级同学的概率.22.(8分)如图,点D 是以AB 为直径的O 上一点,过点B 作O 的切线,交AD 的延长线于点C ,E 是BC 的中点,连接DE 并延长与AB 的延长线交于点F .(1)求证:DF 是O 的切线;(2)若OB BF ,4EF ,求AD 的长.四、B 卷填空题(共2小题,每小题5分,共10分)23.(5分)当03x 剟时,直线y a 与抛物线2(1)3y x 有交点,则a 的取值范围是.24.(5分)如图,正方形ABCD 中,12AB ,14AE AB ,点P 在BC 上运动(不与B 、C 重合),过点P 作PQEP ,交CD 于点Q ,则CQ 的最大值为.五、解答题(共4小题,共40分)25.(8分)已知二次函数2yxxa 的图象与x 轴交于1(A x ,0)、2(B x ,0)两点,且2212111xx,求a 的值.26.(10分)根据有理数乘法(除法)法则可知:①若0ab(或0)a b ,则00a b 或00a b ;②若0ab (或0)a b,则00a b或00a b .根据上述知识,求不等式(2)(3)0x x 的解集解:原不等式可化为:(1)203x x或(2)203x x.由(1)得,2x ,由(2)得,3x,原不等式的解集为:3x或2x.请你运用所学知识,结合上述材料解答下列问题:(1)不等式2230x x 的解集为.(2)求不等式401x x的解集(要求写出解答过程)27.(10分)如图,90ABD BCD,DB 平分ADC ,过点B 作//BM CD 交AD 于M .连接CM 交DB 于N .(1)求证:2BD AD CD ;(2)若6CD,8AD,求MN 的长.28.(12分)如图,抛物线2y axbxc 的图象过点(1,0)A 、(3,0)B 、(0,3)C .(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P ,使得PAC 的周长最小,若存在,请求出点P的坐标及PAC 的周长;若不存在,请说明理由;(3)在(2)的条件下,在x 轴上方的抛物线上是否存在点M (不与C 点重合),使得PAMPACS S?若存在,请求出点M 的坐标;若不存在,请说明理由.2019年四川省凉山州中考数学试卷答案与解析一、选择题(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,把正确选项的宇母填涂在答题卡上相应的位置1.(4分)【分析】根据相反数的意义,只有符号不同的数为相反数.【解答】解:根据相反数的定义,2的相反数是2.故选:A.【点评】本题考查了相反数的意义.注意掌握只有符号不同的数为相反数,0的相反数是0.2.(4分)【分析】利用科学记数法表示即可【解答】解:科学记数法表示:153 300 000 11000 1.53310故选:C.【点评】本题主要考查科学记数法的表示,把一个数表示成a与10的n次幂相乘的形式,,n为整数),这种记数法叫做科学记数法.a(1103.(4分)【分析】直接利用三角形的外角性质得出ACD度数,再利用平行线的性质分析得出答案.A,B,75【解答】解:30ACD,3075105BD EF,//E ACD.105故选:D.【点评】此题主要考查了平行线的性质以及三角形的外角,正确掌握平行线的性质是解题关键.4.(4分)【分析】分别根据合并同类项的法则、同底数幂的乘法法则、幂的乘方法则以及二次根式的性质解答即可.【解答】解:A、222a a a,故选项A不合题意;235B、23a a a,故选项B符合题意;C 、236()a a ,故选项C 不合题意;D 、2||aa ,故选项D 不合题意.故选:B .【点评】本题主要考查了合并同类项的法则、幂的运算法则以及二次根式的性质,熟练掌握相关运算性质是解答本题的关键.5.(4分)【分析】移项、合并同类项,系数化为1即可求解.【解答】解:11x x …,22x …1x,.故选:C .【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.6.(4分)【分析】根据中位数、众数的概念分别求得这组数据的中位数、众数.【解答】解:众数是一组数据中出现次数最多的数,即8;由统计表可知,处于20,21两个数的平均数就是中位数,这组数据的中位数为898.52;故选:D .【点评】本题考查了中位数、众数的概念.本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.7.(4分)【分析】根据点到直线的距离,线段的性质,弧、弦、圆心角之间的关系以及垂径定理判断即可.【解答】解:①直线外一点到这条直线的垂线段,叫做点到直线的距离;假命题;②两点之间线段最短;真命题;③相等的圆心角所对的弧相等;假命题;④平分弦的直径垂直于弦;假命题;真命题的个数是1个;故选:A .【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果那么”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.8.(4分)【分析】由于点A 、C 位于反比例函数图象上且关于原点对称,则OBAOBCSS,再根据反比例函数系数k 的几何意义作答即可.【解答】解:因为过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 是个定值,即1||2S k .所以ABC 的面积等于12||||42k k .故选:C .【点评】主要考查了反比例函数k yx中k 的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为||k ,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k 的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 的关系即1||2Sk .9.(4分)【分析】过点A 作AD BC ,垂足为D ,在Rt ACD 中可求出AD ,CD 的长,在Rt ABD中,利用勾股定理可求出AB 的长,再利用正弦的定义可求出sin B 的值.【解答】解:过点A 作AD BC ,垂足为D ,如图所示.在Rt ACD 中,cos 1CD CA C ,2215ADADCD;在Rt ABD 中,3BD CBCD,15AD,2226AB BD AD ,10sin 4AD BAB.故选:D .【点评】本题考查了解直角三角形以及勾股定理,通过解直角三角形及勾股定理,求出AD ,AB 的长是解题的关键.10.(4分)【分析】过O 作BC 的平行线交AC 与G ,由中位线的知识可得出:1:2AD DC,根据已知和平行线分线段成比例得出ADDGGC ,:2:1AG GC,:2:1AO OF ,再由同高不同底的三角形中底与三角形面积的关系可求出:BF FC 的比.【解答】解:如图,过O 作//OG BC ,交AC 于G ,O 是BD 的中点,G 是DC 的中点.又:1:2AD DC ,ADDGGC ,:2:1AG GC ,:2:1AO OE,:2AOBBOES S 设BOES S ,2AOB S S ,又BO OD ,2AOD SS ,4ABDSS ,:1:2AD DC ,28BDCABDS SS ,7CDOES S 四边形,9AECSS ,3ABES S ,3193ABE AECS BE S ECSS故选:B .【点评】本题考查平行线分线段成比例及三角形的中位线的知识,难度较大,注意熟练运用中位线定理和三角形面积公式.11.(4分)如图,在AOC中,3OA cm,1OC cm,将AOC绕点O顺时针旋转90后得到BOD,则AC边在旋转过程中所扫过的图形的面积为(2)cm.A.2B.2C.178D.198【分析】根据旋转的性质可以得到阴影部分的面积扇形OAB的面积扇形OCD的面积,利用扇形的面积公式即可求解.【解答】解:AOC BOD,阴影部分的面积扇形OAB的面积扇形OCD的面积22 9039012 360360,故选:B.【点评】本题考查了旋转的性质以及扇形的面积公式,正确理解:阴影部分的面积扇形OAB的面积扇形OCD的面积是解题关键.12.(4分)二次函数2y ax bx c的部分图象如图所示,有以下结论:①30a b;②240b ac;③520a b c;④430b c,其中错误结论的个数是()A .1B .2C .3D .4【分析】①对称轴为32x,得3ba ;②函数图象与x 轴有两个不同的交点,得△240bac ;③当1x时,0abc,当3x时,930abc,得520ab c;④由对称性可知1x 时对应的y 值与4x 时对应的y 值相等,当1x 时0a bc,43333333()0bcbbcba c abc ;【解答】解:由图象可知0a,0c,对称轴为32x,322b x a,3ba ,①正确;函数图象与x 轴有两个不同的交点,△240bac ,②正确;当1x 时,0a b c ,当3x 时,930a b c ,10420a b c ,520abc,③正确;由对称性可知1x 时对应的y 值与4x 时对应的y 值相等,当1x 时0a bc,3b a ,43333333()0b c b b c b a c a b c ,430bc,④错误;故选:C .【点评】本题考查二次函数的图象及性质;熟练掌握从函数图象获取信息,将信息与函数解析式相结合解题是关键.二、填空题(共5个小题,每小题4分,共20分)13.(4分)方程组10216x y xy 的解是64x y.【分析】利用加减消元法解之即可.【解答】解:10216x y xy①②,②①得:6x,把6x 代入①得:610y,解得:4y,方程组的解为:64x y ,故答案为:64x y.【点评】本题考查了解二元一次方程组,正确掌握加减消元法是解题的关键.14.(4分)方程2212111x x x的解是2x .【分析】去分母,把分式方程化为整式方程,求解并验根即可.【解答】解:21211(1)(1)x x x x 去分母,得(21)(1)2(1)(1)x x x x 去括号,得22231x x x 移项并整理,得22x x所以(2)(1)0x x解得2x或1x经检验,2x 是原方程的解.故答案为:2x .【点评】本题考查了分式方程、一元二次方程的解法.掌握分式方程的解法是解决本题的关键.注意验根.15.(4分)如图所示,AB 是O 的直径,弦CD AB 于H ,30A ,23CD ,则O的半径是2.【分析】连接BC ,由圆周角定理和垂径定理得出90ACB ,132CH DHCD ,由直角三角形的性质得出223ACCH,323ACBC,2ABBC ,得出2BC,4AB ,求出2OA 即可.【解答】解:连接BC ,如图所示:AB 是O 的直径,弦CD AB 于H ,90ACB ,132CHDHCD,30A ,223ACCH,在Rt ABC 中,30A,323AC BC ,2ABBC ,2BC ,4AB ,2OA ,即O 的半径是2;故答案为:2.【点评】本题考查的是垂径定理、圆周角定理、含30角的直角三角形的性质、勾股定理等知识;熟练掌握圆周角定理和垂径定理是解题的关键.16.(4分)在ABCD 中,E 是AD 上一点,且点E 将AD 分为2:3的两部分,连接BE 、AC相交于F ,则:AEFCBFSS是4:25或9:25.【分析】分:2:3AE ED 、:3:2AE ED两种情况,根据相似三角形的性质计算即可.【解答】解:①当:2:3AE ED时,四边形ABCD 是平行四边形,//AD BC ,:2:5AE BC ,AEF CBF ∽,22:()4:255AEFCBFSS;②当:3:2AE ED 时,同理可得,23:()9:255AEFCBFSS,故答案为:4:25或9:25.【点评】本题考查的是相似三角形的判定和性质、平行四边形的性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.17.(4分)将抛物线2(3)2yx向左平移3个单位后经过点(2,2)A .【分析】直接利用二次函数的平移规律结合二次函数图象上点的性质进而得出答案.【解答】解:将抛物线2(3)2yx向左平移后经过点(2,2)A ,设平移后解析式为:2(3)2yx a ,则22(23)2a ,解得:3a 或1a(不合题意舍去),故将抛物线2(3)2y x向左平移3个单位后经过点(2,2)A .故答案为:3.【点评】此题主要考查了二次函数图象与几何变换,正确记忆平移规律是解题关键.三、解答题(共5小题,共32分)18.(5分)计算:021tan 45(32)()|32|2.【分析】分别进行特殊角的三角函数值的运算,任何非零数的零次幂等于1,负整数指数幂以及绝对值的意义化简,然后按照实数的运算法则进行计算求得结果.【解答】解:原式112(23)23.【点评】本题考查了实数的运算法则,属于基础题,解答本题的关键是熟练掌握负整数指数幂、特殊角的三角函数值等知识.19.(5分)先化简,再求值:2(3)(1)(1)2(24)a a a a ,其中12a.【分析】注意到2(3)a 可以利用完全平方公式进行展开,(1)(1)a a 利润平方差公式可化为2(1)a,则将各项合并即可化简,最后代入12a进行计算.【解答】解:原式2269(1)48aa aa 22a 将12a代入原式12()212【点评】本题主要考查整式的混合运算,灵活运用两条乘法公式:完全平方公式和平方差公式是解题的关键,同时,在去括号的过程中要注意括号前的符号,若为负号,去括号后,括号里面的符号要改变20.(6分)如图,正方形ABCD 的对角线AC 、BD 相交于点O ,E 是OC 上一点,连接EB .过点A 作AMBE ,垂足为M ,AM 与BD 相交于点F .求证:OEOF .【分析】根据正方形的性质对角线垂直且平分,得到OBOA ,根据AM BE ,即可得出90MEAMAEAFOMAE ,从而证出Rt BOE Rt AOF ,得到OEOF .【解答】证明:四边形ABCD 是正方形.90BOEAOF,OBOA .又AM BE,90MEA MAE AFO MAE,MEA AFO.()BOE AOF AAS.OE OF.【点评】本题主要考查了正方形的性质、三角形全等的性质和判定,在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.21.(8分)某校初中部举行诗词大会预选赛,学校对参赛同学获奖情况进行统计,绘制了如下两幅不完整的统计图.请结合图中相关数据解答下列问题:(1)参加此次诗词大会预选赛的同学共有40人;(2)在扇形统计图中,“三等奖”所对应的扇形的圆心角的度数为;(3)将条形统计图补充完整;(4)若获得一等奖的同学中有14来自七年级,12来自九年级,其余的来自八年级,学校决定从获得一等奖的同学中任选两名同学参加全市诗词大会比赛,请通过列表或树状图方法求所选两名同学中,恰好是一名七年级和一名九年级同学的概率.【分析】(1)利用鼓励奖的人数除以它所占的百分比得到的总人数;(2)用360乘以二等奖人数占被调查人数的比例即可得;(3)计算出一等奖和二等奖的人数,然后补全条形统计图;(4)画树状图(用A、B、C分别表示七年级、八年级和九年级的学生)展示所有12种等可能的结果数,再找出所选出的两人中既有七年级又有九年级同学的结果数,然后利用概率公式求解.【解答】解:(1)参加此次诗词大会预选赛的同学共有1845%40(人),故答案为:40;(2)扇形统计图中获三等奖的圆心角为103609040,故答案为:90.(3)获二等奖的人数4020%8,一等奖的人数为40810184(人),条形统计图为:(4)由题意知,获一等奖的学生中,七年级有1人,八年级有1人,九年级有2人,画树状图为:(用A、B、C分别表示七年级、八年级和九年级的学生)共有12种等可能的结果数,其中所选出的两人中既有七年级又有九年级同学的结果数为4,所以所选出的两人中既有七年级又有九年级同学的概率41 123.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.也考查了统计图.22.(8分)如图,点D是以AB为直径的O上一点,过点B作O的切线,交AD的延长线于点C,E是BC的中点,连接DE并延长与AB的延长线交于点F.(1)求证:DF是O的切线;(2)若OB BF,4EF,求AD的长.【分析】(1)连接OD,由AB为O的直径得90BDC,根据BE EC知13、由OD OB知24,根据BC是O的切线得3490,即1290,得证;(2)根据直角三角形的性质得到30F,12 2BE EF,求得2DE BE,得到6DF,根据三角形的内角和得到OD OA,求得1302A ADO BOD,根据等腰三角形的性质即可得到结论.【解答】解:(1)如图,连接OD,BD,AB为O的直径,90ADB BDC,在Rt BDC中,BE EC,DE EC BE,13,BC是O的切线,3490,1490,又24,1290,DF为O的切线;(2)OB BF,2OF OD,30F,90FBE,122BE EF,2DE BE,6DF,30F,90ODF,60FOD,OD OA,1302A ADO BOD,A F,6AD DF.【点评】本题考查了切线的判定和性质,直角三角形的性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键.四、B 卷填空题(共2小题,每小题5分,共10分)23.(5分)当03x 剟时,直线y a 与抛物线2(1)3y x 有交点,则a 的取值范围是31a 剟.【分析】直线y a 与抛物线2(1)3yx 有交点,则可化为一元二次方程组利用根的判别式进行计算.【解答】解:法一:y a 与抛物线2(1)3yx 有交点则有2(1)3a x,整理得222x xa△2444(2)0baca …解得3a …,03x 剟,对称轴1x 2(31)31y1a,法二:由题意可知,抛物线的顶点为(1,3),而03x 剟抛物线y 的取值为31y 剟y a ,则直线y 与x 轴平行,要使直线ya 与抛物线2(1)3yx 有交点,抛物线y 的取值为31y 剟,即为a 的取值范围,31a 剟故答案为:31a 剟【点评】此题主要考查二次函数图象的性质及交点的问题,此类问题,通常可化为一元二次方程,利用根的判别式或根与系数的关系进行计算.24.(5分)如图,正方形ABCD 中,12AB ,14AEAB ,点P 在BC 上运动(不与B 、C 重合),过点P 作PQEP ,交CD 于点Q ,则CQ 的最大值为4.【分析】先证明BPE CQP ∽,得到与CQ 有关的比例式,设CQy ,BP x ,则12CP x ,代入解析式,得到y 与x 的二次函数式,根据二次函数的性质可求最值.【解答】解:90BEPBPE,90QPCBPE,BEP CPQ .又90BC,BPE CQP ∽.BE BP PC CQ.设CQy ,BP x ,则12CPx .912x x y,化简得21(12)9y xx ,整理得21(6)49y x,所以当6x时,y 有最大值为4.故答案为4.【点评】本题主要考查了正方形的性质、相似三角形的判定和性质,以及二次函数最值问题,几何最值用二次函数最值求解考查了树形结合思想.五、解答题(共4小题,共40分)25.(8分)已知二次函数2yxxa 的图象与x 轴交于1(A x ,0)、2(B x ,0)两点,且2212111xx,求a 的值.【分析】有韦达定理得121x x ,12x x a ,将式子2212111x x化简代入即可;【解答】解:2y xxa 的图象与x 轴交于1(A x ,0)、2(B x ,0)两点,121x x ,12x x a ,222121212222222121212()211121()x xx x x x a x x x x x x a,12a或12a;【点评】本题考查二次函数的性质;灵活运用完全平方公式,掌握根与系数的关系是解题的关键.26.(10分)根据有理数乘法(除法)法则可知:①若0ab(或0)a b ,则00a b 或00a b ;②若0ab (或0)a b,则00a b或00a b .根据上述知识,求不等式(2)(3)0x x 的解集解:原不等式可化为:(1)203x x或(2)203x x.由(1)得,2x ,由(2)得,3x,原不等式的解集为:3x或2x.请你运用所学知识,结合上述材料解答下列问题:(1)不等式2230x x 的解集为13x .(2)求不等式401x x的解集(要求写出解答过程)【分析】(1)根据有理数乘法运算法则可得不等式组,仿照有理数乘法运算法则得出两个不等式组,分别求解可得.(2)根据有理数除法运算法则可得不等式组,仿照有理数除法运算法则得出两个不等式组,分别求解可得.【解答】解:(1)原不等式可化为:①3010xx 或②301x x .由①得,空集,由②得,13x,原不等式的解集为:13x,故答案为:13x.(2)由401xx知①4010x x 或②401x x,解不等式组①,得:1x ;解不等式组②,得:4x ;所以不等式401x x的解集为1x 或4x .【点评】本题主要考查解不等式、不等式组的能力,将原不等式转化为两个不等式组是解题的关键.27.(10分)如图,90ABD BCD ,DB 平分ADC ,过点B 作//BM CD 交AD 于M .连接CM 交DB 于N .(1)求证:2BD AD CD ;(2)若6CD,8AD,求MN 的长.【分析】(1)通过证明ABD BCD ∽,可得AD BD BDCD,可得结论;(2)由平行线的性质可证MBDBDC ,即可证4AM MDMB,由2BDAD CD和勾股定理可求MC 的长,通过证明MNB CND ∽,可得23BM MN CDCN,即可求MN 的长.【解答】证明:(1)DB 平分ADC ,ADBCDB ,且90ABDBCD,ABD BCD ∽AD BD BDCD2BD AD CD (2)//BM CDMBDBDCADB MBD ,且90ABD BM MD ,MAB MBA4BMMDAM2BD AD CD ,且6CD ,8AD ,248BD ,22212BC BDCD22228MC MB BC 27MC//BM CD MNB CND ∽23BM MN CD CN ,且27MC475MN【点评】本题考查了相似三角形的判定和性质,勾股定理,直角三角形的性质,求MC 的长度是本题的关键.28.(12分)如图,抛物线2yaxbx c 的图象过点(1,0)A 、(3,0)B 、(0,3)C .(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P ,使得PAC 的周长最小,若存在,请求出点P的坐标及PAC 的周长;若不存在,请说明理由;(3)在(2)的条件下,在x 轴上方的抛物线上是否存在点M (不与C 点重合),使得PAMPACS S?若存在,请求出点M 的坐标;若不存在,请说明理由.【分析】(1)由于条件给出抛物线与x 轴的交点(1,0)A 、(3,0)B ,故可设交点式(1)(3)ya xx,把点C 代入即求得a 的值,减小计算量.(2)由于点A 、B 关于对称轴:直线1x 对称,故有P AP B ,则PACCAC PC PA AC PCPB ,所以当C 、P 、B 在同一直线上时,PACCACCB最小.利用点A 、B 、C 的坐标求AC 、CB 的长,求直线BC 解析式,把1x 代入即求得点P 纵坐标.(3)由PA MP AC SS 可得,当两三角形以PA 为底时,高相等,即点C 和点M 到直线PA 距离相等.又因为M 在x 轴上方,故有//CM PA .由点A 、P 坐标求直线AP 解析式,即得到直线CM 解析式.把直线CM 解析式与抛物线解析式联立方程组即求得点M 坐标.【解答】解:(1)抛物线与x 轴交于点(1,0)A 、(3,0)B 可设交点式(1)(3)ya x x 把点(0,3)C 代入得:33a1a 2(1)(3)23yxxxx抛物线解析式为223yx x(2)在抛物线的对称轴上存在一点P ,使得PAC 的周长最小.如图1,连接PB 、BC 点P 在抛物线对称轴直线1x上,点A 、B 关于对称轴对称PA PBPACCAC PC PA AC PC PB 当C 、P 、B 在同一直线上时,PCPBCB 最小(1,0)A 、(3,0)B 、(0,3)C 221310AC ,223332BC 1032PACCACCB最小设直线BC 解析式为3y kx把点B 代入得:330k ,解得:1k直线:3BC y x132Py 点(1,2)P 使PAC 的周长最小,最小值为1032.(3)存在满足条件的点M ,使得PAMPACS S.PAM PACSS当以PA 为底时,两三角形等高点C 和点M 到直线PA 距离相等M 在x 轴上方//CM PA(1,0)A ,(1,2)P ,设直线AP 解析式为y pxd2p d pd 解得:11p d直线:1AP y x 直线CM 解析式为:3y x2323y x yxx解得:1103x y (即点)C ,2214x y 点M 坐标为(1,4)【点评】本题考查了待定系数法求二次函数解析式、一次函数解析式,轴对称的最短路径问题,勾股定理,平行线间距离处处相等,一元二次方程的解法.其中第(3)题条件给出点M 在x轴上方,无需分类讨论,解法较常规而简单。
《首发》四川省凉山州2019年中考数学真题试题(含解析)

2019年四川省凉山州中考数学试卷一、选择题(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,把正确选项的宇母填涂在答题卡上相应的位置1.(4分)﹣2的相反数是()A.2 B.﹣2 C.D.﹣2.(4分)2018年凉山州生产总值约为153300000000,用科学记数法表示数153300000000是()A.1.533×109B.1.533×1010C.1.533×1011D.1.533×1012 3.(4分)如图,BD∥EF,AE与BD交于点C,∠B=30°,∠A=75°,则∠E的度数为()A.135°B.125°C.115°D.105°4.(4分)下列各式正确的是()A.2a2+3a2=5a4B.a2•a=a3C.(a2)3=a5D.=a5.(4分)不等式1﹣x≥x﹣1的解集是()A.x≥1 B.x≥﹣1 C.x≤1 D.x≤﹣16.(4分)某班40名同学一周参加体育锻炼时间统计如表所示:那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A.17,8.5 B.17,9 C.8,9 D.8,8.57.(4分)下列命题:①直线外一点到这条直线的垂线段,叫做点到直线的距离;②两点之间线段最短;③相等的圆心角所对的弧相等;④平分弦的直径垂直于弦.其中,真命题的个数是()A.1 B.2 C.3 D.48.(4分)如图,正比例函数y=kx与反比例函数y=的图象相交于A、C两点,过点A作x轴的垂线交x轴于点B,连接BC,则△ABC的面积等于()A.8 B.6 C.4 D.29.(4分)如图,在△ABC中,CA=CB=4,cos C=,则sin B的值为()A.B.C.D.10.(4分)如图,在△ABC中,D在AC边上,AD:DC=1:2,O是BD的中点,连接AO并延长交BC于E,则BE:EC=()A.1:2 B.1:3 C.1:4 D.2:311.(4分)如图,在△AOC中,OA=3cm,OC=1cm,将△AOC绕点O顺时针旋转90°后得到△BOD,则AC边在旋转过程中所扫过的图形的面积为()cm2.A.B.2πC.πD.π12.(4分)二次函数y=ax2+bx+c的部分图象如图所示,有以下结论:①3a﹣b=0;②b2﹣4ac>0;③5a﹣2b+c>0;④4b+3c>0,其中错误结论的个数是()A.1 B.2 C.3 D.4二、填空题(共5个小题,每小题4分,共20分)13.(4分)方程组的解是.14.(4分)方程+=1的解是.15.(4分)如图所示,AB是⊙O的直径,弦CD⊥AB于H,∠A=30°,CD=2,则⊙O的半径是.16.(4分)在▱ABCD中,E是AD上一点,且点E将AD分为2:3的两部分,连接BE、AC相交于F,则S△AEF:S△CBF是.17.(4分)将抛物线y=(x﹣3)2﹣2向左平移个单位后经过点A(2,2).三、解答题(共5小题,共32分)18.(5分)计算:tan45°+(﹣)0﹣(﹣)﹣2+|﹣2|.19.(5分)先化简,再求值:(a+3)2﹣(a+1)(a﹣1)﹣2(2a+4),其中a=﹣.20.(6分)如图,正方形ABCD的对角线AC、BD相交于点O,E是OC上一点,连接EB.过点A作AM⊥BE,垂足为M,AM与BD相交于点F.求证:OE=OF.。
2019年四川省凉山州中考数学真题(word版 )

2019年凉山州中考数学(考试时间:120分钟 满分:150分)本试卷分为A 卷(100分)、B 卷(50分)A 卷(共100分)第I 卷(选择题 共48分)一.选择题(共12个小题,每小题4分,共48分)1.-2的相反数是( )A.2B.-2C.21D.21- 2.2018年凉山州生产总值约为153300000000元,用科学记数法表示数153300000000是( )A.1.533×109B.1.533×1010C.1.533×1011D.1.533×10123.如图,BD ∥EF ,AE 与BD 相交于点C ,∠B=30°,∠A=75°,则∠E 的度数为( )A.135°B.125°C.115°D.105°第3题图4.下列各式正确的是( )A.422532a a a =+B.32a a a =⋅C.532)(a a = D.a a =2 5.不等式11-≥-x x 的解集是( )A.1≥xB.1-≥xC.1≤xD.1-≤x6.某班40名同学一周参加体育锻炼时间统计如下表所示:那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是( )A.17,8.5B.17,9C.8,9D.8,8.57.下列命题:①直线外一点到这条直线的垂线段,叫做点到直线的距离;②两点之间线段最短;③相等的圆心角所对的弧相等;④平分弦的直径垂直于弦.其中,真命题的个数是( )A.1B.2C.3D.48.如图,正比例函数kx y =与反比例函数xy 4=的图象交于A 、C 两点,过点A 作x 轴的垂线交x 轴于点B ,连接BC ,则△ABC 的面积等于( )A.8B.6C.4D.2第8题图 第9题图 第10题图9.如图,在△ABC 中,AC=CB=4,cosC=41,则sinB 的值为( ) A.210 B.315 C.46 D.410 10.如图,在△ABC 中,D 在AC 边上,AD :DC=1:2,O 是BD 的中点,连接AO 并延长交BC 于E ,则BE :EC=( )A.1:2B.1:3C.1:4D.2:311.如图,在△AOC 中,OA=3cm ,OC=1cm ,将△AOC 绕点O 顺时针旋转90°后得到△BOD ,则AC 边在旋转过程中所扫过的图形的面积为( )cm² A.2π B.π2 C.817π D.819π第11题图 第12题图 12.二次函数c bx ax y ++=2的部分图象如图,所示,有以下结论:①03=-b a ;②042>-ac b ;③025>+-c b a ;④034>+c b ,其中错误结论的个数是( )A.1B.2C.3D.4第II 卷(非选择题 共52分)二.填空题(共5个小题,每小题4分,共20分)13.方程组⎩⎨⎧=+=+16210y x y x 的解是 . 14.方程1121122=-+--xx x 的解是 . 15.如图所示,AB 是⊙O 的直径,弦CD ⊥AB 于H ,∠A=30°,CD=32,则⊙O 的半径是 .第15题图16.在 ABCD 中,E 是AD 上一点,且点E 将AD 分为2:3两部分,连接BE 、AC 相交于F ,则S △AEF :S △CBF 是 .17.将抛物线2)3(2--=x y 向左平移 个单位后经过点A (2,2)三.解答题(共5小题,共32分)18.(5分)计算:tan45°+|23|)21()23(20-+----19.(5分)先化简,再求值:),42(2)1)(1()3(2+--+-+a a a a 其中21-=a20.(6分)如图,正方形ABCD 对角线AC 、BD 相交于点O ,E 是OC 上一点,连接BE.过点A 作AM ⊥BE ,垂足为M ,AM 与BD 相交于点F.求证:OE=OF.21.(8分)某校初中部举行诗词大会预选赛,学校对参赛同学获奖情况进行了统计,绘制了如下两幅不完整的统计图.请结合图中相关数据解答下列问题.(1)参加此次诗词大会预选赛的同学共有 人;(2)在扇形统计图中,“三等奖”所对应的扇形的圆心角的度数为 ;(3)将条形统计图补充完整;(4)若获得一等奖的同学中有41来自七年级,21来自九年级,其余的来自八年级.学校决定从获得一等奖的同学中任选两名同学参加全市诗词大会比赛.请通过列表或树状图方法求所选两名同学中,恰好是一名七年级和一名九年级同学的概率.22.(8分)如图,点D 是以AB 为直径的⊙O 上一点,过点B 作⊙O 的切线,交AD 的延长线于点C ,E 是BC 的中点,连接DE 并延长与AB 的延长线交于点F.(1)求证:DF 是⊙O 的切线;(2)若OB=BF ,EF=4,求AD 的长.B 卷(共50分)四.填空题(共2个小题,每小题5分,共10分)23.当30≤≤x 时,直线a y =与抛物线3)1(2--=x y 有交点,则a 的取值范围是 . 24.如图正方形ABCD 中,AB=12,AE=41AB ,点P 在BC 上运动(不与B 、C 重合),过点P 作PQ ⊥EP ,交CD 于点Q ,则CQ 的最大值为 .五、解答题(共4小题,共40分)25.(8分)已知二次函数a x x y ++=2的图象与x 轴交于)0,(),0,(21x B x A 两点,且1112221=+x x ,求a 的值.26.(10分)根据有理数乘法(除法)法则可知:①若0>ab (或0>a b ),则⎩⎨⎧>>00b a 或⎩⎨⎧<<00b a②若0<ab (或0<a b ),则⎩⎨⎧<>00b a 或⎩⎨⎧><00b a 根据上述知识,求不等式0)3)(2(>+-x x 的解集.解:原不等式可化为:(1)⎩⎨⎧>+>-0302x x 或(2)⎩⎨⎧<+<-0302x x ,由(1)得,2>x由(2)得,3-<x∴原不等式的解集为:3-<x 或2>x请你运用所学知识,结合上述材料解答下列问题:(1)不等式0322<--x x 的解集为 . (2)求不等式014<-+xx 的解集(要求写出解答过程).27.(10分)如图,∠ABD=∠BCD=90°,DB 平分∠ADC ,过点B 作BM ∥CD 交AD 于M.连接CM 交DB 于N.(1)求证:BD²=AD·CD ;(2)若CD=6,AD=8,求MN 的长.28.(12分)如图,抛物线c bx ax y ++=2的图象过点A (-1,0)、B (3,0)、C (0,3).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P ,使得△PAC 的周长最小,若存在,请求出点P 的坐标及△PAC 的周长;若不存在,请说明理由;(3)在(2)的条件下,在x 轴上方的抛物线上是否存在点M (不与点C 重合),使得S △PAM =S △PAC ,若存在,请求出点M 的坐标;若不存在,请说明理由.。
【中考真题】2019年四川省凉山州中考数学真题试卷(附答案)

○…………订班级:___________○…………订绝密★启用前【中考真题】2019年四川省凉山州中考数学真题试卷(附答案)注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、单选题1.2-的相反数是( ) A .2-B .2C .12D .12-2.2018年某州生产总值约为153300000000,用科学记数法表示数153300000000是( ) A .91.53310⨯B .101.53310⨯C .111.53310⨯D .121.53310⨯3.如图,//BD EF ,AE 与BD 交于点C ,3075B A ∠∠=,=,则E ∠的度数为( )A .135?B .125C .115?D .1054.下列各式正确的是( ) A .224235a a a += B .23a a a ⋅= C .235)(?a a =D a5.不等式11x x ≥﹣﹣的解集是( ) A .1x ≥B .1x ≥﹣C .1x ≤D .1x ≤﹣6.某班40名同学一周参加体育锻炼时间统计如表所示:那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是( ) A .17,8.5B .17,9C .8,9D .8,8.57.下列命题:①直线外一点到这条直线的垂线段,叫做点到直线的距离;②两点之间线段最短;③相等的圆心角所对的弧相等;④平分弦的直径垂直于弦.其中,真命题的………○……………○…………………○…………线※※请※※※※装※※订※※线※※※※题※※………○……………○…………………○…………线个数是( ) A .1B .2C .3D .48.如图,正比例函数y kx =与反比例函数4y x=的图象相交于A 、C 两点,过点A 作x 轴的垂线交x 轴于点B ,连接BC ,则ABC ∆的面积等于( )A .8B .6C .4D .29.如图,在ABC ∆中,144CA CB cosC ==,=,则sinB 的值为( )A B C D 10.如图,在ABC ∆中,D 在AC 边上,12AD DC :=:,O 是BD 的中点,连接AO 并延长交BC 于E ,则BE EC :=( )A .1:2B .1:3C .1:4D .2:311.如图,在AOC ∆中,31OA cm OC cm =,=,将△AOC 绕点O 顺时针旋转90后得到BOD ∆,则AC 边在旋转过程中所扫过的图形的面积为( )2cm .…外…………○…………订…………线…………○……班级:___________考号:______…内…………○…………订…………线…………○……A .2π B .2πC .178π D .198π 12.二次函数2y ax bx c ++=的部分图象如图所示,有以下结论:①30a b ﹣=;②240b ac ﹣>;③520ab c +﹣>;④430b c +>,其中错误结论的个数是( )A .1B .2C .3D .4二、填空题 13.方程组10216x y x y +=⎧⎨+=⎩的解是_______.14.方程2212111x x x -+=--的解是_______. 15.如图所示,AB 是⊙O 的直径,弦CD AB ⊥于H ,30,A CD ︒∠==,则⊙O的半径是_______.16.在▱ABCD 中,E 是AD 上一点,且点E 将AD 分为2:3的两部分,连接BE 、AC 相交于F ,则AEF CBF S S ∆∆:是_______.17.将抛物线23)2y x =(﹣﹣向左平移_______个单位后经过点(22)A ,.……外…………○……装…………○……………线……※※不※※要※※在※※装※※订……内…………○……装…………○……………线……18.当03x ≤≤时,直线y a =与抛物线2(1)3y x =﹣﹣有交点,则a 的取值范围是_______. 19.如图,正方形ABCD 中,1124AB AE AB ==,,点P 在BC 上运动(不与B 、C 重合),过点P 作PQ EP ⊥,交CD 于点Q ,则CQ 的最大值为_______.三、解答题20.计算:21tan 45|2|2-︒︒⎛⎫+--+ ⎪⎝⎭.21.先化简,再求值:2(3)(1)(1)2(24)a a a a +-+--+,其中12a =-. 22.如图,正方形ABCD 的对角线AC 、BD 相交于点O ,E 是OC 上一点,连接EB .过点A 作AM BE ⊥,垂足为M ,AM 与BD 相交于点F .求证:OE OF =.23.某校初中部举行诗词大会预选赛,学校对参赛同学获奖情况进行统计,绘制了如下两幅不完整的统计图.请结合图中相关数据解答下列问题:(1)参加此次诗词大会预选赛的同学共有 人;(2)在扇形统计图中,“三等奖”所对应的扇形的圆心角的度数为 ; (3)将条形统计图补充完整;……○…………线_______……○…………线(4)若获得一等奖的同学中有14来自七年级,12来自九年级,其余的来自八年级,学校决定从获得一等奖的同学中任选两名同学参加全市诗词大会比赛,请通过列表或树状图方法求所选两名同学中,恰好是一名七年级和一名九年级同学的概率.24.如图,点D 是以AB 为直径的⊙O 上一点,过点B 作⊙O 的切线,交AD 的延长线于点C ,E 是BC 的中点,连接DE 并延长与AB 的延长线交于点F(1)求证:DF 是⊙O 的切线;(2)若4OB BF EF ==,,,求AD 的长.25.已知二次函数2y x x a =++的图象与x 轴交于12(0)(0)A x B x ,、,两点,且2212111x x +=,求a 的值. 26.根据有理数乘法(除法)法则可知:①若0ab >(或0ab >),则00a b >⎧⎨>⎩或00a b <⎧⎨<⎩;②若0ab <(或a0b <),则00a b >⎧⎨<⎩或00a b <⎧⎨>⎩.根据上述知识,求不等式(2)(3)0x x -+>的解集:解:原不等式可化为:(1)2030x x ->⎧⎨+>⎩或(2)2030x x -<⎧⎨+<⎩.由(1)得,2x >,由(2)得,3x <﹣, ∴原不等式的解集为:3x <﹣或2x >请你运用所学知识,结合上述材料解答下列问题: (1)不等式2230x x ﹣﹣<的解集为 . (2)求不等式401x x+<-的解集(要求写出解答过程) 27.如图,90ABD BCD ︒∠=∠=,DB 平分∠ADC ,过点B 作BM CD ‖交AD 于M .连接CM 交DB 于N .…………订…………○…线…………○……订※※线※※内※※答※※题※※…………订…………○…线…………○……(1)求证:2BD AD CD =⋅;(2)若68CD AD ==,,求MN 的长.28.如图,抛物线2y ax bx c =++的图象过点(10)(30)(03)A B C ﹣,、,、,.(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P ,使得△PAC 的周长最小,若存在,请求出点P 的坐标及△PAC 的周长;若不存在,请说明理由;(3)在(2)的条件下,在x 轴上方的抛物线上是否存在点M (不与C 点重合),使得PAM PAC S S ∆∆=?若存在,请求出点M 的坐标;若不存在,请说明理由.参考答案1.B 【解析】 【分析】根据相反数的性质可得结果. 【详解】因为-2+2=0,所以﹣2的相反数是2, 故选B . 【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 . 2.C 【解析】 【分析】利用科学记数法表示即可 【详解】解:科学记数法表示:11158300000000 1.53310=⨯. 故选:C . 【点睛】考查科学记数法的表示,把一个数表示成a 与10的n 次幂相乘的形式(110a ≤<,n 为整数),这种记数法叫做科学记数法. 3.D 【解析】 【分析】直接利用三角形的外角性质得出ACD ∠度数,再利用平行线的性质分析得出答案. 【详解】 解:3075B A ∠︒∠︒=,=,3075105ACD ∴∠︒+︒︒==, //BD EF ,105E ACD ∴∠∠︒==.故选:D .【点睛】考查了平行线的性质以及三角形的外角,正确掌握平行线的性质是解题关键. 4.B 【解析】 【分析】分别根据合并同类项的法则、同底数幂的乘法法则、幂的乘方法则以及二次根式的性质解答即可. 【详解】解:A 、222235a a a +=,故选项A 不合题意; B 、23a a a ⋅=,故选项B 符合题意;C 、236a a ()=,故选项C 不合题意;D ||a =,故选项D 不合题意. 故选:B . 【点睛】考查了合并同类项的法则、幂的运算法则以及二次根式的性质,熟练掌握相关运算性质是解答本题的关键. 5.C 【解析】 【分析】移项、合并同类项,系数化为1即可求解. 【详解】 解:11x x ≥﹣﹣,22x ≥﹣﹣ 1x ∴≤故选:C . 【点睛】考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.6.D【解析】【分析】根据中位数、众数的概念分别求得这组数据的中位数、众数.【详解】解:众数是一组数据中出现次数最多的数,即8;由统计表可知,处于20,21两个数的平均数就是中位数,∴这组数据的中位数为898.5 2+=;故选:D.【点睛】考查了中位数、众数的概念.本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.7.A【解析】【分析】根据点到直线的距离,线段的性质,弧、弦、圆心角之间的关系以及垂径定理判断即可.【详解】①直线外一点到这条直线的垂线段,叫做点到直线的距离;假命题;②两点之间线段最短;真命题;③相等的圆心角所对的弧相等;假命题;④平分弦的直径垂直于弦;假命题;真命题的个数是1个;故选:A.【点睛】考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.8.C【解析】 【分析】由于点A 、C 位于反比例函数图象上且关于原点对称,则OBA OBC S S ∆∆=,再根据反比例函数系数k 的几何意义作答即可. 【详解】解:因为过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 是个定值, 即1||2S k =. 所以ABC ∆的面积等于12||||42k k ⨯==. 故选:C . 【点睛】考查了反比例函数ky x=中k 的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为k ,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k 的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 的关系即12S k =. 9.D 【解析】 【分析】过点A 作AD BC ⊥,垂足为D ,在Rt ACD ∆中可求出AD ,CD 的长,在Rt ABD ∆中,利用勾股定理可求出AB 的长,再利用正弦的定义可求出sinB 的值. 【详解】解:过点A 作AD BC ⊥,垂足为D ,如图所示. 在Rt ACD ∆中,1CD CA cosC ⋅==,AD ∴=在Rt ABD ∆中,3BD CB CD AD =﹣=,AB ∴==AD sin AB B ∴==. 故选:D .【点睛】考查了解直角三角形以及勾股定理,通过解直角三角形及勾股定理,求出AD ,AB 的长是解题的关键.10.B【解析】【分析】过O 作BC 的平行线交AC 与G ,由中位线的知识可得出12AD DC :=:,根据已知和平行线分线段成比例得出2121AD DG GC AG GC AO OF ==,:=:,:=:,再由同高不同底的三角形中底与三角形面积的关系可求出BF FC :的比.【详解】解:如图,过O 作//OG BC ,交AC 于G ,∵O 是BD 的中点,∴G 是DC 的中点.又12AD DC :=:,AD DG GC ∴==,2121AG GC AO OE ∴:=:,:=:,2AOB BOE S S ∆∆∴:=设2BOE AOB S S S S ∆∆=,=,又BO OD =,24AOD ABD S S S S ∆∆∴=,=,12AD DC :=:,287BDC ABD CDOE S S S S S ∆∆∴四边形==,=,93AEC ABE S S S S ∆∆∴=,=,3193ABE AEC S BE S EC S S ∆∆∴=== 故选:B .【点睛】考查平行线分线段成比例及三角形的中位线的知识,难度较大,注意熟练运用中位线定理和三角形面积公式.11.B【解析】【分析】根据旋转的性质可以得到阴影部分的面积=扇形OAB 的面积﹣扇形OCD 的面积,利用扇形的面积公式即可求解.【详解】解:AOC BOD ∆∆≌,∴阴影部分的面积=扇形OAB 的面积﹣扇形OCD 的面积229039012360360πππ⋅⨯⋅⨯=-= 故选:B .【点睛】考查了旋转的性质以及扇形的面积公式,正确理解:阴影部分的面积=扇形OAB 的面积﹣扇形OCD 的面积是解题关键.12.A【解析】【分析】 ①对称轴为32x =-,得3b a =; ②函数图象与x 轴有两个不同的交点,得240b ac ∆=﹣>;③当1x =-时,0a b c +﹣>,当3x =-时,930a b c +﹣>,得520a b c +﹣>;④由对称性可知1x =时对应的y 值与4x =-时对应的y 值相等,当1x =时0433333330a b c b c b b c b a c a b c +++++++++<,===()<【详解】解:由图象可知00a c <,>,对称轴为32x =-, 322b x a∴=-=-, 3,b a ∴=,①正确;∵函数图象与x 轴有两个不同的交点,240b ac ∴∆=﹣>,, ②正确;当1x =﹣时,0a b c +->,当3x =-时,930a b c +﹣>,10420a b c ∴+﹣>,520a b c ∴+﹣>,③正确;由对称性可知1x =时对应的y 值与4x =-时对应的y 值相等,∴当1x =时0a b c ++<,3b a =,433333330b c b b c b a c a b c ∴+++++++===()<,430b c ∴+<,④错误;故选:A .【点睛】考查二次函数的图象及性质;熟练掌握从函数图象获取信息,将信息与函数解析式相结合解题是关键.13.64x y =⎧⎨=⎩【解析】【分析】利用加减消元法解之即可.【详解】解:10216x y x y +=⎧⎨+=⎩①②, ②﹣①得:6x =,把6x =代入①得:610y +=,解得:4y =, 方程组的解为:64x y =⎧⎨=⎩, 故答案为:64x y =⎧⎨=⎩【点睛】考查了解二元一次方程组,正确掌握加减消元法是解题的关键.14.2x =-【解析】【分析】去分母,把分式方程化为整式方程,求解并验根即可.【详解】 解:21211(1)(1)x x x x --=-+- 去分母,得(21)(1)2(1)(1)x x x x -+-=+-去括号,得22231x x x +-=-移项并整理,得220x x +-=所以(2)(1)0x x +-=解得2x =-或1x =经检验,2x =-是原方程的解.故答案为:2x =-【点睛】考查了分式方程、一元二次方程的解法.掌握分式方程的解法是解决本题的关键.注意验根. 15.2【解析】【分析】连接BC ,由圆周角定理和垂径定理得出190,2ACB CH DH CD ︒∠====三角形的性质得出22AC CH AC AB BC =====,得出2,4BC AB ==,求出2OA =即可.【详解】解:连接BC ,如图所示:∵AB 是⊙O 的直径,弦CD AB ⊥于H ,1902ACB CH DH CD ∴∠︒=,== 30A ∠︒=,2AC CH ∴==,在Rt ABC ∆中,30A ∠︒=,2AC AB BC ∴==,24BC AB ∴=,=,2OA ∴=,即⊙O 的半径是2;故答案为:2【点睛】考查的是垂径定理、圆周角定理、含30角的直角三角形的性质、勾股定理等知识;熟练掌握圆周角定理和垂径定理是解题的关键.16.425:或925:【解析】【分析】分2332AE ED AE ED :=:、:=:两种情况,根据相似三角形的性质计算即可.【详解】解:①当23AE ED :=:时,∵四边形ABCD 是平行四边形,//25AD BC AE BC ∴,:=:,AEF CBF ∴∆∆∽,224255AEF CBF S S ∆∆∴:=()=:; ②当32AE ED :=:时, 同理可得,239255AEF CBF S S ∆∆:=()=:, 故答案为:425:或925:.【点睛】考查的是相似三角形的判定和性质、平行四边形的性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.17.3【解析】【分析】直接利用二次函数的平移规律结合二次函数图象上点的性质进而得出答案.【详解】解:∵将抛物线232y x =(﹣)﹣向左平移后经过点22A (,), ∴设平移后解析式为:232y xa +=(﹣)﹣,则22232a +=(﹣)﹣,解得:3a =或1a =﹣(不合题意舍去), 故将抛物线232y x =(﹣)﹣向左平移3个单位后经过点22A (,). 故答案为:3.【点睛】考查了二次函数图象与几何变换,正确记忆平移规律是解题关键.18.31a -≤≤【解析】【分析】 直线y a =与抛物线213y x =(﹣)﹣有交点,则可化为一元二次方程组利用根的判别式进行计算.【详解】解:法一:y a =与抛物线213y x =(﹣)﹣有交点 则有213a x =(﹣)﹣,整理得2220x x a ﹣﹣﹣=244420b ac a ∴∆++≥=﹣=()解得3a ≥﹣,03x ≤≤,对称轴1x =23131y ∴=(﹣)﹣=1a ∴≤法二:由题意可知,∵抛物线的 顶点为13(,﹣),而03x ≤≤∴抛物线y 的取值为31y ≤≤﹣ y a =,则直线y 与x 轴平行,∴要使直线y a =与抛物线213y x =(﹣)﹣有交点, ∴抛物线y 的取值为31y ≤≤﹣,即为a 的取值范围, ∴31a ≤≤﹣故答案为:31a -≤≤【点睛】考查二次函数图象的性质及交点的问题,此类问题,通常可化为一元二次方程,利用根的判别式或根与系数的关系进行计算.19.4【解析】【分析】先证明BPE CQP ∆∆∽,得到与CQ 有关的比例式,设CQ y BP x =,=,则12CP x =﹣,代入解析式,得到y 与x 的二次函数式,根据二次函数的性质可求最值.【详解】解:9090BEP BPE QPC BPE ∠+∠︒∠+∠︒=,=,BEP CPQ ∴∠∠=.又90B C ∠∠︒==,BPE CQP ∴∆∆∽.BE BP PC CQ∴= 设CQ y BP x =,=,则12CP x =﹣.912x x y ∴=-,化简得()21129y x x =--, 整理得21(6)49y x =--+,所以当6x =时,y 有最大值为4.故答案为4.【点睛】考查了正方形的性质、相似三角形的判定和性质,以及二次函数最值问题,几何最值用二次函数最值求解考查了树形结合思想.20.【解析】分别进行特殊角的三角函数值的运算,任何非零数的零次幂等于1,负整数指数幂以及绝对值的意义化简,然后按照实数的运算法则进行计算求得结果.【详解】解:原式114(2=+-+-=【点睛】考查了实数的运算法则,解答本题的关键是熟练掌握负整数指数幂、特殊角的三角函数值等知识.21.1【解析】【分析】注意到23a +()可以利用完全平方公式进行展开,11a a +()(﹣)利润平方差公式可化为21a (﹣),,则将各项合并即可化简,最后代入12a =-进行计算. 【详解】解:原式2269148a a a a ++-=(﹣)-﹣22a += 将12a =-代入原式12212⎛⎫=⨯-+= ⎪⎝⎭【点睛】考查整式的混合运算,灵活运用两条乘法公式:完全平方公式和平方差公式是解题的关键,同时,在去括号的过程中要注意括号前的符号,若为负号,去括号后,括号里面的符号要改变.22.见解析.【解析】【分析】根据正方形的性质对角线垂直且平分,得到OB OA =,根据AM BE ⊥,即可得出90MEA MAE AFO MAE ∠+∠︒∠+∠==,从而证出Rt BOE Rt AOF ∆∆≌,得到OE OF =.证明:∵四边形ABCD 是正方形.90BOE AOF OB OA ∴∠∠︒==,=.又AM BE ⊥,90MEA MAE AFO MAE ∴∠+∠︒∠+∠==,MEA AFO ∴∠∠=.BOE AOF AAS ∴∆∆≌().OE OF ∴=.【点睛】考查了正方形的性质、三角形全等的性质和判定,在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.23.(1)40;(2)90°;(3)见解析;(4)见解析,13. 【解析】【分析】(1)利用鼓励奖的人数除以它所占的百分比得到的总人数;(2)用360°乘以二等奖人数占被调查人数的比例即可得;(3)计算出一等奖和二等奖的人数,然后补全条形统计图;(4)画树状图(用A 、B 、C 分别表示七年级、八年级和九年级的学生)展示所有12种等可能的结果数,再找出所选出的两人中既有七年级又有九年级同学的结果数,然后利用概率公式求解.【详解】解:(1)参加此次诗词大会预选赛的同学共有1845%40÷=(人),故答案为:40;(2)扇形统计图中获三等奖的圆心角为103609040︒︒⨯=, 故答案为:90°.(3)获二等奖的人数4020%8=⨯=,一等奖的人数为40810184---=(人), 条形统计图为:(4)由题意知,获一等奖的学生中,七年级有1人,八年级有1人,九年级有2人, 画树状图为:(用A 、B 、C 分别表示七年级、八年级和九年级的学生)共有12种等可能的结果数,其中所选出的两人中既有七年级又有九年级同学的结果数为4, 所以所选出的两人中既有七年级又有九年级同学的概率41123=. 【点睛】考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式求事件A 或B 的概率.也考查了统计图. 24.(1)见解析;(2)6AD =.【解析】【分析】(1)连接OD ,由AB 为⊙O 的直径得90BDC ︒∠=,根据BE EC =知13∠=∠、由OD OB =知24∠∠=,根据BC 是⊙O 的切线得3490︒∠+∠=,即1290︒∠+∠=,得证;(2)根据直角三角形的性质得到130,22F BE EF ︒∠===,求得2DE BE ==,得到6DF =,根据三角形的内角和得到OD OA =,求得1302A ADO BOD ︒∠=∠=∠=,根据等腰三角形的性质即可得到结论.【详解】解:(1)如图,连接OD ,BD ,∵AB 为⊙O 的直径,90ADB BDC ∴∠∠︒==,在Rt BDC ∆中,BE EC =,DE EC BE ∴==,13∴∠∠=,∵BC 是⊙O 的切线,3490∴∠+∠︒=,1490∴∠+∠︒=,又24∠∠=,1290∴∠+∠︒=,∴DF 为⊙O 的切线;(2)OB BF =,2OF OD ∴=,30F ∴∠︒=,90FBE ∠︒=,122BE EF ∴==, 2DE BE ∴==,6DF ∴=,3090F ODF ∠︒∠︒=,=,60FOD ∴∠︒=,OD OA =,1302A ADO BOD ∴∠∠∠︒===, A F ∴∠∠=6AD DF ∴==.【点睛】考查了切线的判定和性质,直角三角形的性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键.25.1a =-【解析】【分析】由韦达定理得12121x x x x a +⋅=﹣,=,,将式子2212111x x +=化简代入即可; 【详解】 解:2y x x a ++=的图象与x 轴交于1200A x B x (,)、(,)两点,∴=1-40a ∆> 即14a < 12121x x x x a ∴+⋅=-,=()()222121212222222121212211121x x x x x x ax x x x a x x +-+-+==== 1a ∴=-+舍)或1a =-【点睛】考查二次函数的性质;灵活运用完全平方公式,掌握根与系数的关系是解题的关键. 26.(1)13x -<<;(2)1x >或4x <-. 【解析】【分析】(1)根据有理数乘法运算法则可得不等式组,仿照有理数乘法运算法则得出两个不等式组,分别求解可得.(2)根据有理数除法运算法则可得不等式组,仿照有理数除法运算法则得出两个不等式组,分别求解可得.【详解】解:(1)原不等式可化为:①3010x x ->⎧⎨+<⎩或②3010x x -<⎧⎨+>⎩. 由①得,空集,由②得,13x ,∴原不等式的解集为:13x,故答案为:13x. (2)由401x x +<-知①4010x x +>⎧⎨-<⎩或②4010x x +<⎧⎨->⎩, 解不等式组①,得:1x >;解不等式组②,得:4x <-; 所以不等式401x x +<-的解集为1x >或4x <-. 【点睛】考查解不等式、不等式组的能力,将原不等式转化为两个不等式组是解题的关键.27.(1)见解析;(2)MN =【解析】【分析】(1)通过证明ABD BCD ∆∆∽,可得AD BD BD CD=,可得结论; (2)由平行线的性质可证MBD BDC ∠∠=,即可证4AM MD MB ===,由2BD AD CD ⋅=和勾股定理可求MC 的长,通过证明MNB CND ∆∆∽,可得23BM MN CD CN ==,即可求MN 的长. 【详解】证明:(1)∵DB 平分ADC ∠,ADB CDB ∴∠∠=,且90ABD BCD ∠∠︒==,ABD BCD ∴∆∆∽AD BD BD CD∴= 2BD AD CD ∴⋅=(2)//BM CDMBD BDC ∴∠∠=ADB MBD ∴∠∠=,且90ABD ∠︒=BM MD MAB MBA ∴∠∠=,=4BM MD AM ∴===2BD AD CD ⋅=,且68CD AD =,=,248BD ∴=,22212BC BD CD ∴=﹣=22228MC MB BC ∴+==MC ∴=//BM CDMNB CND ∴∆∆∽23BM MN CD CN ∴==且MC =MN ∴=【点睛】考查了相似三角形的判定和性质,勾股定理,直角三角形的性质,求MC 的长度是本题的关键.28.(1)223y x x =++-;(2)存在,点(12)P ,;(3)存在,点M坐标为(14), 【解析】【分析】(1)由于条件给出抛物线与x 轴的交点1030A B (﹣,)、(,),故可设交点式13y a x x +=()(﹣),把点C 代入即求得a 的值,减小计算量.(2)由于点A 、B 关于对称轴:直线1x =对称,故有PA PB =,则PAC C AC PC PA AC PC PB ∆++++==,所以当C 、P 、B 在同一直线上时,PAC C AC CB ∆+=最小.利用点A 、B 、C 的坐标求AC 、CB 的长,求直线BC 解析式,把1x =代入即求得点P 纵坐标.(3)由PAM PAC S S ∆∆=可得,当两三角形以PA 为底时,高相等,即点C 和点M 到直线PA 距离相等.又因为M 在x 轴上方,故有//CM PA .由点A 、P 坐标求直线AP 解析式,即得到直线CM 解析式.把直线CM 解析式与抛物线解析式联立方程组即求得点M 坐标.【详解】解:(1)∵抛物线与x 轴交于点1030A B (﹣,)、(,)∴可设交点式13y a x x +=()(﹣) 把点03C (,)代入得:33a ﹣=1a ∴=﹣21323y x x x x ∴+++=-()(﹣)=﹣∴抛物线解析式为223y x x ++=-(2)在抛物线的对称轴上存在一点P ,使得PAC ∆的周长最小.如图1,连接PB 、BC∵点P 在抛物线对称轴直线1x =上,点A 、B 关于对称轴对称 PA PB ∴=PAC C AC PC PA AC PC PB ∆∴++++==∵当C 、P 、B 在同一直线上时,PC PB CB +=最小103003A B C (﹣,)、(,)、(,)AC BC ∴==PAC C AC CB ∆∴+==设直线BC 解析式为3y kx +=把点B 代入得:330k +=,解得:1k =﹣∴直线BC :3y x +=﹣132P y ∴+=﹣=∴点12P (,)使PAC ∆ (3)存在满足条件的点M ,使得PAM PAC S S ∆∆=.∵PAM PAC S S ∆∆=∴当以PA 为底时,两三角形等高∴点C 和点M 到直线PA 距离相等∵M 在x 轴上方//CM PA ∴1012A P (﹣,),(,),设直线AP 解析式为y px d += 02p d p d -+=⎧∴⎨+=⎩ 解得:p 1d 1=⎧⎨=⎩∴直线1AP y x +:=∴直线CM 解析式为:3y x +=2323y x y x x =+⎧⎨=-++⎩解得:1103x y =⎧⎨=⎩(即点C ),2214x y =⎧⎨=⎩ ∴点M 坐标为14(,)【点睛】考查了待定系数法求二次函数解析式、一次函数解析式,轴对称的最短路径问题,勾股定理,平行线间距离处处相等,一元二次方程的解法.其中第(3)题条件给出点M 在x 轴上方,无需分类讨论,解法较常规而简单.。
2019年四川省凉山州中考数学试卷附分析答案

28.(12 分)如图,抛物线 y=ax2+bx+c 的图象过点 A(﹣1,0)、B(3,0)、C(0,3). (1)求抛物线的解析式; (2)在抛物线的对称轴上是否存在一点 P,使得△PAC 的周长最小,若存在,请求出点 P 的坐标及△PAC 的周长;若不存在,请说明理由; (3)在(2)的条件下,在 x 轴上方的抛物线上是否存在点 M(不与 C 点重合),使得 S △PAM=S△PAC?若存在,请求出点 M 的坐标;若不存在,请说明理由.
故选:C.
3.(4 分)如图,BD∥EF,AE 与 BD 交于点 C,∠B=30°,∠A=75°,则∠E 的度数为
()
A.135°
B.125°
C.115°
【解答】解:∵∠B=30°,∠A=75°,
∴∠ACD=30°+75°=105°,
∵BD∥EF,
∴∠E=∠ACD=105°.
故选:D.
4.(4 分)下列各式正确的是( )
21.(8 分)某校初中部举行诗词大会预选赛,学校对参赛同学获奖情况进行统计,绘制了 如下两幅不完整的统计图.请结合图中相关数据解答下列问题:
(1)参加此次诗词大会预选赛的同学共有
人;
(2)在扇形统计图中,“三等奖”所对应的扇形的圆心角的度数为
;
(3)将条形统计图补充完整;
(4)若获得一等奖的同学中有 来自七年级, 来自九年级,其余的来自八年级,学校决 定从获得一等奖的同学中任选两名同学参加全市诗词大会比赛,请通过列表或树状图方 法求所选两名同学中,恰好是一名七年级和一名九年级同学的概率. 22.(8 分)如图,点 D 是以 AB 为直径的⊙O 上一点,过点 B 作⊙O 的切线,交 AD 的延 长线于点 C,E 是 BC 的中点,连接 DE 并延长与 AB 的延长线交于点 F. (1)求证:DF 是⊙O 的切线; (2)若 OB=BF,EF=4,求 AD 的长.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四川省凉山州2019年中考数学试卷一、选择题(共12小题,满分48分)
)
,,
4.(4分)(2018•凉山州)某班数学学习小组某次测验成绩分别是63,72,49,66,81,53,92,69,则这
5.(4分)(2018•凉山州)如图,河堤横断面迎水坡AB的坡比是1:,堤高BC=10m,则坡面AB的长度是()
m
:
m
=20m
)
)
:
9.(4分)(2018•凉山州)下列图形中阴影部分的面积相等的是()
各个阴影部分的面积,进而可比较出个阴影部分面积的大小关系.
S阴影=×2×2=2;
S=
③:此函数是反比例函数,那么阴影部分的面积为:S=xy=×4=2;
2的度数是()
cosA=
11.(4分)(2018•凉山州)函数y=mx+n与y=,其中m≠0,n≠0,那么它们在同一坐标系中的图象可能是()
的值来确定反比例函数所在的象限.
<
图象经过第二、四象限.
<
图象经过第二、四象限.
<
∴函数的y=图象经过第二、四象限.
>
图象经过第一、三象限.
12.(4分)(2018•凉山州)已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC cm cm cm或cm或
AB=×8=4cm,
==3cm
==4cm
==2cm
二、填空题
13.(4分)(2018•凉山州)函数y=+中,自变量x的取值范围是x≥﹣1且x≠0 .
14.(4分)(2018•凉山州)顺次连接矩形四边中点所形成的四边形是菱形.学校的一块菱形花园两对角线的长分别是6m和8m,则这个花园的面积为 24m2.
BD
FG=
这个花园的面积是
15.(4分)(2018•凉山州)已知x1=+,x2=﹣,则x12+x22= 10 .
=,,
+﹣)+﹣)
16.(4分)(2018•凉山州)已知一个直角三角形的两边的长分别是3和4,则第三边长为 5或.
=;
=5
或
17.(4分)(2018•凉山州)“服务社会,提升自我.”凉山州某学校积极开展志愿者服务活动,来自九年级的5名同学(三男两女)成立了“交通秩序维护”小分队.若从该小分队任选两名同学进行交通秩序维护,则
恰是一男一女的概率是.
=.
故答案为:.
三、解答题
18.(6分)(2018•凉山州)计算:()﹣2﹣6sin30°﹣()0++|﹣|
﹣﹣+
.
19.(6分)(2018•凉山州)先化简,再求值:÷(a+2﹣),其中a2+3a﹣1=0.
֥
=,
.
四、解答题
20.(8分)(2018•凉山州)州教育局为了解我州八年级学生参加社会实践活动情况,随机抽查了某县部分八年级学生第一学期参加社会实践活动的天数,并用得到的数据检测了两幅统计图,下面给出了两幅不完整的统计图(如图)
请根据图中提供的信息,回答下列问题:
(1)a= 10 %,并写出该扇形所对圆心角的度数为36° ,请补全条形图.
(2)在这次抽样调查中,众数和中位数分别是多少?
(3)如果该县共有八年级学生2000人,请你估计“活动时间不少于7天”的学生人数大约有多少人?
21.(8分)(2018•凉山州)如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD,等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.
(1)试说明AC=EF;
(2)求证:四边形ADFE是平行四边形.
,
22.(8分)(2018•凉山州)实验与探究:
三角点阵前n行的点数计算
如图是一个三角点阵,从上向下数有无数多行,其中第一行有1个点,第二行有2个点…第n行有n个点…
容易发现,10是三角点阵中前4行的点数约和,你能发现300是前多少行的点数的和吗?
如果要用试验的方法,由上而下地逐行的相加其点数,虽然你能发现1+2+3+4+…+23+24=300.得知300是前24行的点数的和,但是这样寻找答案需我们先探求三角点阵中前n行的点数的和与n的数量关系
前n行的点数的和是1+2+3+…+(n﹣2)+(n﹣1)+n,可以发现.
2×[1+2+3+…+(n﹣2)+(n﹣1)+n]
=[1+2+3+…+(n﹣2)+(n﹣1)+n]+[n+(n﹣1)+(n﹣2)+…3+2+1]
把两个中括号中的第一项相加,第二项相加…第n项相加,上式等号的后边变形为这n个小括号都等于n+1,整个式子等于n(n+1),于是得到
1+2+3+…+(n﹣2)+(n﹣1)+n=n(n+1)
这就是说,三角点阵中前n项的点数的和是n(n+1)
下列用一元二次方程解决上述问题
设三角点阵中前n行的点数的和为300,则有n(n+1)
整理这个方程,得:n2+n﹣600=0
解方程得:n1=24,n2=25
根据问题中未知数的意义确定n=24,即三角点阵中前24行的点数的和是300.
请你根据上述材料回答下列问题:
(1)三角点阵中前n行的点数的和能是600吗?如果能,求出n;如果不能,试用一元二次方程说明道理.(2)如果把图中的三角点阵中各行的点数依次换成2、4、6、…、2n、…,你能探究处前n行的点数的和满足什么规律吗?这个三角点阵中前n行的点数的和能使600吗?如果能,求出n;如果不能,试用一元二次方程说明道理.
(1+2+3+4+5+…+n)个点,然后求它们的和,前n行共有个点,则
=600,然后解方程得到n的值;
(2)根据2+4+6+…+2n=2(1+2+3+…+n)=2×个进而得出即可;根据
解:(1)由题意可得:=600,
=n
五、解答题
23.(8分)(2018•凉山州)如图所示,正方形格中,△ABC为格点三角形(即三角形的顶点都在格点上).(1)把△ABC沿BA方向平移后,点A移到点A1,在格中画出平移后得到的△A1B1C1;
(2)把△A1B1C1绕点A1按逆时针方向旋转90°,在格中画出旋转后的△A1B2C2;
(3)如果格中小正方形的边长为1,求点B经过(1)、(2)变换的路径总长.
;
=
=
24.(8分)(2018•凉山州)我州某校计划购买甲、乙两种树苗共1000株用以绿化校园,甲种树苗每株25元,乙种树苗每株30元,通过调查了解,甲,乙两种树苗成活率分别是90%和95%.
(1)若购买这种树苗共用去28000元,则甲、乙两种树苗各购买多少株?
(2)要使这批树苗的总成活率不低于92%,则甲种树苗最多购买多少株?
(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用.
解得:
六、填空题
25.(5分)(2018•凉山州)关于x的方程=﹣1的解是正数,则a的取值范围是 a>﹣1 .
=,
=﹣1的解是正数,
26.(5分)(2018•凉山州)如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B处有乙滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外币A处到达内壁B处的最短距离为 20 cm.
A′B的长度即为所求.
==20
七、解答题
27.(8分)(2018•凉山州)已知:如图,P是⊙O外一点,过点P引圆的切线PC(C为切点)和割线PAB,分别交⊙O于A、B,连接AC,BC.
(1)求证:∠PCA=∠PBC;
(2)利用(1)的结论,已知PA=3,PB=5,求PC的长.
=,
=
28.(12分)(2018•凉山州)如图①,在平面直角坐标中,点A的坐标为(1,﹣2),点B的坐标为(3,﹣1),二次函数y=﹣x2的图象为l1.
(1)平移抛物线l1,使平移后的抛物线经过点A,但不过点B.
①满足此条件的函数解析式有无数个.
②写出向下平移且经点A的解析式 y=﹣x2﹣1 .
(2)平移抛物线l1,使平移后的抛物线经过A,B两点,所得的抛物线l2,如图②,求抛物线l2的函数解析式及顶点C的坐标,并求△ABC的面积.
(3)在y轴上是否存在点P,使S△ABC=S△ABP?若存在,求出点P的坐标;若不存在,请说明理由.
根据题意得:,
解得:
+,
则顶点C的坐标是(,﹣).
,,.
y=﹣
﹣),设点P的坐标为(0,h)
﹣
,得﹣).
②当点P位于点G的上方时,PG=+h,同理h=﹣,点PP的坐标为(0,﹣
).
,﹣)。