初中函数练习包括一次函数二次函数反比例函数练习含答案

合集下载

一次函数、二次函数、反比例函数专题练习与答案

一次函数、二次函数、反比例函数专题练习与答案

一次函数、二次函数、反比例函数专题练习考点一:选择、填空压轴题设计意图:根据近四年福建省中考数学的压轴题特点,主要是考查与函数相关的知识点及其综合运用,通过例题的重现,让体会以函数为背景的选择、填空题的压轴题知识点的呈现方式及破题技巧。

∆,使1,如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰直角ABC∠90BAC,设点B的横坐标为x,点C的纵坐标为y,能表示y与x的函数关系的图象大致是=︒A B C D【分析】本题考查了动态和函数问题,解题的关键是要能在动态问题中寻求等量关系.要表示y与x之间函数关系图象就要先表示出。

【点评】本题将几何图形中的动态问题与一次函数结合在一起考察,属于综合题,难度适中.解答本题的关键是理解x与y所表示实际意义,并能根据已知条件表示出y与x之间的函数关系式,进而根据根据函数的性质来判断图象的形状,并能正确分析自变量的取值范围。

解决此类题型常用的方法是:以静制动,寻求等量关系,利用全等三角形、相似三角形等知识列出函数关系式。

.2,如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A.B分别在x轴、y轴的正半轴上,∠ABC =90°,CA⊥x轴,点C在函数y=(x>0)的图象上,若AB=1,则k的值为()A.1B.C.D.2【分析】根据题意可以求得OA和AC的长,从而可以求得点C的坐标,进而求得k的值,本题得以解决.【点评】本题考查反比例函数图象上点的坐标特征、等腰直角三角形,解答本题的关键是明确题意,利用数形结合的思想解答.3,如图所示,在直角平面坐标系Oxy中,点A.B.C为反比例函数y=(k>0)上不同的三点,连接O A.O B.OC,过点A作AD⊥y轴于点D,过点B.C分别作BE,CF垂直x轴于点E.F,OC与BE相交于点M,记△AO D.△BOM、四边形CMEF的面积分别为S1.S2.S3,则()A.S1=S2+S3B.S2=S3C.S3>S2>S1D.S1S2<S32【分析】根据反比例函数系数k的几何意义得到S1=S2,S1<S3,S2<S3,用排除法即可得到结论.【点评】本题考查了反比例函数系数k的几何意义,反比例函数的性质,正确的识别图形是解题的关键.4,如图,在平面直角坐标中,一次函数y=﹣4x+4的图象与x轴、y轴分别交于A.B两点.正方形ABCD的顶点C.D在第一象限,顶点D在反比例函数y=(k≠0)的图象上.若正方形ABCD向左平移n个单位后,顶点C恰好落在反比例函数的图象上,则n的值是.【分析】过点D作DE⊥x轴过点C作CF⊥y轴,可证△ABO≌△DAE(AAS),△CBF≌△BAO(AAS),则可求D(5,1),C(4,5),确定函数解析式y=,C向左移动n个单位后为(4﹣n,5),进而求n的值;【点评】本题考查反比例函数的图象及性质,正方形的性质;熟练掌握反比例函数解析式的求法,灵活运用正方形的性质是解题的关键.5,如图,平面直角坐标系中,A(﹣8,0),B(﹣8,4),C(0,4),反比例函数y=的图象分别与线段AB,BC交于点D,E,连接DE.若点B关于DE的对称点恰好在OA上,则k=()A.﹣20B.﹣16C.﹣12D.﹣8【分析】根据A(﹣8,0),B(﹣8,4),C(0,4),可得矩形的长和宽,易知点D的横坐标,E的纵坐标,由反比例函数的关系式,可用含有k的代数式表示另外一个坐标,由三角形相似和对称,可用求出AF的长,然后把问题转化到三角形ADF中,由勾股定理建立方程求出k的值.【点评】此题综合利用轴对称的性质,相似三角形的性质,勾股定理以及反比例函数的图象和性质等知识,发现BD与BE的比是1:2是解题的关键.6,如图,在平面直角坐标系中,菱形OABC的边OA在x轴的正半轴上,反比例函数y=(x>0)的图象经过对角线OB的中点D和顶点C.若菱形OABC的面积为12,则k的值为()A.6B.5C.4D.3【分析】根据题意,可以设出点C和点A的坐标,然后利用反比例函数的性质和菱形的性质即可求得k 的值,本题得以解决.【点评】本题考查反比例函数系数k的几何意义、反比例函数的性质、菱形的性质、反比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用数形结合的思想解答.7,如图,点A的坐标是(﹣2,0),点B的坐标是(0,6),C为OB的中点,将△ABC绕点B逆时针旋转90°后得到△A′B′C′.若反比例函数y=的图象恰好经过A′B的中点D,则k的值是()A.9B.12C.15【分析】作A′H⊥y轴于H.证明△AOB≌△BHA′(AAS),推出OA=BH,OB=A′H,求出点A′坐标,再利用中点坐标公式求出点D坐标即可解决问题.【点评】本题考查反比例函数图形上的点的坐标特征,坐标与图形的变化﹣旋转等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题.8,如图,函数y=(k为常数,k>0)的图象与过原点的O的直线相交于A,B两点,点M是第一象限内双曲线上的动点(点M在点A的左侧),直线AM分别交x轴,y轴于C,D两点,连接BM分别交x轴,y轴于点E,F.现有以下四个结论:①△ODM与△OCA的面积相等;②若BM⊥AM于点M,则∠MBA=30°;③若M点的横坐标为1,△OAM为等边三角形,则k=2+;④若MF=MB,则MD=2M A.其中正确的结论的序号是.(只填序号)【分析】①设点A(m,),M(n,),构建一次函数求出C,D坐标,利用三角形的面积公式计算即可判断.②△OMA不一定是等边三角形,故结论不一定成立.③设M(1,k),由△OAM为等边三角形,推出OA=OM=AM,可得1+k2=m2+,推出m=k,根据OM=AM,构建方程求出k即可判断.④如图,作MK∥OD交OA于K.利用平行线分线段成比例定理解决问题即可.【点评】本题考查反比例函数与一次函数的交点问题,三角形的面积,平行线分线段成比例定理等知识,解题的关键是学会利用参数解决问题,学会构造平行线,利用平行线分线段成比例定理解决问题,属于中考填空题中的压轴题.9,如图,双曲线y=(x>0)经过矩形OABC的顶点B,双曲线y=(x>0)交AB,BC于点E.F,且与矩形的对角线OB交于点D,连接EF.若OD:OB=2:3,则△BEF的面积为.【分析】设D(2m,2n),根据题意A(3m,0),C(0,3n),B(3m,3n),即可得出9=3m•3n,k=2m•2n=4mn,解得mn=1,由E(3m,n),F(m,3n),求得BE.BF,然后根据三角形面积公式=BE•BF=mn=.得到S△BEF【点评】本题考查了反比例系数k的几何意义和反比例函数图象上点的坐标特征、三角形面积等,表示出各个点的坐标是解题的关键.10,如图,过原点的直线与反比例函数y=(k>0)的图象交于A,B两点,点A在第一象限.点C在x轴正半轴上,连结AC交反比例函数图象于点D.AE为∠BAC的平分线,过点B作AE的垂线,垂足为E,连结DE.若AC=3DC,△ADE的面积为8,则k的值为.【分析】连接O,CE,过点A作AF⊥x轴,过点D作DH⊥x轴,过点D作DG⊥AF;由AB经过原点,则A与B关于原点对称,再由BE⊥AE,AE为∠BAC的平分线,可得AD∥OE,进而可得S△ACE=S△AOC;设点A(m,),由已知条件AC=3DC,DH∥AF,可得3DH =AF,则点D(3m,),证明△DHC∽△AGD,得到S△HDC=S△ADG,所以S△AOC=S△AOF+S梯形AFHD+S△HDC=k++=12;即可求解;【点评】本题考查反比例函数k的意义;借助直角三角形和角平分线,将△ACE的面积转化为△AOC的面积是解题的关键.11,如图,点A1.A3.A5…在反比例函数y=(x>0)的图象上,点A2.A4.A6……在反比例函数y=(x>0)的图象上,∠OA1A2=∠A1A2A3=∠A2A3A4=…=∠α=60°,且OA1=2,则A n(n为正整数)的纵坐标为.(用含n的式子表示)【分析】先证明△OA1E是等边三角形,求出A1的坐标,作高线A1D1,再证明△A2EF是等边三角形,作高线A2D2,设A2(x,﹣),根据OD2=2+=x,解方程可得等边三角形的边长和A2的纵坐标,同理依次得出结论,并总结规律:发现点A1.A3.A5…在x轴的上方,纵坐标为正数,点A2.A4.A6……在x轴的下方,纵坐标为负数,可以利用(﹣1)n+1来解决这个问题.【点评】本题考查了待定系数法求反比例函数解析式,等边三角形的性质和判定,直角三角形30度角的性质,勾股定理,反比例函数图象上点的坐标特征,并与方程相结合解决问题.考点二、图表解答题涉及函数的图表解答题主要考查两个方面的知识点:1、图象直观,从题目中所提供的图象把握有用信息;2、函数性质的综合运用。

九年级数学:反比例函数练习题(含解析)

九年级数学:反比例函数练习题(含解析)

九年级数学:反比例函数练习题(含解析)一、精心选一选1﹒下列函数中,y 是x 的反比例函数的为( )A.y =2x +1B.y =22xC.y =-15xD.y =x 2-2x 2﹒函数y =k 23kx 是反比例函数,则k 的值是( )A.-1B.2C.±2D.±2 3﹒若y 与x 成反比例,x 与z 成反比例,则y 是z 的( )A.正比例函数B.反比例函数C.一次函数D.二次函数4﹒一次函数y =-x +a -3(a 为常数)与反比例函数y =-4x的图象交于A 、B 两点,当A 、B 两点关于原点对称时,a 的值是( )A.0B.-3C.3D.45﹒反比例函数y =-2x的图象上有两点P 1(x 1,y 1),P 2(x 2,y 2),若x 1<0<x 2,则下列结论正确的是( )A.y 1<y 2<0B.y 1<0<y 2C.y 1>y 2>0D. y 1>0>y 26﹒如图,直线y =-x +3与y 轴交于点A ,与反比例函数y =k x(k ≠0)的图象交于点C ,过点C 作CB ⊥x 轴于点B ,AO =3BO ,则反比例函数的解析式为( )A.y =4xB.y =-4xC.y =2xD.y =-2x7﹒已知反比例函数y =kx的图象经过点P (-1,2),则这个函数的图象位于( )A.第二、三象限B.第一、三象限C.第三、四象限D.第二、四象限8﹒如果等腰三角形的底边长为x ,底边上的高为y ,它的面积为10时,则y 与x 的函数关系式为( ) A.y =10x B.y =5xC.y =20xD.y =20x9﹒已知变量y 与x 成反比例函数关系,当x =3时,y =-6,那么当y =3时,x 的值是( )A.6B.-6C.9D.-910. 某次实验中,测得两个变量v 与m 的对应数据如下表,则v 与m 之间的关系最接近下列函数中的是( )m 1 2 3 4 5 6 7v -6.10 -2.90 -2.01 -1.51 -1.19 -1.05 -0.86A.v =m 2-2B.v =-6mC.v =-3m -1D.v =-m二、细心填一填11.若函数y =(m +3)28m x -是反比例函数,则m =_______________. 12.若函数y =1m x-是反比例函数,则m 的取值范围是_______;当m =______时,y 是x 的反比例函数,且比例系数为3.13.若函数y =-kx +2k +2与y =k x(k ≠0)的图象有两个不同的交点,则k 的取值范围是_____. 14.如图,直线y =-x +b 与双曲线y =-1x(x <0)交于点A ,与x 轴交于点B ,则OA 2-OB 2=__________.(第14题图)15.一批零件300个,一个工人每小时做15个,用关系表示人数x 与完成任务所需时间y 之间的函数关系为_______________________.16.把一个长、宽、高分别为3cm ,2cm ,1cm 的长方形铜块铸成一个圆柱体铜块,则该圆柱体铜块的底面积S (cm 2)与高h (cm )之间的函数关系式为________________________. 三、解答题17.某服装厂承揽一项生产夏凉小衫1600件的任务,计划用t 天完成.(1)写出每天生产夏凉小衫w (件)与生产时间t (天)(t >4)之间的函数关系式; (2)由于气温提前升高,商家与服装厂商议调整计划,决定提前4天交货,那么服装厂每天要多做多少件夏凉小衫才能完成任务?18.某开发公司计划生产一批产品,需要加工后才能投放市场,已知甲厂每天可加工60件,8天便可完成任务.(1)这批产品的数量是________件;(2)若这批产品由乙厂加工,请写出乙厂每天加工件数M(件)与所需天数t(天)之间的函数表达式;(3)如果要求乙厂在5天内将所有产品加工完,那么乙厂每天至少加工多少件?19.已知y=y1+y2,y1与x2成正比例关系,y2与x成反比例关系,且当x=1时,y=3;当x=-1时,y=1.(1)求y与x之间的函数表达式;(2)当x=-12时,求y的值.20.反比例函数y=k(k≠0,x>0)的图象与直线y=3x相交于点C,过直线上点A(1,3)x作AB⊥x轴于点B,交反比例函数图于点D,且AB=3BD.(1)求k的值;(2)求点C的坐标;(3)在y轴上确定一点M,使点M到C、D两点距离之和d=MC+MD最小,求点M的坐标.21.某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y(微克/毫升)与服药时间x(小时)之间的函数关系如图所示(当4≤x≤10时,y与x成反比例).(1)根据图象分别求出血液中药物浓度上升和下降阶段y与x之间的函数关系;(2)问血液中药物浓度不低于4微克/毫升的持续时间多少小时?22.某商场出售一批进价为2元的贺卡,在营运过程中发现此商品的日销价为x(元)与销售量y(张)之间有如下关系:x/元 3 4 5 6y/张20 15 12 10(1)猜测并确定y与x的函数关系式;(2)当日销售单价为10元时,贺卡的日销售量是多少张?(3)设此卡的利润为W元,试求出W与x之间的函数关系式,若物价部门规定此卡的销售单价不能超过10元,试求出当日销售单价为多少元时,每天获得的利润最大,并求出最大利润.23.在平面直角坐标系中,我们不妨把纵坐标是横坐标的2倍的点称之为“理想点”,例如点(-2,-4),(1,2),(3,6)…都是“理想点”,显然这样的“理想点”有无数多个.(1)若点M(2,a)是反比例函数y=kx(k为常数,k≠0)图象上的“理想点”,求这个反比例函数的表达式;(2)函数y=3mx-1(m为常数,m≠0)的图象上存在“理想点”吗?若存在,请求出“理想点”的坐标;若不存在,请说明理由.21.5 反比例函数课时练习题(1)参考答案一、精心选一选1﹒下列函数中,y 是x 的反比例函数的为()A.y =2x +1B.y =22x C.y =-15xD.y =x 2-2x 解答:A.y =2x+1,y 是x 的一次函数,故A 不合题意;B.y =22x ,y 是x 2的反比例函数,故B 不合题意; C.y =-15x,y 是x 的反比例函数,故C 符合题意;D.y =x 2-2x ,y 是x 的二次函数,故D 不合题意, 故选:C. 2﹒函数y =k 23kx -是反比例函数,则k 的值是( )A.-1B.2C.±2D. 解答:∵y =k 23kx -是反比例函数,∴k 2-3=-1,且k ≠0, 解得:k , 故选:D.3﹒若y 与x 成反比例,x 与z 成反比例,则y 是z 的( )A.正比例函数B.反比例函数C.一次函数D.二次函数 解答:∵y 与x 成反比例,x 与z 成反比例, ∴设y =1k x①,x =k 2z ②, 把②代入①得:y =12k k z, 故y 与z 成反比例函数关系, 故选:B.4﹒一次函数y=-x+a-3(a 为常数)与反比例函数y=-4x的图象交于A、B两点,当A、B 两点关于原点对称时,a的值是()A.0B.-3C.3D.4【解答】设A(t,-4t),∵A、B两点关于原点对称,∴B(-t,4t),把A(t,-4t ),B(-t,4t),分别代入y=-x+a-3得:4343t att at⎧-=-+-⎪⎪⎨⎪=+-⎪⎩①②,①+②得:2a-6=0,则a=3,故选:C.5﹒反比例函数y=-2x的图象上有两点P1(x1,y1),P2(x2,y2),若x1<0<x2,则下列结论正确的是()A.y1<y2<0B.y1<0<y2C.y1>y2>0D. y1>0>y2【解答】∵反比例函数y=﹣2x中k=﹣2<0,∴此函数图象在二、四象限,∵x1<0<x2,∴A(x1,y1)在第二象限;点B(x2,y2)在第四象限,∴y1>0>y2,故选:D.6﹒如图,直线y=-x+3与y轴交于点A,与反比例函数y=kx(k≠0)的图象交于点C,过点C作CB⊥x轴于点B,AO=3BO,则反比例函数的解析式为()A.y=4x B.y=-4xC.y=2x D.y=-2x【解答】∵直线y=﹣x+3与y轴交于点A,∴A(0,3),即OA=3,∵AO=3BO,∴OB=1,∴点C的横坐标为﹣1,∵点C在直线y=﹣x+3上,∴点C(﹣1,4),把C(﹣1,4)代入y=kx得:k=-4,∴反比例函数的解析式为:y=-4x.故选:B.7﹒已知反比例函数y=kx的图象经过点P(-1,2),则这个函数的图象位于()A.第二、三象限B.第一、三象限C.第三、四象限D.第二、四象限【解答】∵反比例函数y=kx的图象经过点P(-1,2),∴k=-1×2=-2<0,∴反比例函数的图象分布在二、四象限,故选:D.8﹒如果等腰三角形的底边长为x,底边上的高为y,它的面积为10时,则y与x的函数关系式为()A.y=10xB.y=5xC.y=20xD.y=20x解答:根据题意,得:12xy=10,∴y=20x,故选:C.9﹒已知变量y与x成反比例函数关系,当x=3时,y=-6,那么当y=3时,x的值是()A.-6B. 6C.-9D.9解答:设y=kx,把x=3,y=-6代入得:k=-18,∴y=18x,∴当x=3时,y=-6,故选:A.10. 某次实验中,测得两个变量v 与m 的对应数据如下表,则v 与m 之间的关系最接近下列函数中的是( )A.v =m 2-2B.v =-6mC.v =-3m -1D.v =-m解答:将m 的值代入各选项的函数关系式中,看v 的值是否与表中数据相近,若相近,则为正确的解析式,如把m =1代入各式:A.v =-1;B.v =-6;C.v =-4;D.v =-6.再把m =2代入各式:A.v =2;B.v =-12;C.v =-7;D.v =-3.由此可发现D 选项的值与表中数据相近,故D 选项符合题意, 故选:D. 二、细心填一填11. 3; 12. m ≠1,4; 13. y =6x; 14. 2; 15. y =20x ; 16. S =6h. 11.若函数y =(m +3)28m x -是反比例函数,则m =_______________. 解答:∵函数y =(m +3)28m x-是反比例函数,∴8-m 2=-1,且m +3≠0, ∴m =3, 故答案为:3. 12.若函数y =1m x-是反比例函数,则m 的取值范围是_______;当m =______时,y 是x 的反比例函数,且比例系数为3. 解答:∵函数y =1m x-是反比例函数, ∴m -1≠0,则m ≠1, 由m -1=3得:m =4, 故答案为:m ≠1,4.13.若函数y =-kx +2k +2与y =kx(k ≠0)的图象有两个不同的交点,则k 的取值范围是_____.【解答】把方程组22y kx kkyx=-++⎧⎪⎨=⎪⎩消去y得:-kx+2k+2=kx,整理得:kx2-(2k+2)x+k=0,由题意得:△=(2k+2)2-4k2>0,解得:k>-12,∴当k>-12时,函数y=-kx+2k+2与y=kx(k≠0)的图象有两个不同的交点,故答案为:k>-12且k≠0.14.如图,直线y=-x+b与双曲线y=-1x(x<0)交于点A,与x轴交于点B,则OA2-OB2=__________.【解答】∵直线y=﹣x+b与双曲线y=﹣1x(x<0)交于点A,设A的坐标(x,y),∴x+y=b,xy=﹣1,而直线y=﹣x+b与x轴交于B点,∴OB=b,∴又OA2=x2+y2,OB2=b2,∴OA2﹣OB2=x2+y2﹣b2=(x+y)2﹣2xy﹣b2=b2+2﹣b2=2.故答案为:2.15.一批零件300个,一个工人每小时做15个,用关系表示人数x与完成任务所需时间y之间的函数关系为_______________________.解答:由题意得:人数x与完成任务所需时间y之间的函数关系为y=30015x=20x,故答案为:y=20x.16.把一个长、宽、高分别为3cm,2cm,1cm的长方形铜块铸成一个圆柱体铜块,则该圆柱体铜块的底面积S(cm2)与高h(cm)之间的函数关系式为________________________.解答:由题意得:Sh=3×2×1,则S=6h,故答案为:S=6h.三、解答题17.某服装厂承揽一项生产夏凉小衫1600件的任务,计划用t 天完成.(1)写出每天生产夏凉小衫w (件)与生产时间t (天)(t >4)之间的函数关系式; (2)由于气温提前升高,商家与服装厂商议调整计划,决定提前4天交货,那么服装厂每天要多做多少件夏凉小衫才能完成任务?解答:(1)每天生产夏凉小衫w (件)与生产时间t (天)(t >4)之间的函数关系式为:w =1600t(t >4), (2)由题意,得:16004t --1600t=16001600(4)(4)t t t t ---=264004t t -,答:每天要多做264004t t-(t >4)件夏凉小衫才能完成任务. 18.某开发公司计划生产一批产品,需要加工后才能投放市场,已知甲厂每天可加工60件,8天便可完成任务.(1)这批产品的数量是________件;(2)若这批产品由乙厂加工,请写出乙厂每天加工件数M (件)与所需天数t (天)之间的函数表达式;(3)如果要求乙厂在5天内将所有产品加工完,那么乙厂每天至少加工多少件? 解答:(1)60×8=480(件), 故答案为:480;(2)乙厂每天加工件数M (件)与所需天数t (天)之间的函数表达式为y =480t(t >0), (3)把t =5代入上式得M =96,故如果要求乙厂在5天内将所有产品加工完,那么乙厂每天至少加工96件.19.已知y =y 1+y 2,y 1与x 2成正比例关系,y 2与x 成反比例关系,且当x =1时,y =3;当x =-1时,y =1.(1)求y 与x 之间的函数表达式; (2)当x =-12时,求y 的值. 解答:∵y =y 1+y 2,y 1与x 2成正比例关系,y 2与x 成反比例关系, ∴可设y 1=k 1x 2,y 2=2k x,把x =1时,y =3和x =-1时,y =1代入得:121231k k k k +=⎧⎨-=⎩,解得:1221k k =⎧⎨=⎩,∴y 与x 之间的函数表达式为y =2x 2+1x, (2)当x =-12时, y =2×(-12)2+(-2)=-32.20.反比例函数y =k x(k ≠0,x >0)的图象与直线y =3x 相交于点C ,过直线上点A (1,3)作AB ⊥x 轴于点B ,交反比例函数图于点D ,且AB =3BD . (1)求k 的值; (2)求点C 的坐标;(3)在y 轴上确定一点M ,使点M 到C 、D 两点距离之和d =MC +MD 最小,求点M 的坐标. 【解答】(1)∵A (1,3), ∴AB =3,OB =1, ∵AB =3BD , ∴BD =1, ∴D (1,1),将D (1,1)代入反比例函数解析式得:k =1; (2)由(1)知,k =1, ∴反比例函数的解析式为:y =1x,由31y x y x =⎧⎪⎨=⎪⎩得:33x y ⎧=⎪⎨⎪=⎩或33x y ⎧=-⎪⎨⎪=-⎩, ∵x >0,∴C (3,3), (3)如图,作C 关于y 轴的对称点C ′,连接C ′D 交y 轴于M ,则d =MC +MD 最小, ∴C ′(-3,3), 设直线C ′D 的解析式为y =kx +b ,∴331k b k b ⎧=-+⎪⎨⎪=+⎩,解得:323232k b ⎧=-⎪⎨=-⎪⎩, ∴y =(3-23)x +23-2, 当x =0时,y =23-2, ∴M (0,23-2).21.某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y (微克/毫升)与服药时间x (小时)之间的函数关系如图所示(当4≤x ≤10时,y 与x 成反比例).(1)根据图象分别求出血液中药物浓度上升和下降阶段y 与x 之间的函数关系; (2)问血液中药物浓度不低于4微克/毫升的持续时间多少小时?【解答】(1)当0≤x <4时,设直线解析式为:y =kx , 将(4,8)代入得:8=4k , 解得:k =2,故直线解析式为:y =2x ,当4≤x ≤10时,设直反比例函数解析式为:y =k x, 将(4,8)代入得:8=4k , 解得:k =32,故反比例函数解析式为:y =32x ; 因此血液中药物浓度上升阶段的函数关系式为y =2x (0≤x <4),下降阶段的函数关系式为y =32x(4≤x ≤10). (2)当y =4,则4=2x ,解得:x =2, 当y =4,则4=32x,解得:x =8, ∵8﹣2=6(小时),∴血液中药物浓度不低于4微克/毫升的持续时间6小时.22.某商场出售一批进价为2元的贺卡,在营运过程中发现此商品的日销价为x (元)与销售量y(张)之间有如下关系:(1)猜测并确定y与x的函数关系式;(2)当日销售单价为10元时,贺卡的日销售量是多少张?(3)设此卡的利润为W元,试求出W与x之间的函数关系式,若物价部门规定此卡的销售单价不能超过10元,试求出当日销售单价为多少元时,每天获得的利润最大,并求出最大利润.解答:(1)由表中数据可以发现x与y的乘积是一个定值,所以可知y与x成反比例,设y=kx,把(3,20)代入得:k=60,∴y与x的函数关系式为y=60x;(2)当x=10时,y=6,所以日销售单价为10元时,贺卡的日销售量是6张;(3)∵W=(x-2)y=60-120x,又∵x≤10,∴当x=10时,W最大=60-12010=48,故日销售单价为10元时,每天获得的利润最大,最大利润为48元.23.在平面直角坐标系中,我们不妨把纵坐标是横坐标的2倍的点称之为“理想点”,例如点(-2,-4),(1,2),(3,6)…都是“理想点”,显然这样的“理想点”有无数多个.(1)若点M(2,a)是反比例函数y=kx(k为常数,k≠0)图象上的“理想点”,求这个反比例函数的表达式;(2)函数y=3mx-1(m为常数,m≠0)的图象上存在“理想点”吗?若存在,请求出“理想点”的坐标;若不存在,请说明理由.解答:∵点M(2,a)是反比例函数y=kx(k为常数,k≠0)图象上的“理想点”,∴a=4,∵点M(2,4)在反比例函数y=kx(k为常数,k≠0)图象上∴k=2×4=8,∴反比例函数的解析式为y=8x;(2)假设函数y=3mx-1(m为常数,m≠0)的图象上存在“理想点”(x,2x), 则有3mx-1=2x,整理得:(3m-2)x=1,当3m-2≠0,即m≠23时,函数图象上存在“理想点”,为(132m-,232m-),当3m-2=0,即m=23时,x无解,综合上述,当m≠23时,函数图象上存在“理想点”,为(132m-,232m-),当m=23时,函数图象上不存在“理想点”.。

九年级数学一次函数及反比例函数练习题(含答案)

九年级数学一次函数及反比例函数练习题(含答案)

一次函数及反比例函数专题训练一、填空题:(每题 3 分,共 36 分)1、函数 y =x -2 自变量 x 的取值范围是____。

2、如图,在直角坐标系中,矩形ABOC 的长为 3,宽为 2,则顶点A 的坐标是____。

3、点 P (3,-4)关于原点对称的点是________。

4、直线 y =4x -3 过点(____,0)(0,____)5、已知反比例函数 y =-4x 的图像经过P (-2,m ),则 m =____。

6、函数 y =2x,当 x <0 时,y 随 x 的增大而____。

7、将直线 y =3x -1 向上平移 3 个单位,得到直线________。

8、已知:y 是 x 的反比例函数,且当 x =3 时,y =8。

则 y 与 x 的函数关系式为___。

9、一次函数 y =-3x +4 的图象与坐标轴所围成的三角形面积是____。

10、如果直线 y =ax +b 不经过第四象限,那么 ab ___0(填“≥”、“≤”或“=”)。

11、近视眼镜的度数 y (度)与镜片焦距 x (m )成反比例,已知 400°近视眼镜片的焦距为0.25m ,则眼镜度数 y 与镜片焦距 x 之间的函数关系式为________。

12、某书定价 8 元,如果购买 10本以上,超过 10 本的部分打八折。

请写出购买数量 x (本)与付款金额 y (元)之间的关系式____________。

二、选择题:(每题 4 分,共 24 分)1、点 P (a ,a -2)在第四象限,则 a 的取值范围是( )A 、-2<a <0B 、0<a <2C 、a >2D 、a <02、在函数 y =3x -2,y =1x+3,y =-2x ,y =-x 2+7 是正比例函数的有( )A 、0 个B 、1 个C 、2 个D 、3 个 3、王大爷饭后出去散步,从家中走 20 分钟到一个离家 900 米的公园,与朋友聊天10分钟后,然后用15分钟返回家里。

反比例函数与一次函数专项练习30题(有答案)ok

反比例函数与一次函数专项练习30题(有答案)ok

反比例函数和一次函数专项练习30题(有答案)1.如图,已知一次函数与反比例函数的图象交于A,B两点,且点A的横坐标为4.(1)求k的值;(2)根据正比例函数与反比例函数的性质直接写出B点坐标;(3)根据图象写出使一次函数的值小于反比例函数的值的x的取值范围.2.正比例函数y=kx和反比例函数的图象相交于A,B两点,已知点A的横坐标为1,纵坐标为3.(1)写出这两个函数的表达式;(2)求B点的坐标;(3)在同一坐标系中,画出这两个函数的图象.3.反比例函数与一次函数y=2x+1的图象都过点(1,a).(1)确定a的值以及反比例函数解析式;(2)求反比例函数和一次函数的图象的另一个交点坐标.4.已知一次函数y=kx+b的图象经过点A(0,1)和点B(a,﹣3a)(a>0),且点B在反比例函数的图象上,求a的值和一次函数的解析式.5.如图正比例函数与反比例函数的图象在第一象限内的交点A的横坐标为4.(1)求k值;(2)求它们另一个交点B的坐标;(3)利用图象直接写出:当x在什么范围内取值时,y1>y2.6.已知一次函数y=kx+b与反比例函数的图象交于点(﹣1,﹣1),求这两个函数的解析式及它们图象的另一个交点的坐标.7.如图所示,一次函数y=kx+b的图象与反比例函数的图象交于M、N两点.(1)根据图中条件求出反比例函数和一次函数的解析式;(2)当x为何值时一次函数的值大于反比例函数的值.8.如图,已知反比例函数的图象与一次函数y2=k2x+b的图象交于A,B两点,且A(2,n),B(﹣1,﹣2).(1)求反比例函数和一次函数的关系式;(2)利用图象直接写出当x在什么范围时,y1>y2.9.如图,正比例函数y1=k1x的图象与反比例函数的图象相交于A、B两点,其中点A的坐标为(1,2).(1)分别求出这两个函数的表达式;(2)请你观察图象,写出y1>y2时,x的取值范围;(3)在y轴上是否存在点P,使△AOP为等腰三角形?若存在,请你直接写出点P的坐标;若不存在,请说明理由.10.已知反比例函数y=﹣和一次函数y=kx﹣2都经过点A(m,﹣3).(1)求m的值和一次函数的关系式.(2)若点M(a,y1)和N(a+2,y2)都在这个反比例函数的图象上,试通过计算或利用反比例函数的图象性质比较y1与y2的大小.11.如图,函数y=3x的图象与反比例函数的图象的一个交点为A(1,m),点B(n,1)在反比例函数的图象上.(1)求反比例函数的解析式;(2)求n的值;(3)若P是y轴上一点,且满足△POB的面积为6,求P点的坐标.12.如图,已知反比例函数的图象经过点A(﹣2,1),一次函数y2=kx+b(k≠0)的图象经过点C(0,3)与点A,且与反比例函数的图象相交于另一点B.(1)分别求出反比例函数与一次函数的解析式;(2)求点B的坐标.(3)根据图象写出使y1>y2的x的取值范围.13.直线y1=2x﹣7与反比例函数的图象相交于点P(m,﹣3).(1)求反比例函数的解析式.(2)试判断点Q是否在这个反比例函数的图象上?14.如图,一次函数y=kx+b的图象与反比例函数y=的图象相交于A(1,a)、B(﹣2,1)两点.(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积.15.如图,一次函数y=kx+b的图象与反比例函数的图象相交于A、B两点.(1)根据图象,分别写出点A、B的坐标;(2)求出反比例函数的解析式;(3)求出线段AB的长度.16.如图,已知A(n,2),B(2,﹣4)是一次函数y1=kx+b的图象和反比例函数y2=的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)当x取何值时,y1<y2?17.已知反比例函数的图象,经过一次函数y=x+1与的交点,求反比例函数的解析式.18.如图,一次函数y=kx+2与x轴交于点A(﹣4,0),与反比例函数y=的图象的一个交点为B(2,a).(1)分别求出一次函数与反比例函数的解析式;(2)作BC⊥x轴,垂足为C,求S△ABC.19.如图,一次函数y1=kx+b与反比例函数.(m、k≠0)图象交于A(﹣4,2),B(2,n)两点.(1)求m、n的值及反比例函数的表达式;(2)当x取非零的实数时,试比较一次函数值与反比例函数值的大小.20.一次函数y1=kx+b与反比例函数的图象相交于点A(﹣1,4)、B(﹣4,n),(1)求n的值;(2)连接OA、OB,求△OAB的面积;(3)利用图象直接写出y1>y2时x的取值范围.21.已知:如图,一次函数y=ax+b的图象与反比例函数的图象交于点A(m,4)和点B(﹣4,﹣2).(1)求一次函数y=ax+b和反比例函数的解析式;(2)求△AOB的面积;(3)根据图象,直接写出不等式的解集.22.如图,一次函数y=kx+b的图象与反比例函数的图象相交于A、B两点.(1)利用图中条件,求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值大于反比例函数的值的x的取值范围;(3)你能求出图中△AOB的面积吗?若不能,请说明理由;若能,请写出求解过程.23.如图,直线y=kx+2k(k≠0)与x轴交于点B,与双曲线y=交于点A、C,其中点A在第一象限,点C在第三象限.(1)求点B的坐标;(2)若,求点A的坐标.24.已知一次函数与反比例函数y=﹣的图象交于点P(﹣3,m),Q(2,﹣3).求一次函数的解析式.25.已知正比例函数y=k1x(k1≠0)的图象经过A(2,﹣4)、B(m,2)两点.(1)求m的值;(2)如果点B在反比例函数(k2≠0)的图象上,求反比例函数的解析式.26.如图,已知正比例函数y=﹣3x与反比例函数的图象相交于A和B两点,如果有一个交点A的横坐标为2.(1)求k的值;(2)求A,B两点的坐标;(3)当_________时,.27.如图,已知A(﹣4,2)、B(n,﹣4)是一次函数y=kx+b的图象与反比列函数的图象的两个交点.(1)求m、n的值;(2)求一次函数的关系式;(3)根据图象写出使一次函数的值小于反比例函数的值的x的取值范围.28.如图,一次函数y=x+3的图象与x轴、y轴分别交于点A、点B,与反比例函数的图象交于点C,CD⊥x轴于点D,求四边形OBCD的面积.29.如图,已知反比例函数的图象与一次函数y=k2+b的图象交于A、B两点,A(2,n),B(﹣l,﹣2).(1)求反比例函数和一次函数的关系式;(2)试证明线段AB分别与x轴、y轴分成三等分;(3)利用图象直接写出不等式的解集.30.如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数的图象交于二、四象限内的A、B两点,点B的坐标为(6,n).线段OA=5,E为x轴负半轴上一点,且sin∠AOE=,求该反比例函数和一次函数的解析式.参考答案:1.(1)由x=4,得y=2;则k=xy=4×2=8;(2)∵A,B两点是正比例函数和反比例函数的交点,点A(4,2),∴B(﹣4,﹣2);(3)由图象可得在两个交点的左边,一次函数的值小于反比例函数的值,∴x<﹣4或0<x<42.(1)∵正比例函数y=kx 与反比例函数,的图象都过点A(1,3),则k=3,∴正比例函数是y=3x ,反比例函数是.(2)∵点A与点B关于原点对称,∴点B的坐标是(﹣1,﹣3).(3)∵正比例函数的图象过原点,所以令x=1,则y=3,图象过(1,3),描出此点即可;∵反比例函数的图象是双曲线,∴应在每一个双曲线上描出3各点,即可画出函数图象.3.(1)由题意得,2+1=a,解得,a=3,(1分)由题意得,,解得,k=3.(2分)反比例函数解析式为.(3分)(2)由题意得,,(4分)解得,,∴反比例函数和一次函数图象的另一个交点坐标是(﹣4.∵点B(a,﹣3a)在反比例函数图象上,∴﹣=﹣3a,解得a=1,a=﹣1(舍去),∴点B的坐标为(1,﹣3),∵一次函数y=kx+b图象经过点A(0,1),B(1,﹣3),∴,解得,∴一次函数解析式为y=﹣4x+1.5.(1)将A的横坐标4代入y1=x,得y1=×4=2,由题意可得A点坐标为(4,2),由于反比例函数y=的图象经过点A,∴k=2×4=8.(5分)(2)将两个函数的解析式组成方程组得:,解得,.所以A(4,2),B(﹣4,﹣2).所以B点坐标为B(﹣4,﹣2).(3分)(3)由于A点横坐标4,B点横坐标为﹣4,由图可知:当x>4或﹣4<x<0时,y1>y2.6.由已知得,(2分)解得.(4分)∴一次函数的解析式为y=2x+1,(5分)反比例函数的解析式为.(6分)由,解得x=﹣1或.(7分)当时,y=2.∴函数图象的另一个交点的坐标为()∴m=6,a=﹣6即N(﹣1,﹣6)且,解得∴反比例函数和一次函数的解析式的解析式分别为y=.y=2x﹣4.(2)由图象可知,当﹣1<x<0或x>3时一次函数的值大于反比例函数的值.8.(1)∵双曲线过点(﹣1,﹣2),∴k1=﹣1×(﹣2)=2.∵双曲线y1=,过点(2,n),∴n=1.由直线y2=k2x+b过点A,B 得,解得.∴反比例函数关系式为y1=,一次函数关系式为y2=x﹣1.(2)当x<﹣1或0<x<2时,y1>y2.9.(1)解:∵y1=k1x过点A(1,2),∴k1=2.(2分)∴正比例函数的表达式为y1=2x.(3分)∵反比例函数过点A(1,2),∴k2=2.(5分)∴反比例函数的表达式为y=.(6分)(2)﹣1<x<0或x>1.(8分)(3)∵点A的坐标为(1,2),∴OA=,当OA为腰时,OA=OP2=,P2点坐标为(0,4),当AP1=OA=,可知P1坐标为(0,),当OA=OP3=时,可得P3坐标为(0,﹣)由图可知,P1(0,),P2(0,﹣),P3(0,4),当OA为底时,OP4==,故P1(0,),P2(0,﹣),P3(0,4),P4(0,).10.(1)∵反比例函数y=﹣经过点A(m,﹣3).∴﹣3m=﹣6,∴m=2;∵一次函数y=kx﹣2经过点A(m,﹣3).∴2k﹣2=﹣3,∴k=﹣,∴一次函数的关系式为y=﹣x﹣2.(2)当a>0时,则a<a+2,∵反比例函数y=﹣的图象在第四象限内是增函数,∴y1<y2;当﹣2<a<0时,则a+2>0,由图象知y1>y2;当a<﹣2时,则a<a+2,∵反比例函数y=﹣的图象在第二象限内是增函数,∴y1<y211.(1)∵函数y=3x的图象过点A(1,m),∴m=3,∴A(1,3);∵点A(1,3)在反比例函数的图象上,∴k=1×3=3,∴反比例函数的解析式为y=;(2)∵点B(n,1)在反比例函数的图象上,(3)依题意得PO•3=6∴OP=4,∴P点坐标为(0,4)或(0,﹣4).12.(1)∵点A(﹣2,1)在反比例函数y1=mx的图象上,∴1=m﹣2,即m=﹣2,又A(﹣2,1),C(0,3)在一次函数y2=kx+b图象上,∴即k=1,b=3,∴反比例函数与一次函数解析式分别为:y=与y=x+3;(2)由得x+3=﹣,即x2+3x+2=0,∴x=﹣2或x=﹣1,∴点B的坐标为(﹣1,2).(3)当x<﹣2或﹣1<x<0时,反比例函数在一次函数图象的上方,即y1>y2…13.(1)把(m,﹣3)分别代入和y1=2x﹣7,得,解得m=2,k=﹣6,∴反比例函数的解析式.(2)把点Q代入反比例函数的解析式中,即=﹣=.故点Q在反比例函数的图象上14.(1)把B(﹣2,1)代入得:m=﹣2×1=﹣2,∴y=﹣,把A(1,a)代入得:a=﹣2,∴A(1,﹣2),把A(1,﹣2),B(﹣2,1)代入得:,解得:k=﹣1,b=﹣1,∴y=﹣x﹣1,答:一次函数和反比例函数的解析式分别是y=﹣,y=﹣x﹣1.(2)令y=0,则0=﹣x﹣1,∴x=﹣1,∴C(﹣1,0),∴OC=1,∴S△AOB=S△AOC+S△BOC =×1×2+×1×1=1.5 15.(1)A点坐标为(﹣6,﹣2),B点坐标为(4,3);(2)把B(4,3)代入y=得m=3×4=12,所以反比例函数的解析式为y=;(3)分别过点A、点B作y轴、x轴的垂线,两线交于点C,即AC⊥BC,如图,则点C的坐标为C(4,﹣2),在Rt△ACB中,AC=10,BC=5,∵AB2=BC2+AC2,∴AB==5.16.(1)∵B(2,﹣4)在函数y2=的图象上,∴m=﹣8.∴反比例函数的解析式为:y2=﹣.∵点A(n,2)在函数y2=﹣的图象上∴n=﹣4∴A(﹣4,2)∵y1=kx+b经过A(﹣4,2),B(2,﹣4),∴,解得.∴一次函数的解析式为:y1=﹣x﹣2(2)由交点坐标和图象可知,当﹣4<x<0或x>2取何值时,y1<y217.把y=x+1代入得:x+1=x+,解得:x=1,把x=1代入y=x+1得:y=2,把(1,2)代入y=得:k=2,即反比例函数的解析式是y=18.(1)将A(﹣4,0)代入y=kx+2得:﹣4k+2=0,即k=0.5,∴一次函数解析式为y=0.5x+2,将B(2,a)代入一次函数解析式得:a=1+2=3,即B (2,3),将B(2,3)代入反比例解析式得:m=2×3=6,则反比例解析式为y=;(2)∵OC=2,OA=4,∴AC=OC+OA=2+4=6,∵BC=3,∴S△ABC =AC•BC=919.(1)∵A(﹣4,2)在上,∴m=﹣8,∴反比例函数的解析式是y=﹣,∵B(2,n )在上,∴n=﹣4.(2)当x<﹣4或0<x<2时,y1>y2;当x=﹣4或x=2时,y1=y2;当﹣4<x<0或x>2时,y1<y2.20.(1)根据题意,反比例函数y2=的图象过(﹣1,4),(﹣4,n),易得m=﹣4,n=1;则y1=kx+b的图象也过点(﹣1、4),(﹣4,1);代入解析式可得k=1,b=5;∴y1=x+5;(2)设直线AB交x轴于C点,由y1=x+5得,∴C(﹣5,0),∵S△AOC =×5×4=10,S△BOC =×5×1=2.5,∴S△AOB=S△AOC﹣S△BOC=10﹣2.5=7.5;(3)根据图象,两个图象只有两个交点,根据题意,找一次函数的图象在反比例函数图象上方的部分;易得当x>0或﹣4<x<﹣1时,有y1>y2,故当y1>y2时,x的取值范围是x>0或﹣4<x<﹣1 21.(1)∵点B(﹣4,﹣2)在反比例函数的图象上,∴,k=8.∴反比例函数的解析式为.﹣﹣﹣﹣﹣﹣﹣﹣(1分)∵点A(m,4)在反比例函数的图象上,∴,m=2.∵点A(2,4)和点B(﹣4,﹣2)在一次函数y=ax+b 的图象上,∴解得∴一次函数的解析式为y=x+2.(2)设一次函数y=x+2的图象与y轴交于点C,分别作AD⊥y轴,BE⊥y轴,垂足分别为点D,E.(如图)∵一次函数y=x+2,当x=0时,y=2,∴点C的坐标为(0,2).∴S△AOB=S△AOC+S△BOC ===6(3)﹣4<x<0或x>2.阅卷说明:第(3)问两个范围各(1分)22.(1)设反比例函数的解析式是y=(a≠0),把A(﹣2,1)代入得:k=﹣2,即反比例函数的解析式是y=﹣;把B(1,n)代入反比例函数的解析式得:n=﹣2,即B的坐标是(1,﹣2),把A(﹣2,1)和B(1,﹣2)代入y=kx+b得:,解得:k=﹣1,b=﹣1.即一次函数的解析式是y=﹣x﹣1;(2)根据图象可知:一次函数的值大于反比例函数的值的x的取值范围是x<﹣2或0<x<1;(3)能求出△AOB的面积,把y=0代入y=﹣x﹣1得:0=﹣x﹣1,x=﹣1,即C的坐标是(﹣1,0),OC=1,∵A(﹣2,1),B(1,﹣2),∴△AOB的面积S=S△AOC+S△BOC=×1×1+×1×|﹣2|=1.523.(1)当y=0时,则kx+2k=0,又∵k≠0∴x=﹣2,∴点B坐标为(﹣2,0);(2)设点A的坐标为(x、y),∴S△AOB =•|﹣2|•|y|=,∴y=±,∵点A在第一象限,∴y=,把y=代入y=得x=,∴点A 的坐标为(,)24.∵把P(﹣3,m)代入反比例函数y=﹣得:m=2,∴点P的坐标为(﹣3,2),设一次函数的关系式为y=kx+b,∴把Q和P 的坐标代入得:,解得:k=﹣1,b=﹣1.故所求一次函数的关系式为y=﹣x﹣125.(1)因为函数图象经过点A(2,﹣4),所以2k1=﹣4,得k1=﹣2.(2分)所以,正比例函数解析式:y=﹣2x.(1分)(2)根据题意,当y=2时,﹣2m=2,得m=﹣1.(1分)于是,由点B 在反比例函数的图象上,得,解得k2=﹣2.所以,反比例函数的解析式是.26.(1)把x=2代入y=﹣3x得:y=﹣6,即A的坐标是(2,﹣6),把A的坐标代入y=得:﹣6=,解得:k=﹣13;(2)解方程组得:,,即A的坐标是(2,﹣6),B的坐标是(﹣2,6);(3)当﹣2<x<0或x>2时,>﹣3x,故答案为:﹣2<x<0或x>227.(1)把A(﹣4,2)代入y=得:m=﹣8,即反比例函数的解析式为y=﹣,把B(n,﹣4)代入得:n=2,即B(2,﹣4),即m=﹣8,n=2;(2)把A、B的坐标代入一次函数的解析式得:解得:k=﹣1,b=﹣2,即一次函数的解析式是y=﹣x﹣2;(3)一次函数的值小于反比例函数的值的x的取值范围是x>2或﹣4<x<028.解方程组得或,∴C点坐标为(1,4),∵CD⊥x轴,∴D点坐标为(1,0)对y=x+3,令x=0,y=3,∴B点坐标为(0,3),∴四边形OBCD的面积=(OB+CD)•OD=(3+4)×1=29.1)解:把B(﹣1,﹣2)分别代入反比例函数∴k1=﹣1×(﹣2)=2,∴反比例函数的解析式为y=;把A(2,n)代入上式,得n=1,∴A点坐标为(2,1),把A(2,1)和B(﹣l,﹣2)分别代入一次函数y=k2x+b 得,2k2+b=1,﹣k2+b=﹣2,解得k2=1,b=﹣1,∴一次函数的关系式为y=x﹣1;(2)证明:过A作AE⊥x轴于E,BF⊥y轴与F,AB 与坐标轴相交于C、D,如图,对于y=x﹣1,令x=0,y=﹣1;令y=0,x=1,∴C(1,0),D(0,﹣1),AC===,CD===,BD===,∴AC=CD=BD,∴线段AB分别与x轴、y轴分成三等分;(3)解:x<﹣1或0<x<230.过点A作AC⊥x轴于点C.∵sin∠AOE=,OA=5,∴AC=OA•sin∠AOE=4,由勾股定理得:CO==3,∴A(﹣3,4),把A(﹣3,4)代入到中得m=﹣12,∴反比例函数解析式为,∴6n=﹣12,∴n=﹣2,∴B(6,﹣2),∴有,解得:,∴,一次函数的解析式为。

初三 ,一次函数,反比例函数,二次函数99道大题综合复习

初三  ,一次函数,反比例函数,二次函数99道大题综合复习

初三,一次函数,反比例函数,二次函数99道大题综合复习四、解答题(注释)中,一次函数点,与轴相交于点,与反比例函数图象相交于点的图象与轴相交于,且.(1)求反比例函数的解析式;(2)若点在轴上,且的面积等于12,直接写出点2、如图,已知反比例函数和一次函数的坐标.的图象相交于第一象限内的点A,且点A的横坐标为1。

过点A作AB⊥x轴于点B,△AOB的面积为1。

(1)求反比例函数和一次函数的解析式;(2)若一次函数的图象与x轴相交于点C,求线段AC的长度;(3)直接写出:当>>0时,x的取值范围;(4)在y轴上是否存在一点p,使△PAO为等腰三角形,若存在,请直接写出p 点坐标,若不存在,请说明理由。

(要求至少写两个)3、已知四边形ABCD是菱形,在平面直角坐标系中的位置如图,边AD经过原点O,已知A(0,-3),B(4,0).(1)求点D的坐标;(2)求经过点C的反比例函数解析式.4、已知y与x+2成反比例,且当x=5时,y=-6,求:(1)y与x的关系式;(2)当y=2时x的值。

5、你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面,面条的总长度是面条的粗细(横截面积)的反比例函数,其图像如图所示.(1)写出与的函数关系式;(2)若当面条的粗细为时,面条的长度是多少?6、如图,已知直线坐标为6. 与双曲线交于A、B两点,且点的横(1)求的值.(2)若双曲线上一点的纵坐标为9,求的面积.7、已知:A(a,y1)、B(2a,y2)是反比例函数图像上的两点.(1)比较y1与y2的大小关系;(2)若A、B两点在一次函数第一象限的图像上(如图所示),分别过A、B两点作x轴的垂线,垂足分别为C、D,连结OA、OB,且S△OAB=8,求a的值;(3)在(2)的条件下,如果8、如图,在直角坐标系xoy中,点A是反比例函数y1=的图象上一点,,,求使得m>n的x的取值范围.AB⊥x轴的正半轴于点B,C是OB的中点,一次函数y2=ax+b的图象经过A、C两点,并交y轴于点D(0,-2),若S△AO D=4.(1)求反比例函数和一次函数的表达式;(2)观察图象,请指出在y轴的右侧,当y1>y2时x的取值范围.9、如图所示,图象反映的是:张阳从家里跑步去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后走回家,其中x表示时间,y表示张阳离家的距离.根据图象回答下列问题:(1)体育场离张阳家_________千米;(2)体育场离文具店_________千米;张阳在文具店逗留了_____分钟;(3)请计算:张阳从文具店到家的平均速度约是每小时多少千米?10、某公司经销一种绿茶,每千克成本为50元.市场调查发现,在一段时间内,销售量w(千克)随销售单价x(元/千克)的变化而变化,具体关系式为:w=-2x+240.设这种绿茶在这段时间内的销售利润为y(元),解答下列问题:(1)求y与x的关系式;(2)当x取何值时,y的值最大?(3)如果物价部门规定这种绿茶的销售单价不得高于90元/千克,公司想要在这段时间内获得2250元的销售利润,销售单价应定为多少元?11、如图,已知A(-4,2)、B(n,-4)是一次函数y=kx+b的图象与反比例函数的图象的两个交点.(1)求此反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值小于反比例函数的值的x的取值范围.12、已知二次函数的图象经过点(-2,-5)、(1,4).(1)求这个二次函数的解析式;(2)不用列表,在下图中画出函数图象,观察图象写出y > 0时,x的取值范围.13、如图,OABC是一个放在平面直角坐标系中的矩形,O为原点,点A在x 轴的正半轴上,点C在y轴的正半轴上,OA=3,OC=4,平行于对角线AC的直线m从原点O出发,沿x轴正方向以每秒1个单位的速度运动,设直线m与矩形OABC的两边分别交于点M、N,直线运动的时间为t(秒).(1)写出点B的坐标;(2)t为何值时,MN=AC;(3)设△OMN的面积为S,求S与t的函数关系式,并写出t的取值范围;当t为何值时,S有最大值?并求S的最大值.14、如图,抛物线y=x2+mx+n交x轴于A、B两点,交y轴于点C,点P是它的顶点,点A的横坐标是-3,点B的横坐标是1.(1)求m、n的值;(2)求直线PC的解析式;(3)请探究以点A为圆心、直径为5的圆与直线PC的位置关系,并说明理由.(参考数据:≈1.41,≈1.73,≈2.24)15、如图,在直角坐标平面xOy中,抛物线C1的顶点为A(-1,4),且过点B(-3,0)(1)写出抛物线C1与x轴的另一个交点M的坐标;(2)将抛物线C1向右平移2个单位得抛物线C2,求抛物线C2的解析式;(3)写出阴影部分的面积S.16、如图,杂技团进行杂技表演,演员从跷跷板右端A处弹跳到人梯顶端椅子B 处,其身体(看成一点)的路线是抛物线y=-x2+3x+1的一部分,(1)求演员弹跳离地面的最大高度;(2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳点A的水平距离是4米,问这次表演是否成功?请说明理由.2(2)当x=4时,.(3)由二次函数的图象可知,当函数值y<0时,x的取值范围是18、如图①,O为坐标原点,点B在x轴的正半轴上,四边形OACB是平行四边形,sin∠AOB=,反比例函数y=(k>0)在第一象限内的图象经过点A,与BC交于点F.(1)若OA=10,求反比例函数解析式;(2)若点F为BC的中点,且△AOF的面积S=12,求OA的长和点C的坐标;(3)在(2)中的条件下,过点F作EF∥OB,交OA于点E(如图②),点P 为直线EF上的一个动点,连接PA,PO.是否存在这样的点P,使以P、O、A 为顶点的三角形是直角三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.19、某农庄计划在30亩空地上全部种植蔬菜和水果,菜农小张和果农小李分别承包了种植蔬菜和水果的任务.小张种植每亩蔬菜的工资y(元)与种植面积m(亩)之间的函数如图①所示,小李种植水果所得报酬z(元)与种植面积n (亩)之间函数关系如图②所示.(1)如果种植蔬菜20亩,则小张种植每亩蔬菜的工资是元,小张应得的工资总额是元,此时,小李种植水果亩,小李应得的报酬是元;(2)当10<n≤30时,求z与n之间的函数关系式;(3)设农庄支付给小张和小李的总费用为w(元),当10<m≤30时,求w与m 之间的函数关系式.20、已知抛物线经过点A(3,0),B(﹣1,0).(1)求抛物线的解析式;(2)求抛物线的顶点坐标.21、如图,已知正方形ABCD的边长为4,对称中心为点P,点F为BC边上一个动点,点E在AB边上,且满足条件∠EPF=45°,图中两块阴影部分图形关于直线AC成轴对称,设它们的面积和为S1.(1)求证:∠APE=∠CFP;(2)设四边形CMPF的面积为S2,CF=x,.①求y关于x的函数解析式和自变量x的取值范围,并求出y的最大值;②当图中两块阴影部分图形关于点P成中心对称时,求y的值.22、(1)先求解下列两题:①如图①,点B,D在射线AM上,点C,E在射线AN上,且AB=BC=CD=DE,已知∠EDM=84°,求∠A的度数;②如图②,在直角坐标系中,点A在y轴正半轴上,AC∥x轴,点B,C的横坐标都是3,且BC=2,点D在AC上,且横坐标为1,若反比例函数过点B,D,求k的值.(2)解题后,你发现以上两小题有什么共同点?请简单地写出.的图象经23、已知抛物线(a≠0)与x轴相交于点A,B(点A,B在原点的图象上,线O两侧),与y轴相交于点C,且点A,C在一次函数段AB长为16,线段OC长为8,当y1随着x的增大而减小时,求自变量x的取值范围.24、如图,三角形ABC是以BC为底边的等腰三角形,点A、C分别是一次函数的图象与y轴的交点,点B在二次函数的图象上,且该二次函数图象上存在一点D使四边形ABCD能构成平行四边形.(1)试求b,c的值,并写出该二次函数表达式;(2)动点P从A到D,同时动点Q从C到A都以每秒1个单位的速度运动,问:①当P运动到何处时,有PQ⊥AC?②当P运动到何处时,四边形PDCQ的面积最小?此时四边形PDCQ的面积是多少?25、如图1所示,已知直线与x轴、y轴分别交于A、C两点,抛物线经过A、C两点,点B是抛物线与x轴的另一个交点,当时,y取最大值.(1)求抛物线和直线的解析式;(2)设点P是直线AC上一点,且(3)若直线,求点P的坐标;与(1)中所求的抛物线交于M、N两点,问: ①是否存在a的值,使得∠MON=900?若存在,求出a的值;若不存在,请说明理由;②猜想当∠MON>900时,a的取值范围(不写过程,直接写结论). (参考公式:在平面直角坐标系中,若M(x1,y1),N(x2,y2),则M,N两点间的距离为)26、一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1千米,出租车离甲地的距离为y2千米,两车行驶的时间为x小时,y1、y2关于x的函数图像如下图所示:(1)根据图像,直接写出y1、y2关于x的函数关系式;(2)若两车之间的距离为S千米,请写出S关于x的函数关系式;(3)甲、乙两地间有A、B两个加油站,相距200千米,若客车进入A加油站时,出租车恰好进入B加油站,求A加油站离甲地的距离.27、如图,在平面直角坐标系中,点O为坐标原点,A点的坐标为(3,0),以OA为边作等边三角形OAB,点B在第一象限,过点B作AB的垂线交x轴于点C.动点P从O点出发沿OC向C点运动,动点Q从B点出发沿BA向A点运动,P,Q两点同时出发,速度均为1个单位/秒。

一次函数、反比例函数和二次函数求解析式练习题

一次函数、反比例函数和二次函数求解析式练习题

举 例
*
急性冠脉综合症(ACS)
在冠状动脉粥样硬化病变的基础上,由于不稳定性斑块的破裂,引起冠状动脉内血栓形成所致严重心肌缺血(不完全或完全性堵塞),而产生的一组进展性临床综合征。
1
2
ACS病理生理:斑块破裂
01
不稳定斑块的主要特征包括:
02
大的脂质池;
03
薄的纤维帽;
04
丰富的炎性细胞;
1
PE临床症状:
2
呼吸困难(90%),尤以活动后明显;
3
胸痛(88%),有两种性质,多数为胸膜性疼痛,少数为心绞痛发作;
4
咯血(30%); ④ 惊恐(55%);
5
咳嗽(50%); ⑥ 晕厥(13%)等。
6
临床有典型肺梗死三联症 (呼吸困难、胸痛及咯血)的患者不足1/3 。
6~10h后升高,12h内高峰,3~4d恢复正常
6~10h后升高,24h内高峰,3~6d恢复正常
6~10h后升高,2~3d内高峰,1~2w恢复正常
其他 超声心动图 运动负荷试验 胸部CT 腹部B超 冠脉造影 胸痛三联CT等
胸痛急性发病的特点决定了我们在处理急性胸痛患者时要本着快速、便捷的原则,在最短的时间内完成明确诊断或排除诊断的检查,“只求必需,不苛求全面”。最常用的检查有心电图、化验、影像学、超声。
*
急 性 胸 痛 の 诊断与鉴别诊断
202X
单击此处添加正文,文字是您思想的提炼, 请尽量言简意赅的阐述观点。
演讲人姓名
CHEST PAIN
*
胸痛是指颈部与上腹之间的不适或疼痛。胸痛主要由胸部疾病所致,少数为其他疾病引起。胸痛的程度与个体的痛阈有关,与疾病轻重程度不完全一致。

初中数学 函数专题练习及答案

初中数学函数专题练习及答案函数专题讲稿二次函数:1.抛物线 $y=- (x-1)^2+3$ 的顶点坐标为 $(1,3)$。

2.抛物线 $y=x^2-2x+1$ 的顶点坐标是 $(1,0)$。

3.抛物线$y=2x^2+6x+c$ 与$x$ 轴的一个交点为$(1,0)$,则这个抛物线的顶点坐标是 $(-1,-2)$。

4.二次函数 $y=(x-1)^2+2$ 的最小值是 $2$。

5.已知二次函数 $y=-x^2+2x+c$ 的对称轴和 $x$ 轴相交于点 $(1,0)$,则 $m$ 的值为 $1$。

6.抛物线 $y=x^2-2x+3$ 的对称轴是直线 $x=1$。

7.将抛物 $y=-(x-1)$ 向左平移 $1$ 个单位后,得到的抛物线的解析式是 $y=-x^2$。

8.把抛物线 $y=x^2+bx+c$ 向右平移 $3$ 个单位,再向下平移 $2$ 个单位,所得图像的解析式是 $y=x^2-3x+5$,则有$b=3$,$c=4$。

9.已知抛物线 $y=x^2+(m-1)x+(m-2)$ 与 $x$ 轴相交于 $A$,且线段 $AB=2$,则 $m$ 的值为 $2$。

10.一个满足条件的二次函数解析式是 $y=-x^2$。

11.若抛物线 $y=x^2+2x+a$ 的顶点在 $x$ 轴的下方,则$a$ 的取值范围是 $a<1$。

12.已知二次函数 $y=ax^2+bx+c$,且 $a0$,则一定有$b^2-4ac<0$。

利用图像:1.若直线 $y=m$($m$ 为常数)与函数 $y=4$ 的图像恒有三个不同的交点,则常数 $m$ 的取值范围是 $m>4$。

2.阴影部分的面积相等的是 $①②$。

3.若 $A(-\frac{13}{4},1)$,$B(-1,y_2)$,$C(\frac{5}{3},y_3)$ 为二次函数 $y=-x^2-4x+5$ 的图象上的三点,则 $y_1>y_2>y_3$。

初三数学反比例函数的专项培优练习题(含答案)含答案解析

初三数学反比例函数的专项培优练习题(含答案)含答案解析一、反比例函数1.如图,在平面直角坐标系中,一次函数y1=ax+b(a≠0)的图象与y轴相交于点A,与反比例函数y2= (c≠0)的图象相交于点B(3,2)、C(﹣1,n).(1)求一次函数和反比例函数的解析式;(2)根据图象,直接写出y1>y2时x的取值范围;(3)在y轴上是否存在点P,使△PAB为直角三角形?如果存在,请求点P的坐标;若不存在,请说明理由.【答案】(1)解:把B(3,2)代入得:k=6∴反比例函数解析式为:把C(﹣1,n)代入,得:n=﹣6∴C(﹣1,﹣6)把B(3,2)、C(﹣1,﹣6)分别代入y1=ax+b,得:,解得:所以一次函数解析式为y1=2x﹣4(2)解:由图可知,当写出y1>y2时x的取值范围是﹣1<x<0或者x>3.(3)解:y轴上存在点P,使△PAB为直角三角形如图,过B作BP1⊥y轴于P1,∠B P1 A=0,△P1AB为直角三角形此时,P1(0,2)过B作BP2⊥AB交y轴于P2∠P2BA=90,△P2AB为直角三角形在Rt△P1AB中,在Rt△P1 AB和Rt△P2 AB∴∴P2(0,)综上所述,P1(0,2)、P2(0,).【解析】【分析】(1)利用待定系数法求出反比例函数解析式,进而求出点C坐标,最后用再用待定系数法求出一次函数解析式;(2)利用图象直接得出结论;(3)分三种情况,利用勾股定理或锐角三角函数的定义建立方程求解即可得出结论.2.如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数的图象交于二四象限内的A、B 两点,与x轴交于C点,点B的坐标为(6,n),线段OA=5,E为x轴负半轴上一点,且sin∠AOE=.(1)求该反比例函数和一次函数的解析式;(2)求△AOC的面积;(3)直接写出一次函数值大于反比例函数值时自变量x的取值范围.【答案】(1)解:作AD⊥x轴于D,如图,在Rt△OAD中,∵sin∠AOD= = ,∴AD= OA=4,∴OD= =3,∴A(﹣3,4),把A(﹣3,4)代入y= 得m=﹣4×3=﹣12,所以反比例函数解析式为y=﹣;把B(6,n)代入y=﹣得6n=﹣12,解得n=﹣2,把A(﹣3,4)、B(6,﹣2)分别代入y=kx+b得,解得,所以一次函数解析式为y=﹣x+2(2)解:当y=0时,﹣x+2=0,解得x=3,则C(3,0),所以S△AOC= ×4×3=6(3)解:当x<﹣3或0<x<6时,一次函数的值大于反比例函数的值【解析】【分析】(1)作AD⊥x轴于D,如图,先利用解直角三角形确定A(﹣3,4),再把A点坐标代入y= 可求得m=﹣12,则可得到反比例函数解析式;接着把B(6,n)代入反比例函数解析式求出n,然后把A和B点坐标分别代入y=kx+b得到关于a、b的方程组,再解方程组求出a和b的值,从而可确定一次函数解析式;(2)先确定C点坐标,然后根据三角形面积公式求解;(3)观察函数图象,找出一次函数图象在反比例函数图象上方所对应的自变量的范围即可.3.如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,﹣2).(1)求反比例函数的解析式;(2)观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;(3)若双曲线上点C(2,n)沿OA方向平移个单位长度得到点B,判断四边形OABC 的形状并证明你的结论.【答案】(1)解:设反比例函数的解析式为(k>0)∵A(m,﹣2)在y=2x上,∴﹣2=2m,∴解得m=﹣1。

初三反比例函数和二次函数的习题含答案

反比例函数1.已知反比例函数xm21-=y 的图像上两点A (x 1,y 1)、B (x 2,y 2),当x 1<0<x 2是,有y 1<y 2.则m 的取值范围是( ).A.m <0, B .m >0,C.m<21,D.m>21 2.如图,点A 是反比例函数y=xk(k ≠0)图象上的一点,自点A 向y 轴作垂线,垂足为T ,已知S △AOT =4,则此函数的表达式为_______________.3.反比例函数与一次函数的图象有一个交点是(-2,1),则它们的另一个交点的坐标是 .4.如图,点A 和C 都在反比例函数y=x4(x>0)的图像上,并且△OAB 、 △BCD 都是等腰直角三角形,斜边OB 、BD 都在X 轴上,则点D 的坐标是_________.【解】过点A 作AE ⊥x 轴于点E ,过点C 作CF ⊥x 轴于点F ,设点E 的坐标为(m,0),由题意可得, 点A 的坐标为(m,m),∵点A 在反比例函数y=x4(x>0)的图像上, ∴m =m4, m 2=4, 又∵m>0, ∴m=2. ∴点E 的坐标为(2,0), 点B 的坐标为(4,0), 设CF=n,则BF=DF=n,OF=OB+BF=4+n,OD=4+2n,∴点C 的坐标为(4+n,n ), 点D 的坐标为(4+2n ,0), ∵点C (4+n,n )在反比例函数y=x4(x>0)的图像上, ∴n=n+44,由此可得n 1=222--(不合题意,舍去),n 2=222+-, ∴4+2n=24, ∴点D 的坐标为(24,0)。

5.当k <0时,反比例函数y kx=和一次函数y kx k =-的图象大致是( )6.如图,已知点A 是一次函数y =x 的图象与反比例函数x y 2=的图象在第一象限内的交点,点B 在xx ky =m kx y +=642-2-4-55oABCDEFy y y yO x O x O x O xA B C D xy AOB轴的负半轴上,且OA =OB ,那么△AOB 的面积为( )A 、2B 、22C 、2D 、227.如图,正方形OABC ,ADEF 的顶点A ,D ,C 在坐标轴上,点F 在AB 上,点B ,E 在函数1(0)y x x=>的图象上,则点E 的坐标是( ) A.(215+,215-) B.(215-,215+) C.(253+,253-), D. (253-,253+) 8.如图,△OAP 、△ABQ 均是等腰直角三角形,点P 、Q 在函数)0(4>=x xy 的图象上,直角顶点A 、B 均在x 轴上,则点B 的坐标为______________.(保留根号)第7题图 第9题图9.某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地。

(完整)一次函数、二次函数与反比例函数的图象综合题

一次函数、反比例函数、二次函数图象综合题1.关于x的函数y=kx+k和y=(k≠0)在同一坐标系中的图象大致是()A.B.C.D.2.在同一直角坐标系中,函数y=kx+1与y=﹣(k≠0)的图象大致是()A.B.C.D.3.反比例函数y=与一次函数y=kx﹣k+2在同一直角坐标系中的图象可能是()A.B.C.D.4.在同一坐标系中,一次函数y=﹣mx+n2与二次函数y=x2+m的图象可能是()A.B.C.D.5.在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象可能是()A.B.C.D.6.如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b﹣1)x+c的图象可能是( )A .B .C .D .7.如图,直线y=ax+b 和双曲线y=交于A 、B 两点,则不等式ax+b >的解集为8.如图,在平面直角坐标系中,反比例函数y 1=的图象与一次函数y 2=kx+b 的图象交于A 、B 两点.若y 1<y 2,则x 的取值范围是9.如图,已知直线y=x 与抛物线y=21x 2交于A 、B 两点.则不等式x >21x 2的解集为 .10。

如图,抛物线y=(x-2)2+m 的与直线y=kx+b 的交于点A (1,0)及点B (4,3).若kx+b≥(x -2)2+m ,则x 的取值范围是 .11.如图,一次函数y=kx+b 与二次函数y=ax 2+bx+c 的图象交于B (3,0),C(0,—3)两点.(1)当自变量x 为何值时,两函数的函数值都随x 的增大而增大? (2)当自变量x 为何值时,两函数的函数值的积小于0.(3)根据图象直接写出不等式kx+b >ax 2+bx+c 的解集. AB C O x y。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数1. 直线2-=x y 不过第 象限2. (06陕西)直线323+-=x y 与x 轴,y 轴围的三角形面积为 3.直线y=kx+b 与直线x y 45-=平行且与直线)6(3--=x y 的交点在y 轴上,则直线y=kx+b 与两轴围成的三角形的面积为 4.直线k kx y 221-=只可能是( )5.(06昆明)直线32+=x y 与直线L 交于P 点,P 点的横坐标为-1,直线L 与y 轴交于A (0,-1)点,则直线L 的解析式为 6.(2006浙江金华)如图,平面直角坐标系中,直线AB 与x 轴,y 轴分别交于A (3,0),B (0,3)两点, ,点C 为线段AB 上的一动点,过点C 作CD ⊥x 轴于点D .(1)求直线AB 的解析式; (2)若S 梯形OBCD =433,求点C 的坐标;(3)在第一象限内是否存 在点P ,使得以P,O,B 为顶点的三角形与△OBA 相似.若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.反比例函数1.直线x y -=1与双曲线x k y =只有一个交点P ⎪⎭⎫⎝⎛n ,81则直线y=kx+n 不经过第 象限2.(05四川)如图直线AB 与x 轴y 轴交于B 、A ,与双曲线的一个交点是C ,CD ⊥x 轴于D ,OD=2OB=4OA=4,则直线和双曲线的解析式为 3.(06南京)某种灯的使用寿命为1000小时,它可使用天数y 与平均每天使用小时数x 之间的函数关系是4.(06北京)直线y=-x 绕原点O 顺时针旋转90°得到直线l ,直线1与反比例函数xky =的图象的一个交点为A (a,3),则反比例函数的解析式为 5.(06天津)正比例函数)0(≠=k kx y 的图象与反比例函数)0(≠=m xmy 的图象都经过A (4,2)(1)则这两个函数的解析式为 (2)这两个函数的其他交点为 6.点P (m,n )在第一象限,且在双曲线xy 6=和直线上,则以m,n 为邻边的矩形面积为 ;若点P (m,n )在直线y=-x+10上则以m,n 为邻边的矩形的周长为二次函数1.(06大连)如图是二次函数y 1=ax 2+bx +c 和一次函数y 2=mx +n 的图象,观察图象写出y 2≥y 1时,x 的取值范围______________ 2.(06陕西)抛物线的函数表达式是( ) A .22+-=x x y B .22+--=x x y C .22++=x x y D .22++-=x x y3.(06南通)已知二次函数34922++=x x y 当自变量x 取两个不同的值21,x x 时,函数值相等,则当自变量x 取21x x +时的函数值与( )A .1=x 时的函数值相等B .0=x 时的函数值相等C .41=x 时的函数值相等D .49-=x 时的函数值相等4.(06山东)已知关于x 的二次函数2122++-=m mx x y 与2222+--=m mx x y ,这两个二次函数的图象中的一条与x 轴交于A ,B 两个不同的点, (1)过A ,B 两点的函数是 ; (2)若A (-1,0),则B 点的坐标为(3)在(2)的条件下,过A ,B 两点的二次函数当x 时,y 的值随x 的增大而增大5.(05江西)已知抛物线()12+--=m x y 与x 轴交点为A 、B (B在A 的右边),与y 轴的交点为C.(1)写出m=1时与抛物线有关的三个结论;(2)当点B 在原点的右边,点C 在原点的下方时,是否存在△BOC 为等腰三角形?若存在,求出m 的值;若不存在,请说明理由; (3)请你提出一个对任意的m 值都能成立的正确命题.6.(2006年长春市)如图二次函数c bx x y ++=2的图象经过点M (1,-2)、N (-1,6).(1)求二次函数c bx x y ++=2的关系式.(2)把Rt △ABC 放在坐标系内,其中∠CAB = 90°,点A 、B 的坐标分别为(1,0)、(4,0),BC = 5.将△ABC 沿x 轴向右平移,当点C 落在抛物线上时,求△ABC 平移的距离.7.(2006湖南长沙)如图1,已知直线12y x =-与抛物线2164y x =-+交于AB ,两点. (1)求AB ,两点的坐标;(2)求线段AB 的垂直平分线的解析式;(3)如图2,取与线段AB 等长的一根橡皮筋,端点分别固定在A B ,两处.用铅笔拉着这根橡皮筋使笔尖P 在直线AB 上方的抛物线上移动,动点P 将与A B ,构成无数个三角形,这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时P 点的坐标;如果不存在,请简要说明理由.8.(2006吉林长春)如图,在平面直角坐标系中,两个函数621,+-==x y x y 的图象交于点A .动点P 从点O 开始沿OA 方向以每秒1个单位的速度运动,作PQ ∥x 轴交直线BC 于点Q ,以PQ 为一边向下作正方形PQMN ,设它与△OAB 重叠部分的面积为S . (1)求点A 的坐标.(2)试求出点P 在线段OA 上运动时,S 与运动时间t (秒)的关系式.(3)在(2)的条件下,S 是否有最大值?若有,求出t 为何值时,S 有最大值,并求出最大值;若没有,请说明理由.(4)若点P 经过点A 后继续按原方向、原速度运动,当正方形PQMN 与△OAB 重叠部分面积最大时,运动时间t 满足的条件是____________. 9.⊙M 交x,y 轴于A(-1,0),B(3,0),C(0,3)(1)求过A,B,C 三点的抛物线的解析式;(2)求过A,M 的直线的解析式;(3)设(1)(2)中的抛物线与直线的另一个交点为P,求△PAC 的面积. 10.(00上海)已知二次函数c bx x y ++=221的图象经过A (-3,6),并与x 轴交于点B (-1,0)和点C ,顶点为P (1)求这个二次函数的解析式;(2)设D 为线段OC 上一点,且∠DPC=∠BAC ,求D 点坐标11.(06北京)已知抛物线)0(222>++-=m m mx x y 与x 轴交于A 、B 两点,点A 在点B 的左边,C 是抛物线上一个动点(点C 与点A 、B 不重合),D 是OC 的中点,连结BD 并延长,交AC 于点E ,(1)用含m 的代数式表示点A 、B 的坐标;(2)求AECE 的值;(3)当C 、A 两点到y 轴的距离相等,且58=∆CED S 时,求抛物线和直线BE 的解析式.答案一次函数 1. 2 2. 3 3. 2814. D5.12--=x y6.[解] (1)直线AB 解析式为:y=33-x+3. (2)方法一:设点C坐标为(x ,33-x+3),那么OD =x ,CD =33-x+3. ∴OBCD S 梯形=()2CD CD OB ⨯+=3632+-x . 由题意:3632+-x =334,解得4,221==x x (舍去)∴ C(2,33) 方法二:∵ 23321=⨯=∆OB OA S AOB ,OBCD S 梯形=334,∴63=∆ACD S .由OA=3OB ,得∠BAO =30°,AD=3CD .∴ ACD S ∆=21CD ×AD =223CD =63.可得CD =33.∴ AD=1,OD =2.∴C (2,33). (3)当∠OBP =Rt ∠时,如图①若△BOP ∽△OBA ,则∠BOP =∠BAO=30°,BP=3OB=3,∴1P (3,33). ②若△BPO ∽△OBA ,则∠BPO =∠BAO=30°,OP=33OB=1.∴2P (1,3).当∠OPB =Rt ∠时③ 过点P 作OP ⊥BC 于点P(如图),此时△PBO ∽△OBA ,∠BOP =∠BAO =30° 过点P 作PM ⊥OA 于点M .方法一: 在Rt △PBO 中,BP =21OB =23,OP =3BP =23.∵ 在Rt △P MO 中,∠OPM =30°, ∴ OM =21OP =43;PM =3OM =433.∴3P (43,433).方法二:设P(x ,33-x+3),得OM =x ,PM =33-x+3 由∠BOP =∠BAO,得∠POM =∠ABO .∵tan ∠POM==OMPM =x x 333+-,tan ∠ABOC=OBOA =3.∴33-x+3=3x ,解得x =43.此时,3P (43,433). ④若△POB ∽△OBA(如图),则∠OBP=∠BAO =30°,∠POM =30°. ∴ PM =33OM =43. ∴ 4P (43,43)(由对称性也可得到点4P 的坐标).当∠OPB =Rt ∠时,点P 在x轴上,不符合要求.综合得,符合条件的点有四个,分别是:1P (3,33),2P (1,3),3P (43,433),4P (43,43).反比例函数 1.四2.xy x y 4241-=+=3.x y 1000=4.xy 9=5.)2,4(8,21'--==A xy x y6.6,20 二次函数1.12≤≤-x 2.D 3.B4.(1)2222+--=m mx x y(2). (3,0) (3). X<15.(1)顶点(1,1); 对称轴为x=1; 顶点到y 轴的距离为1 (2)m= -2-22 (3)最大值为16.51)2(14)1(2++-=x x y7. [解](1)解:依题意得216412y x y x⎧=-+⎪⎪⎨⎪=-⎪⎩解之得12126432x x y y ==-⎧⎧⎨⎨=-=⎩⎩(63)(42)A B ∴--,,, (2)作AB 的垂直平分线交x 轴,y 轴于C D ,两点,交AB 于M (如图1) 由(1)可知:3525OA OB ==55AB ∴=1522OM AB OB ∴=-= 过B 作BE x ⊥轴,E 为垂足由BEO OCM △∽△,得:54OC OM OC OB OE =∴=,, 同理:55500242OD C D ⎛⎫⎛⎫=∴- ⎪ ⎪⎝⎭⎝⎭,,,, yxO图1 D M ACBE设CD 的解析式为(0)y kx b k =+≠52045522k k b b b ⎧==+⎧⎪⎪⎪∴∴⎨⎨=-⎪⎪-=⎩⎪⎩ AB ∴的垂直平分线的解析式为:522y x =-. (3)若存在点P 使APB △的面积最大,则点P 在与直线AB 平行且和抛物线只有一个交点的直线12y x m =-+上,并设该直线与x 轴,y 轴交于G H ,两点(如图2).212164y x m y x ⎧=-+⎪⎪∴⎨⎪=-+⎪⎩ 2116042x x m ∴-+-=抛物线与直线只有一个交点,2114(6)024m ⎛⎫∴--⨯-= ⎪⎝⎭,2523144m P ⎛⎫∴=∴ ⎪⎝⎭, 在直线12524GH y x =-+:中, 25250024G H ⎛⎫⎛⎫∴ ⎪ ⎪⎝⎭⎝⎭,,,2554GH ∴=设O 到GH 的距离为d ,112212551252524224552GH d OG OH d d AB GH ∴=∴⨯=⨯⨯∴=,∥P ∴到AB 的距离等于O 到GH 的距离d .yxOPA图2HGB∴S 最大面积1155125552224AB d ==⨯⨯=. 8. [解] (1)由⎪⎩⎪⎨⎧+-==,621,x y x y 可得⎩⎨⎧==.4,4y x ∴A (4,4).(2)点P 在y = x 上,OP = t ,则点P 坐标为).22,22(t t 点Q 的纵坐标为t 22,并且点Q 在621+-=x y 上. ∴t x x t 212,62122-=+-=, 即点Q 坐标为)22,212(t t -. t PQ 22312-=. 当t t 2222312=-时,23=t . 当时230≤<t , .2623)22312(222t t t t S +-=-=当点P 到达A 点时,24=t ,当2423<t<时, 2)22312(t S -= 144236292+-=t t . (3)有最大值,最大值应在230≤<t 中,,12)22(2312)824(232623222+--=++--=+-=t t t t t S当22=t 时,S 的最大值为12.(4)212≥t . 9.(1) )3)(1(-+-=x x y(2) 2121+=x y (3)S △PAC=83510.23212--=x x y )0,35(11.(1) A(-m,0) B(2m,0)(2).32=AE CE (3)BE:31634+-=x y抛物线:822++-=x x y。

相关文档
最新文档