牛顿第二定律的综合应用

合集下载

牛顿第二定律应用方法

牛顿第二定律应用方法
方法一: 方法一: 整体法和隔离法的应用 1、如图,光滑水平地面上有两个木块 、B,质量分 、如图,光滑水平地面上有两个木块A、 , 别为M和 ,在水平推力F作用下 作用下, 别为 和m,在水平推力 作用下,求AB间的相互作用 间的相互作用 力。 若地面不光滑呢? 若地面不光滑呢? A B N 的大小与 无关 的大小与µ无关 变形:、如图所示,置于水平面上的相同材料的m和 变形 、如图所示,置于水平面上的相同材料的 和M 用轻绳连接, 上施一水平力F(恒力 用轻绳连接 , 在 M上施一水平力 恒力 使两物体作 上施一水平力 恒力)使两物体作 匀加速直线运动,对两物体间细绳拉力正确的说法是: 匀加速直线运动,对两物体间细绳拉力正确的说法是: ( A B ) (A)水平面光滑时,绳拉力等于 水平面光滑时, 水平面光滑时 绳拉力等于mF/(M+m); + ; (B)水平面不光滑时,绳拉力等于 F/(M+m); 水平面不光滑时, 水平面不光滑时 绳拉力等于m + ; (C)水平面不光滑时,绳拉力大于 水平面不光滑时, 水平面不光滑时 绳拉力大于mF/(M+m); + ; (D)水平面不光滑时,绳拉力小于 水平面不光滑时, 水平面不光滑时 绳拉力小于mF/(M+m)。 + 。 F m M
练习、如图,将质量为 的物体分置于质量为M的 练习、如图,将质量为m1、m2的物体分置于质量为 的 物体的两侧,均处于平衡状态, , 物体的两侧,均处于平衡状态,m1>m2,α < β,下 述说法正确的是( 述说法正确的是( ACD) m2 m1 A)m1对M的正压力一定大于 2对M的正压力 ) 的正压力一定大于m 的正压力 的正压力一定大于 M β α B)m1对M的摩擦力一定大于 2对M的摩擦力 的摩擦力一定大于m ) 的摩擦力一定大于 的摩擦力 C)水平地面对 的支持力一定等于 的支持力一定等于(M+m1+m2)g )水平地面对M的支持力一定等于 D)水平地面对 的摩擦力一定等于零 )水平地面对M的摩擦力一定等于零 变式:如图所示 一质量为M的楔形木块放在水平桌面 如图所示, 变式 如图所示,一质量为 的楔形木块放在水平桌面 它的顶角为90 两底角为α和 ; 、 为两个位于 上,它的顶角为 o,两底角为 和β;a、b为两个位于 斜面上质量均为m的小木块 的小木块。 斜面上质量均为 的小木块。已知所有接触面都是光滑 现发现a、 沿斜面下滑 而楔形木块静止不动, 沿斜面下滑, 的。现发现 、b沿斜面下滑,而楔形木块静止不动,这 时楔形木块对水平桌面的压力等于: 时楔形木块对水平桌面的压力等于: A A.Mg+mg; B.Mg+2mg; A. ; . ; C.Mg+mg(sinα+sinβ) . ( ) D.Mg+mg(cosα+cosβ) . )

牛顿第二定律的综合应用(解析版)-高中物理

牛顿第二定律的综合应用(解析版)-高中物理

牛顿第二定律的综合应用1.高考真题考点分布题型考点考查考题统计计算题动力学两类基本问题2022年浙江卷选择题连接体问题2024年全国甲卷计算题传送带模型2024年湖北卷选择题、计算题板块模型2024年高考新课标卷、辽宁卷2.命题规律及备考策略【命题规律】高考对动力学两类基本问题、连接体问题、传送带和板块模型考查的非常频繁,有基础性的选题也有难度稍大的计算题。

【备考策略】1.利用牛顿第二定律处理动力学两类基本问题。

2.利用牛顿第二定律通过整体法和隔离法处理连接体问题。

3.利用牛顿第二定律处理传送带问题。

4.利用牛顿第二定律处理板块模型。

【命题预测】重点关注牛顿第二定律在两类基本问题、连接体、传送带和板块模型中的应用。

一、动力学两类基本问题1.已知物体的受力情况求运动情况;2.已知物体的运动情况求受力情况。

二、连接体问题多个相互关联的物体由细绳、细杆或弹簧等连接或叠放在一起,构成的系统称为连接体。

(1)弹簧连接体:在弹簧发生形变的过程中,两端连接体的速度不一定相等;在弹簧形变最大时,两端连接体的速率相等。

(2)物物叠放连接体:相对静止时有相同的加速度,相对运动时根据受力特点结合运动情景分析。

(3)轻绳(杆)连接体:轻绳在伸直状态下,两端的连接体沿绳方向的速度总是相等,轻杆平动时,连接体具有相同的平动速度。

三、传送带模型1.模型特点传送带问题的实质是相对运动问题,这样的相对运动将直接影响摩擦力的方向。

2.解题关键(1)理清物体与传送带间的相对运动方向及摩擦力方向是解决传送带问题的关键。

(2)传送带问题还常常涉及临界问题,即物体与传送带达到相同速度,这时会出现摩擦力改变的临界状态,对这一临界状态进行分析往往是解题的突破口。

四、板块模型1.模型特点:滑块(视为质点)置于木板上,滑块和木板均相对地面运动,且滑块和木板在摩擦力的相互作用下发生相对滑动。

2.位移关系:如图所示,滑块由木板一端运动到另一端的过程中,滑块和木板同向运动时,位移之差Δx=x1 -x2=L(板长);滑块和木板反向运动时,位移之和Δx=x2+x1=L。

§4.4-4.5牛顿第二定律及应用

§4.4-4.5牛顿第二定律及应用
m
牛顿第二定律
牛顿第二定律的数学表达式
a∝F ma NhomakorabeaF = k m
F k = ma
F = kma
F = ma
质量为1kg的物体,获得1 质量为1kg的物体,获得1m/s2的加 的物体 s 速度时,受到的合外力为1N,k=1. 速度时,受到的合外力为1N,
k = 1
牛顿第二定律的理解
同体性: 同体性: 公式中F、m、a F、m、a必须是同一研究对象 公式中F、m、a必须是同一研究对象 • 正比性: 正比性: a与合外力 成正比,与质量 成反比 与合外力F成正比 与合外力 成正比,与质量m成反比 • 矢量性: 矢量性: a与合外力 的方向始终相同 与合外力F的方向始终相同 与合外力 • 瞬时性: 瞬时性: a和合外力 是瞬时对应关系,某一时刻的力 和合外力F是瞬时对应关系 和合外力 是瞬时对应关系, 决定了这一时刻的加速度,如合外力F随时间 决定了这一时刻的加速度,如合外力 随时间 变化, 也随时间变化 只有合外力F恒定时 也随时间变化, 恒定时, 变化,a也随时间变化,只有合外力 恒定时, a才恒定,物体才做匀变速运动。 才恒定, 才恒定 物体才做匀变速运动。 •
N a f G s
分析:汽车受到 个力 分析 汽车受到3个力 合外 汽车受到 个力.合外 力为f.需列出方程组求解 力为 需列出方程组求解 汽车的初速度. 汽车的初速度
此处符号为 “例2解 减”号还是 “负”号? • 解:以初速度方向为正(默认 可不写) 以初速度方向为正 默认,可不写 默认 可不写 N − mg = 0 解之得 因此 f = µN = µmg v0 = 2µgs = 2 × 0.6 ×10 ×12 = 12m / s v0=12m/s=43.2km/h>40km/h 牛二 − f = ma 2 2 超速 又 vt − v0 = 2as N a f G s +

牛顿运动定律的综合应用(解析版)

牛顿运动定律的综合应用(解析版)

牛顿运动定律的综合应用题型一动力学的连接体问题和临界问题【解题指导】整体法、隔离法交替运用的原则:若连接体内各物体具有相同的加速度,且要求物体之间的作用力,可以先用整体法求出加速度,然后再用隔离法选取合适的研究对象,应用牛顿第二定律求作用力.即“先整体求加速度,后隔离求内力”.1(2023上·安徽亳州·高三蒙城第一中学校联考期中)中沙“蓝剑一2023”海军特战联训于10月9日在海军某部营区开训。

如图所示,六位特战队员在进行特战直升机悬吊撤离课目训练。

若质量为M的直升机竖直向上匀加速运动时,其下方悬绳拉力为F,每位特战队员的质量均为m,所受空气阻力是重力的k倍,不计绳的质量,重力加速度为g,则()A.队员的加速度大小为F6m-gB.上面第二位队员和第三位队员间绳的拉力大小13FC.队员的加速度大小为F6m-kgD.上面第二位队员和第三位队员间绳的拉力大小23F【答案】D【详解】以六位特战队员为研究对象F-6k+1mg=6ma设第二位队员和第三位队员间绳的拉力为T,以下面的4名特战队员为研究对象T-4k+1mg=4ma解上式得T=23F,a=F6m-k+1g故选D。

2(2024·辽宁·模拟预测)如图所示,质量均为m的A、B两物体叠放在竖直弹簧上并保持静止,用大小等于mg的恒力F向上拉B,运动距离h时,B与A分离,下列说法正确的是()A.B 和A 刚分离时,弹簧长度等于原长B.B 和A 刚分离时,它们的加速度为gC.弹簧的劲度系数等于mghD.在B 和A 分离前,它们做加速度增大的加速直线运动【答案】C【详解】AB .在施加外力F 前,对A 、B 整体受力分析,可得2mg =kx 1A 、B 两物体分离时,A 、B 间弹力为零,此时B 物体所受合力F 合=F -mg =0即受力平衡,则两物体的加速度恰好为零,可知此时弹簧弹力大小等于A 受到重力大小,弹簧处于压缩状态,故AB 错误;C .B 与A 分离时,对物体A 有mg =kx 2由于x 1-x 2=h所以弹簧的劲度系数为k =mgh故C 正确;D .在B 与A 分离之前,由牛顿第二定律知a =F +kx -2mg 2m =F +kx 2m-g在B 与A 分离之前,由于弹簧弹力一直大于mg 且在减小,故加速度向上逐渐减小,所以它们向上做加速度减小的加速直线运动,故D 错误。

(完整版)牛顿第二定律的综合应用专题

(完整版)牛顿第二定律的综合应用专题

图1牛顿第二定律的应用第一类:由物体的受力情况确定物体的运动情况1. 如图1所示,一个质量为m=20kg 的物块,在F=60N 的水平拉力作用下,从静止开始沿水平地面向右做匀加速直线运动,物体与地面之间的动摩擦因数为0.10.( g=10m/s 2) (1)画出物块的受力示意图 (2)求物块运动的加速度的大小 (3)物体在t =2.0s 时速度v 的大小. (4)求物块速度达到s m v /0.6=时移动的距离2.如图,质量m=2kg 的物体静止在水平面上,物体与水平面间的滑动摩擦因数25.0=μ,现在对物体施加一个大小F=8N 、与水平方向夹角θ=37°角的斜向上的拉力.已知sin37°=0.6,cos37°=0.8,取g=10m/s 2,求(1)画出物体的受力示意图 (2)物体运动的加速度(3)物体在拉力作用下5s 内通过的位移大小。

〖方法归纳:〗〖自主练习:〗1.一辆总质量是4.0×103kg 的满载汽车,从静止出发,沿路面行驶,汽车的牵引力是6.0×103N ,受到的阻力为车重的0.1倍。

求汽车运动的加速度和20秒末的速度各是多大? ( g=10m/s 2)2.如图所示,一位滑雪者在一段水平雪地上滑雪。

已知滑雪者与其全部装备的总质量m = 80kg ,滑雪板与雪地之间的动摩擦因数μ=0.05。

从某时刻起滑雪者收起雪杖自由滑行,此时滑雪者的速度v = 5m/s ,之后做匀减速直线运动。

求:( g=10m/s 2)(1)滑雪者做匀减速直线运动的加速度大小; (2)收起雪杖后继续滑行的最大距离。

3.如图,质量m=2kg 的物体静止在水平面上,物体与水平面间的滑动摩擦因数25.0=μ,现在对物体施加一个大小F=8N 、与水平方向夹角θ=37°角的斜下上的推力.已知sin37°=0.6,cos37°=0.8,取g=10m/s 2, 求(1)物体运动的加速度(2)物体在拉力作用下5s 内通过的位移大小。

牛顿第二定律的推广及其应用

牛顿第二定律的推广及其应用

牛顿第二定律的推广及其应用
牛顿第二定律是物理力学和运动学中应用最广泛的定律,其原文是:「一个物体受到的外力的矢量积分等于该物体的质量乘以其加速度的
矢量。

」牛顿第二定律推广可以定义为:受到外力的物体发生变化的
动量等于外力施加到该物体上的力矢量乘以物体质量。

牛顿第二定律在物理学、航空学、工程学和航天学等学科中都有广泛
的应用。

例如,在航天工程中,火箭发射阶段,发动机的推力由牛顿
第二定律确定,牛顿第二定律也可以用来计算抛物体的速度和变化,
这也是宇宙飞船的轨道发射原理。

此外,在机械制造中,如果要计算
旋转机械的力矩,就必须使用牛顿第二定律。

另外,特定材料的研究
所使用的泊松方程是由牛顿第二定律推广而来的。

第四讲牛顿第二定律的综合应用(原卷版)

第四讲牛顿第二定律的综合应用考点一、连接体问题1.连接体多个相互关联的物体连接(叠放、并排或由绳子、细杆、弹簧等联系)在一起构成的系统称为连接体。

连接体一般(含弹簧的系统,系统稳定时)具有相同的运动情况(速度、加速度).2.常见的连接体(1)物物叠放连接体:两物体通过弹力、摩擦力作用,具有相同的速度和加速度速度、加速度相同(2)轻绳连接体:轻绳在伸直状态下,两端的连接体沿绳方向的速度大小总是相等.速度、加速度相同速度、加速度大小相等,方向不同(3)轻杆连接体:轻杆平动时,连接体具有相同的平动速度.速度、加速度相同(4)弹簧连接体:在弹簧发生形变的过程中,两端连接体的速度、加速度不一定相等;在弹簧形变最大时,两端连接体的速度、加速度相等.3.整体法与隔离法在连接体中的应用(1)整体法当连接体内(即系统内)各物体的加速度大小相同时,可以把系统内的所有物体看成一个整体,分析其受力和运动情况,对整体列方程求解的方法。

(2)隔离法当求系统内物体间相互作用的内力时,常把某个物体从系统中隔离出来,分析其受力和运动情况,再对隔离出来的物体列方程求解的方法.例1、如图所示,水平面上有两个质量分别为m1和m2的木块1和2,中间用一条轻绳连接,两木块的材料相同,现用力F向右拉木块2,当两木块一起向右做匀加速直线运动时,已知重力加速度为g,下列说法正确的是()A.若水平面是光滑的,则m2越大绳的拉力越大B.若木块和地面间的动摩擦因数为μ,则绳的拉力为m1Fm1+m2+μm1gC.绳的拉力大小与水平面是否粗糙无关D.绳的拉力大小与水平面是否粗糙有关L例2、(多选)(2020·高考海南卷,T12)如图,在倾角为θ的光滑斜面上,有两个物块P和Q,质量分别为m1和m2,用与斜面平行的轻质弹簧相连接,在沿斜面向上的恒力F作用下,两物块一起向上做匀加速直线运动,则()A.两物块一起运动的加速度大小为a=Fm1+m2B.弹簧的弹力大小为T=m2m1+m2FC.若只增大m2,两物块一起向上匀加速运动时,它们的间距变大D.若只增大θ,两物块一起向上匀加速运动时,它们的间距变大例3、(2020·高考江苏卷,T5)中欧班列在欧亚大陆开辟了“生命之路”,为国际抗疫贡献了中国力量。

牛顿第二定律基本应用


选向上为正方向,速度的改变量Δv=v2-(-v1)= 18 m/s(向上).③ 用a表示加速度,Δt表示接触时间,则Δv=aΔt.④
接触过程中运动员受到向上的弹力F和向下的重力mg ,由牛顿第二定律得F-mg=ma⑤
由以上五式解得 F=1.5×103 N.
7.(2010年浙江理综,14)如图所示,A、B两物体叠 放在一起,以相同的初速度上抛(不计空气阻力).下 列说法正确的是( )
先将运动 先自由落体,后触网 【思路点拨】 过程分段 ―→ 上、下,再竖直上抛
―→
由运动学公式 求出加速度
―→
受力分析,应用 牛顿定律求力
【解析】 (1)将运动员看作质量为 m 的质点,从 h1 高处下落,刚 接触网时的速度大小
v1= 2gh1=8 m/s(向下)① 弹跳后到达的高度为 h2,则离网时的速度大小 v2= 2gh2=10 m/s(向上)②
A.加速上升 B.减速上升 C.匀速下降 D.减速下降
1、关于物体的加速度与受力情况的关系,下
列说法正确的是:( BCD)
A、物体不受力时,加速度也可能改变。
B、物体受力变化时,加速度才会改变。 C、物体受力不变时,加速度也不变。 D、物体不受力时,加速度等于零。
2、下列说法正确的是: ( D)
答案:A
8.(2010年山东理综,16)如图甲所示,物体沿斜面 由静止滑下,在水平面上滑行一段距离后停止,物
体与斜面和水平面间的动摩擦因数相同,斜面与水 平面平滑连接.图乙中v、a、f和s分别表示物体速 度大小、加速度大小、摩擦力大小和路程.图乙中 正确的是( )
解析:物体在斜面上受重力、支持力、摩擦力作用, 其摩擦力大小为f1=μmgcos θ,做初速度为零的匀加 速直线运动,其v t图象为过原点的倾斜直线,A错 ,加速度大小不变,B错,其s t图象应为一段曲线 ,D错;物体到达水平面后,所受摩探力f2=μmg>f1 ,做匀减速直线运动,所以正确选项为C.

牛顿第二定律及其应用


THANKS
感谢观看
弹性体动力学问题分类
根据弹性体所受外力和约束的性质,以及弹性体的材料和 结构特点,可以ห้องสมุดไป่ตู้弹性体动力学问题分为自由振动、受迫 振动、冲击和碰撞等类型。
04
牛顿第二定律在振动和波 动中应用
简谐振动中牛顿第二定律应用
恢复力
在简谐振动中,物体受到的力总是指向平衡位置,这个力被称为恢复力。根据 牛顿第二定律,恢复力的大小与物体的加速度成正比,方向相反。
刚体动力学问题分类
根据刚体所受外力和约束的性质,可以将刚体动力学问题分为自由 刚体、受约束刚体和受迫振动刚体等类型。
弹性体动力学问题求解
弹性体运动方程建立
根据牛顿第二定律和弹性力学理论,建立弹性体的运动方 程,包括平衡方程、几何方程和物理方程。
弹性体运动状态分析
通过求解弹性体的运动方程,可以得到弹性体的变形和应 力分布状态,以及弹性体的振动和波动等动态特性。
位移与时间关系
位移随时间变化的关系可 以通过对速度进行时间积 分得到。
初始条件
在求解运动学问题时,需 要给出初始时刻的速度和 位移作为边界条件。
运动学方程建立与求解
运动学方程
根据牛顿第二定律和初始 条件,可以建立物体的运 动学方程。
方程求解
通过数学方法求解运动学 方程,可以得到物体在任 意时刻的速度、位移等运 动学量。
行分析。
热力学过程中物质状态变化规律
热膨胀
物体在受热时,其体积会发生变化。热膨胀现象可以通过牛顿第二定律进行解释,即物 体受热后,其内部粒子运动加剧,导致物体体积膨胀。
热传导
热量在物体内部或物体间传递的过程。热传导过程中,热量的传递速度与物体的热导率 、温差等因素有关,可以通过牛顿第二定律进行分析。

牛顿第二定律及其应用

牛顿第二定律及其应用牛顿第二定律是经典力学中的基本定律之一,它描述了物体受力后的运动状态。

牛顿第二定律的表述为:物体所受的合力等于质量乘以加速度。

这个简单而又重要的定律,不仅仅是物理学家们研究物体运动的基础,也在日常生活中有着广泛的应用。

首先,让我们来深入探讨牛顿第二定律的含义。

根据定律的表述,我们可以得出一个重要的结论:物体的加速度与它所受的力成正比,与物体的质量成反比。

换句话说,如果一个物体所受的力越大,它的加速度就越大;而如果一个物体的质量越大,它的加速度就越小。

这个结论可以用一个简单的公式来表示:F = ma,其中F表示物体所受的力,m表示物体的质量,a表示物体的加速度。

牛顿第二定律的应用非常广泛。

首先,它可以用来解释物体的运动。

当一个物体受到外力作用时,根据牛顿第二定律,我们可以计算出物体的加速度,进而推导出物体的速度和位移。

这个过程在工程学中非常重要,例如在设计汽车引擎时,我们需要根据牛顿第二定律来确定引擎的输出功率,以及汽车的加速性能。

其次,牛顿第二定律还可以应用于力学系统的分析。

力学系统是由多个物体组成的,它们之间通过力相互作用。

牛顿第二定律可以帮助我们理解力在系统中的传递和转化。

例如,在弹簧振子系统中,我们可以通过牛顿第二定律来推导出振子的运动方程,从而研究振动的特性和稳定性。

此外,牛顿第二定律还可以应用于力学问题的求解。

在实际问题中,我们常常需要求解物体所受的力或者物体的质量。

通过牛顿第二定律,我们可以通过已知的加速度和力来计算出物体的质量,或者通过已知的质量和加速度来计算出物体所受的力。

这种求解方法在工程计算和实验测量中非常有用。

总之,牛顿第二定律是力学中的基础定律,它描述了物体受力后的运动状态。

通过牛顿第二定律,我们可以解释物体的运动,分析力学系统,以及求解力学问题。

牛顿第二定律的应用广泛而且实用,它不仅仅是物理学家们研究物体运动的工具,也在工程学和日常生活中发挥着重要的作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.完全失重 (1)定义:物体对支持物的压力(或对竖直悬挂物的拉力) 等于零 的现象称为完全失重现象。 (2)产生条件:物体的加速度a= g ,方向竖直向下。
强基固本 考点突破
知识点二、动力学的两类基本问题 1.已知受力情况求物体的 运动情况 。 2.已知运动情况求物体的 受力情况 。
强基固本 考点突破
水平面上运动的v-t图象如图1所示。已知重力加速度为
g,则根据图象不能求出的物理量是
()
A.木块的位移
图1
B.木块的加速度
C.木块所受摩擦力
D.木块与桌面间的动摩擦因数
强基固本 考点突破
解析 位移可由图象与时间轴所围的面积求出,由v-t图线 的斜率可求出加速度a,由牛顿第二定律知,a=μg,故动摩 擦因数μ也可求出,由于不知木块的质量,故不能求出木块 所受摩擦力。 答案 C
速直线运动,它在 t s 内的位移为 x m,则 F 的大小为(单位
为 N)
()
2x 2x
2x
2x
A. t2 B.2t-1 C.2t+1 D.t-1
解析 由牛顿第二定律 F=ma 与 x=12at2, 得出 F=2mt2x=2t2x。 答案 A
强基固本 考点突破
4.一个木块以某一水平初速度自由滑上粗糙的水平面,在
2.下列关于超重和失重的说法正确的是
()
A.游泳高手可以静躺在水面上,那时的人处于完全失重
状态
B.跳水运动员在入水前处于失重状态,入水后短时间内
处于超重状态
C.飞船利用火箭发射后,上升过程中处于超重状态,返
回地面过程中处于失重状态
D.给物块一个初速度沿斜面上滑,上滑的过程中物块处
于超重状态,到最高点后下滑,下滑的过程中物块处于
簧处于伸长状态且物块与箱底间有压力。若
在某段时间内,物块对箱底刚好无压力,则 图2
强基固本 考点突破
【例1】 (2014·北京卷,18)应用物理知识分析生活中的常见 现象,可以使物理学习更加有趣和深入。例如平伸手掌托 起物体,由静止开始竖直向上运动,直至将物体抛出。对 此现象分析正确的有 () A.手托物体向上运动的过程中,物体始终处于超重状态 B.手托物体向上运动的过程中,物体始终处于失重状态 C.在物体离开手的瞬间,物体的加速度大于重力加速度 D.在物体离开手的瞬间,手的加速度大于重力加速度
强基固本 考点突破
判断超重和失重现象的方法 物体处于超重状态,还是失重状态,取决于加速度的方向, 而不是速度的方向。只要加速度有竖直向上的分量,物体就 处于超重状态;只要加速度有竖直向下的分量,物体就处于 失重状态。
强基固本 考点突破
【变式训练】
1.(多选)如图2所示,木箱顶端固定一竖直放置 的弹簧,弹簧下方有一物块,木箱静止时弹
失重状态
强基固本 考点突破
解析 物体有向上的加速度处于超重状态,有向下的加速度 处于失重状态,A项错误;飞船返回地面时有向上的加速度, 处于超重状态,C项错误;物块上滑的过程有向下的加速度, 物块处于失重状态,D错误。 答案 B
强基固本 考点突破
题组二 动力学两类基本问题
3.质量为 1 kg 的质点,受水平恒力作用,由静止开始做匀加
强基固本 考点突破
5.质量为1吨的汽车在平直公路上以10 m/s的速度匀速行驶, 阻力大小不变。从某时刻开始,汽车牵引力减少2 000 N, 那么从该时刻起经过6 s,汽车行驶的路程是 () A.50 m B.42 m C.25 m D.24 m
强基固本 考点突破
解析 汽车匀速运动时 F 牵=Ff,当牵引力减小 2 000 N 时,即
强基固本 考点突破
解析 手托物体抛出的过程,必有一段加速过程,其后可以 减速,可以匀速,当手和物体匀速运动时,物体既不超重也 不失重;当手和物体减速运动时,物体处于失重状态,选项 A错误;物体从静止到运动,必有一段加速过程,此过程物 体处于超重状态,选项B错误;当物体离开手的瞬间,物体 只受重力,此时物体的加速度等于重力加速度,选项C错误; 手和物体分离之前速度相同,分离之后手速度的变化量比物 体速度的变化量大,物体离开手的瞬间,手的加速度大于重 力加速度,所以选项D正确。 答案 D
汽车所受合力的大小为 F=2 000 N

由牛顿第二定律得/s2
汽车减速到停止所需时间 t=va=5 s 汽车行驶的路程 x=12vt=25 m
答案 C
强基固本 考点突破
考点一 超重、失重现象 超重、失重现象的实质是物体的实重与视重相比发生了变 化:视重比实重大了,物体处于超重状态;视重比实重小 了,物体处于失重状态。在超重、失重现象中物体的重力 并没有发生变化。
D.物体处于超重或失重状态时,物体的重力始终存在且不
发生变化
强基固本 考点突破
解析 物体具有向上的加速度时处于超重状态,具有向下的 加速度时处于失重状态,超重和失重并非物体的重力发生变 化,而是物体对支持物的压力或对悬挂物的拉力发生了变化, 综上所述,A、B、C均错,D正确。 答案 D
强基固本 考点突破
思维深化
判断正误,正确的画“√”,错误的画“×”。
(1)超重时物体的重力大于mg。
()
(2)失重时物体的重力小于mg。
()
(3)物体处于完全失重状态时,重力消失。
()
(4)物体处于超重或失重状态,由加速度的方向决定,与速度
方向无关。
()
答案 (1)× (2)× (3)× (4)√
强基固本 考点突破
[题 组 自 测] 题组一 超重、失重的理解
1.关于超重和失重的下列说法中,正确的是
()
A.超重就是物体所受的重力增大了,失重就是物体所受的 重力减小了
B.物体做自由落体运动时处于完全失重状态,所以做自由
落体运动的物体不受重力作用
C.物体具有向上的速度时处于超重状态,物体具有向下的 速度时处于失重状态
第3课时 牛顿第二定律的综合应用
强基固本 考点突破
[知 识 梳 理] 知识点一、超重和失重 1.超重
(1)定义:物体对支持物的压力(或对悬挂物的拉力) 大于 物体所受重力的现象。
(2)产生条件:物体具有 向上 的加速度。
强基固本 考点突破
2.失重 (1)定义:物体对支持物的压力(或对悬挂物的拉力) 小于 物体所受重力的现象。 (2)产生条件:物体具有 向下 的加速度。
相关文档
最新文档