实验二 流体流动阻力系数的测定1

合集下载

化工原理实验~流体流动阻力系数的测定实验报告

化工原理实验~流体流动阻力系数的测定实验报告

流体流动阻力系数的测定实验报告一、实验目的:1、掌握测定流体流动阻力实验的一般实验方法。

2、测定直管的摩擦阻力系数λ及突然扩大管和阀门的局部阻力系数ξ。

3、验证湍流区内摩擦阻力系数λ为雷诺系数Re和相对粗糙度的函数。

4、将所得光滑管的λ—Re方程与Blasius方程相比较。

二、实验器材:流体阻力实验装置一套三、实验原理:1、直管摩擦阻力不可压缩流体(如水),在圆形直管中做稳定流动时,由于黏性和涡流的作用产生摩擦阻力;流体在流过突然扩大、弯头等管件时,由于流体运动的速度和方向突然变化,产生局部阻力。

影响流体阻力的因素较多,在工程上通常采用量纲分析方法简化实验,得到在一定条件下具有普遍意义的结果,其方法如下。

流体流动阻力与流体的性质,流体流经处的几何尺寸以及流动状态有关,可表示为△P=f (d, l, u,ρ,μ,ε)引入下列无量纲数群。

雷诺数Re=duρ/μ相对粗糙度ε/ d管子长径比l / d从而得到△P/(ρu2)=ψ(duρ/μ,ε/ d, l / d)令λ=φ(Re,ε/ d)△P/ρ=(l / d)φ(Re,ε/ d)u2/2可得摩擦阻力系数与压头损失之间的关系,这种关系可=△P/ρ=λ(l / d)u2/2用试验方法直接测定。

hf——直管阻力,J/kg式中,hfl——被测管长,md——被测管内径,mu——平均流速,m/sλ——摩擦阻力系数。

当流体在一管径为d的圆形管中流动时,选取两个截面,用U形压差计测出这两个截面间的静压强差,即为流体流过两截面间的流动阻力。

根据伯努利方程找出静压强差和摩擦阻力系数的关系式,即可求出摩擦阻力系数。

改变流速可测出不同Re下的摩擦阻力系数,这样就可得出某一相对粗糙度下管子的λ—Re关系。

(1)、湍流区的摩擦阻力系数在湍流区内λ=f(Re,ε/ d)。

对于光滑管,大量实验证明,当Re在3×103~105范围内,λ和Re的关系遵循Blasius关系式,即λ=0.3163 / Re0.25对于粗糙管,λ和Re的关系均以图来表示。

化工原理含实验报告(3篇)

化工原理含实验报告(3篇)

第1篇一、实验目的1. 理解并掌握化工原理中的基本概念和原理。

2. 通过实验验证理论知识,提高实验技能。

3. 熟悉化工原理实验装置的操作方法,培养动手能力。

4. 学会运用实验数据进行分析,提高数据处理能力。

二、实验内容本次实验共分为三个部分:流体流动阻力实验、精馏实验和流化床干燥实验。

1. 流体流动阻力实验实验目的:测定流体在圆直等径管内流动时的摩擦系数与雷诺数Re的关系,将测得的~Re曲线与由经验公式描出的曲线比较;测定流体在不同流量流经全开闸阀时的局部阻力系数。

实验原理:流体在管道内流动时,由于摩擦作用,会产生阻力损失。

阻力损失的大小与流体的雷诺数Re、管道的粗糙度、管道直径等因素有关。

实验中通过测量不同流量下的压差,计算出摩擦系数和局部阻力系数。

实验步骤:1. 将水从高位水槽引入光滑管,调节流量,记录压差。

2. 将水从高位水槽引入粗糙管,调节流量,记录压差。

3. 改变流量,重复步骤1和2,得到一系列数据。

4. 根据数据计算摩擦系数和局部阻力系数。

实验结果与分析:通过实验数据绘制~Re曲线和局部阻力系数曲线,与理论公式进行比较,验证了流体流动阻力实验原理的正确性。

2. 精馏实验实验目的:1. 熟悉精馏的工艺流程,掌握精馏实验的操作方法。

2. 了解板式塔的结构,观察塔板上汽-液接触状况。

3. 测定全回流时的全塔效率及单板效率。

4. 测定部分回流时的全塔效率。

5. 测定全塔的浓度分布。

6. 测定塔釜再沸器的沸腾给热系数。

实验原理:精馏是利用混合物中各组分沸点不同,通过加热使混合物汽化,然后冷凝分离各组分的方法。

精馏塔是精馏操作的核心设备,其结构对精馏效率有很大影响。

实验步骤:1. 将混合物加入精馏塔,开启加热器,调节回流比。

2. 记录塔顶、塔釜及各层塔板的液相和气相温度、压力、流量等数据。

3. 根据数据计算理论塔板数、全塔效率、单板效率等指标。

4. 绘制浓度分布曲线。

实验结果与分析:通过实验数据,计算出了理论塔板数、全塔效率、单板效率等指标,并与理论值进行了比较。

流体流动阻力的测定(化工原理实验报告)

流体流动阻力的测定(化工原理实验报告)

北 京 化 工 大 学实 验 报 告课程名称: 化工原理实验 实验日期: 2008.10.29 班 级: 化工0602 姓 名:许兵兵学 号: 200611048 同 组 人 :汤全鑫 阮大江 阳笑天流体流动阻力的测定摘要● 测定层流状态下直管段的摩擦阻力系数(光滑管、粗糙管和层流管)。

● 测定湍流状态不同(ε/d)条件下直管段的摩擦阻力系数(突然扩大管)。

● 测定湍流状态下管道局部的阻力系数的局部阻力损失。

● 本次实验数据的处理与图形的拟合利用Matlab 完成。

关键词流体流动阻力 雷诺数 阻力系数 实验数据 Matlab一、实验目的1、掌握直管摩擦阻力系数的测量的一般方法;2、测定直管的摩擦阻力系数λ以及突扩管的局部阻力系数ζ;3、测定层流管的摩擦阻力4、验证湍流区内λ、Re 和相对粗糙度的函数关系5、将所得光滑管的Re -λ方程与Blasius 方程相比较。

二、实验原理不可压缩流体(如水),在圆形直管中作稳定流动时,由于粘性和涡流的作用产生摩擦阻力;流体在流过突然扩大和弯头等管件时,由于流体运动的速度和方向突然发生变化,产生局部阻力。

影响流体流动阻力的因素较多,在工程研究中,利用因次分析法简化实验,引入无因此数群雷 诺 数:μρdu =Re相对粗糙度: d ε管路长径比: d l可导出:2)(Re,2u d d l p⋅⋅=∆εφρ这样,可通过实验方法直接测定直管摩擦阻力系数与压头损失之间的关系:22u d l pH f ⋅⋅=∆=λρ因此,通过改变流体的流速可测定出不同Re 下的摩擦阻力系数,即可得出一定相对粗糙度的管子的λ—Re 关系。

在湍流区内,λ = f(Re ,ε/ d ),对于光滑管大量实验证明,当Re 在3×103至105的范围内,λ与Re 的关系遵循Blasius 关系式,即:25.0Re 3163.0=λ对于层流时的摩擦阻力系数,由哈根—泊谡叶公式和范宁公式,对比可得:Re 64=λ局部阻力:f H =22u ⋅ξ [J/kg]三、装置和流程四、操作步骤1、启动水泵,打开光滑管路的开关阀及压降的切换阀,关闭其它管路的开关阀和切换阀;2、排尽体系空气,使流体在管中连续流动。

流体流动阻力的测定实验报告

流体流动阻力的测定实验报告

流体流动阻力的测定实验报告一、实验目的1、掌握流体流经直管和管件时阻力损失的测定方法。

2、了解摩擦系数λ与雷诺数 Re 之间的关系。

3、学习压强差的测量方法和数据处理方法。

二、实验原理流体在管内流动时,由于黏性的存在,必然会产生阻力损失。

阻力损失包括直管阻力损失和局部阻力损失。

1、直管阻力损失根据柏努利方程,直管阻力损失可表示为:\(h_f =\frac{\Delta p}{ρg}\)其中,\(h_f\)为直管阻力损失,\(\Delta p\)为直管两端的压强差,\(ρ\)为流体密度,\(g\)为重力加速度。

摩擦系数\(λ\)与雷诺数\(Re\)及相对粗糙度\(\frac{\epsilon}{d}\)有关,其关系可通过实验测定。

当流体在光滑管内流动时,\(Re < 2000\)时,流动为层流,\(λ =\frac{64}{Re}\);\(Re > 4000\)时,流动为湍流,\(λ\)与\(Re\)和\(\frac{\epsilon}{d}\)的关系可由经验公式计算。

2、局部阻力损失局部阻力损失通常用局部阻力系数\(\zeta\)来表示,其计算式为:\(h_f' =\frac{\zeta u^2}{2g}\)其中,\(h_f'\)为局部阻力损失,\(u\)为流体在管内的流速。

三、实验装置1、实验设备本实验使用的主要设备包括:离心泵、水箱、不同管径的直管、各种管件(如弯头、三通、阀门等)、压差计、流量计等。

2、实验流程水箱中的水经离心泵加压后进入实验管路,依次流经直管和各种管件,最后流回水箱。

通过压差计测量直管和管件两端的压强差,用流量计测量流体的流量。

四、实验步骤1、熟悉实验装置,了解各仪器仪表的使用方法。

2、检查实验装置的密封性,确保无泄漏。

3、打开离心泵,调节流量至一定值,稳定后记录压差计和流量计的读数。

4、逐步改变流量,重复上述步骤,测量多组数据。

5、实验结束后,关闭离心泵,整理实验仪器。

流体流动阻力的测定

流体流动阻力的测定

流体流动阻力的测定一、引言流体力学是物理学的一个分支,主要研究流体的运动规律和性质。

在工程领域中,流体力学是非常重要的一门学科,涉及到许多领域,如航空、船舶、汽车、建筑等。

在这些领域中,流体的运动特性对于设备的设计和性能有着重要影响。

而测定流体流动阻力是了解这些运动特性的基础。

二、实验原理1. 流体阻力公式当一个物体在流体中运动时,会受到来自流体的阻力。

根据牛顿第二定律,物体所受合外力等于其质量乘以加速度。

因此,在水平方向上运动的物体所受合外力为:F = ma其中F为合外力,m为物体质量,a为加速度。

当物体在水平方向上运动时,在没有其他外力作用下,其所受合外力即为来自水对其作用的阻力Ff。

因此:Ff = ma将牛顿第二定律代入上式可得:Ff = 1/2 * ρ * v^2 * S * Cd其中ρ为流体密度,v为物体相对于流体的速度(即物体速度减去流体速度),S为物体所受阻力的面积,Cd为阻力系数。

2. 流体阻力的测定在实验中,我们可以通过测量物体在流体中运动时所受到的阻力来计算出阻力系数Cd。

一般来说,测量流体阻力有两种方法:直接法和间接法。

直接法是指将物体放置在流体中,然后通过测量所需施加的力来计算出流体阻力。

这种方法通常需要使用特殊设备,如浮子式流量计、翼型试验台等。

间接法是指通过测量物体在流体中运动时所需施加的外部力来计算出流体阻力。

这种方法通常需要使用天平或重量计等设备来测量物体的重量,并结合运动学公式来计算物体所受的加速度和速度等参数。

三、实验步骤1. 实验器材准备准备好天平或重量计、滑轮、绳子、小球等实验器材,并将它们固定在实验台上。

2. 实验样本制备制作一个小球样本,并将其质量称重记录下来。

3. 流动介质准备将水注入实验槽中,并将水温调节到室温。

4. 实验数据测量将小球样本用绳子系在滑轮上,并将滑轮固定在实验台上。

然后,拉动小球样本,使其开始运动,并记录下所需施加的力和小球样本的运动时间。

流体流动阻力的测定(化工原理实验报告)

流体流动阻力的测定(化工原理实验报告)

流体流动阻力的测定(化工原理实验报告)流体流动阻力的测定(化工原理实验报告)摘要:本实验研究了流体流动阻力的测定方法,以了解流阻比数据和参数对流体流动特性的影响。

实验中采用了空心管实验装置,在一定的压差试验条件下,通过压力表和熨斗流量计测量压力和流量,计算出流阻比系数。

通过实验,研究了流阻比系数随着实验参数(流量、温度、压力)变化的规律,从而获得一定规律性的微观流动特性数据。

关键词:流阻比;熨斗流量计;实验;流动阻力1 前言流体流动阻力是研究流体流动特性的一项重要参数。

它决定了流体在管道内流动时会受到什么样的阻力,直接影响着流体在设备内的流动性能和传热特性。

因此,准确测量流体流动阻力是研究管道流动的关键问题。

本实验旨在研究空心管装置测量的流阻比数据对流体流动特性的影响,以便获得微观流动特性数据,并用于管道设计、传热学的研究中。

2 实验目的1)研究在空心管实验装置内测量流阻比系数的变化规律:2)利用测量的流阻比系数,得出瞬态流体流动特性曲线,即流量与压力的变化规律; 3)通过实验有规律地分析,获得实验流体的微观流动特性参数。

3 实验装置本实验主要采用空心管实验装置(见图1),由电磁阀控制罐内的液体,带动空心管内的流体循环,保持流量一定,从而实现实验的要求。

该装置由如下几个部分组成:(1)空心管;(2)球阀;(3)高低压罐;(4)汽缸和气缸;(5)液体泵;(6)电磁阀;(7)水箱;(8)熨斗流量计;(9)压力表;(10)温度计。

4 实验方法1)确定实验条件:根据实验任务,确定温度、压力、流量等参数,以及电磁阀的控制时间;2)进行实验:根据实验条件,控制电磁阀的开启和关闭,实现空心管内的液体流动,同时调节实验参数,测量压力及流量;3)根据压力和流量,绘出流量-压力曲线,计算出对应的流阻比系数;4)根据实验数据,进行实验数据分析,探究实验参数变化时,流阻比系数变化规律,得出流体的微观流动特性参数。

5 实验数据在实验中,调节不同的参数,实现不同的实验条件,测量得到流量和压力的数据,根据测量的实验数据,画出Flow-Pressure曲线,结果如下表1所示:实验条件实测压力(MPa) 实测流量(M3/h)流阻比(MPa/m3/h)条件1 0.39 0.159 0.80条件2 0.51 0.159 1.06条件3 0.62 0.159 1.29条件4 0.68 0.159 1.41条件5 0.80 0.159 1.64表1 实验结果图2 Flow-Pressure曲线图6 结论1)根据上述的实验结果,可以发现,随着压力和流量的增加,流阻比也相应地增大;2)通过分析实验数据,可以获得一定的规律性的微观流动特性数据,即通过把不同的实验参数变量并入方程式中,可以根据需要精确地预测不同条件下,流体流动时的压力和流量变化规律;3)该测试结果可以作为设计管路时流体传热特性和流动特性的参考,更好地掌握管路中流体的流动特性。

流体流动阻力的测定实验报告

流体流动阻力的测定实验报告摘要:通过测算不同流速和管道直径下流体的流量和压降,确定了流体流动阻力与流速和管道直径的关系,并确立了相应的流体流动阻力公式。

实验的结果表明,流体流动阻力与流速和管道直径的平方成正比,结果与理论计算值基本吻合。

一、实验原理在流体力学中,我们研究流体在管道中的运动和分布。

不同形状、不同截面的管道中,流体的流动速度和压强是不同的,流体的动能和势能也会随着时间和位置的变化而发生变化。

在流体流动中,管道内壁与流体的相互作用形成一定的阻力,这种阻力称为流体流动阻力。

实验中,我们设计了一套管道流体流动测量装置,通过测算流体在不同流速和管道直径下流量和压降,确定了流体流动阻力与流速和管道直径的关系,并确立了相应的流体流动阻力公式。

二、实验步骤1. 准备工作:将实验装置安装好,并连接好各个部件。

2. 流量测定:打开水泵,将水流导向流量计中,通过观察流量计中的示数,测定流体的流量。

3. 压降测定:利用几何水平仪测定与水平面夹角,计算出流体在管道中的压降。

4. 流速测定:通过测算流量和管道截面积,计算出流体的平均流速。

5. 重复实验:重复以上测定步骤,测定不同流速和管道直径下的流量和压降数据,以确定流体流动阻力与流速和管道直径的关系。

6. 数据处理:根据实验数据计算出流体流动阻力公式,并与理论计算值对比。

三、实验结果与分析1. 流量与管道直径的关系通过实验测定,流量与管道直径的平方成正比。

实验数据如下:流量 Q (m3/h) 1 2 3 4 5直径 D (cm) 1 1.5 2 2.5 32. 压降与流速的关系通过实验测定,压降与流速的平方成正比。

实验数据如下:流速 v (m/s) 0.67 1.13 1.33 1.51压降 h (m) 0.05 0.09 0.12 0.163. 流体流动阻力与流速和管道直径的关系根据实验得到的数据,流体流动阻力与流速和管道直径的平方成正比。

流体流动阻力公式为:f = αρv2 D2/4其中,f 为阻力系数,ρ 为流体密度,v 为平均流速,D 为管道直径,α 为系数。

流体流动阻力的测定

流体流动阻力的测定一、实验流程实验装置流程如图1所示,装置图如图2所示。

压差的测量采用压差传感器或U 型压差计,流量的测量采用涡轮流量计。

直管两测压点之间的距离为3m ,光滑管内径为28 mm ,粗糙管内径为26.6 mm ,局部阻力管段内径为32mm 。

图1流体流动阻力测定实验流程图图2流体流动阻力测定实验装置图二、实验内容(1)测定流体在不同材质和d 的直管中流动时的阻力摩擦系数λ,在双对数坐标纸绘出λ和R e 之间的关系;(2)测定流体通过阀门或90º弯头时的局部阻力系数。

三、实验步骤1. 关闭控制阀,打开光滑管管路上2 个压差变送器的平衡阀,打开光滑管引压阀、光滑管切换阀、弯头引压阀,关闭其它所有阀,打开引水阀,灌泵,放气,然后关闭。

2. 启动泵,系统排气。

(1)总管排气:先将控制阀开至最大然后再关闭,重复三次,目的为了使总管中的大部分气体被排走,然后打开总管排气阀,开至最大后再关闭,重复三遍。

(2)引压管排气:依次对4个放气阀进行排气,将阀门开、关重复三次。

(3)压差计排气:关闭2个平衡阀,重复上述(2)步骤。

3. 将控制阀开至最大,读取流量显示仪读数Q max,然后关至压差显示值约为0.2Kpa~0.3Kpa时,再读取流量显示仪读数Q min,在Q min和Q max二个读数之间布15个点,读取数据。

4.关闭光滑管切换阀。

打开粗糙管管路上2 个压差变送器的平衡阀,打开粗糙管引压阀、粗糙管切换阀、阀门引压阀。

5.粗糙管系统排气步骤同2的(2)、(3)。

6.粗糙管系统流动阻力的测定同光滑管,重复步骤3。

7.实验结束后,关闭控制阀。

离心泵特性曲线的测定一、实验流程实验流程如图3所示,装置图如图4所示,离心泵进、出口管内径分别为40mm、32mm。

图3 离心泵特性曲线测定实验流程图图4 离心泵特性曲线测定装置图二、实验内容用作图法处理实验数据,绘制离心泵特性曲线。

三、实验步骤1. 打开压差传感器平衡阀,关闭离心泵调节阀,打开引水阀,反复开、关放气阀,气体被排尽后,关闭放气阀和引水阀。

流体流动阻力的测定


粗糙管 平均水温 t 水=28.1℃ 序号 1 2 3 4 5 6 电机功率(kW) 0.75 0.75 0.77 0.77 0.78 0.79 查表:ρ=996.204kg/m 管径 d=0.023m 流量(m /h) 0.49 0.79 1.07 1.35 1.63 1.95
3 3
层流管 μ=0.8360× 10 Pa· s 左 2420 2300 2150 1970 1750 1480 右 2560 2630 2700 2790 2890 3030 水温(℃) 28.3 28.4 28.1 27.8 27.9 27.9
涡轮流量计
LWGY-25AOD3T/K
水箱 高位槽
0.60m× 0.40m× 0.60m Φ0.11m×0.25m
不锈钢 不锈钢
2-8
流体流动阻力的测定
仪表序号 PI01 NI02 装置控制 点 PI03 FI04 TI05 ΔPI06 a1 、a2 ;b1 、b2 ;c 1 、 c 2 ;d1 、d2 ;e1 、e2 ; f1 、f2
名称 层流管 局部阻力 光滑管 粗糙管 突扩管 泵出口管 型号 Φ6×1.5 Φ27×3.0 Φ27×3.0 Φ27×3.0 Φ27×3.0→Φ 48×3.0 DN25 材质/参数 不锈钢管 球阀、截止阀 不锈钢管 镀锌钢管 不锈钢管 不锈钢管 Q=110L/min, 装置参数 水泵 磁力驱动泵 32CQ-15 H=15m,驱动功: 1.1kW, 电压: 380V, 转速=2900r/min 孔板流量计 C0 =0.73,d0 =0.021m 公称压力:0.3MPa, 上海自仪九仪表 精确度:0.5 级 有限公司 1.5 1.5 测量段长度/m 1
-3
平均水温 t 水=27.6℃ 序号 1 2 3 4 5 6 7 时间(s) 30 30 30 30 30 30 30

流体流动阻力

流体流动阻力测定实验一、实验目的1.1掌握测定流体流经直管、管件和阀门时阻力损失的一般实验方法。

1.2测定直管摩擦系数λ与雷诺准数Re的关系,验证在一般湍流区内λ与Re 的关系曲线。

1.3测定流体流经管件、阀门时的局部阻力系数ξ。

1.4学会倒U形压差计和涡轮流量计的使用方法。

1.5识辨组成管路的各种管件、阀门,并了解其作用。

二、实验原理流体通过由直管、管件(如三通和弯头等)和阀门等组成的管路系统时,由于粘性剪应力和涡流应力的存在,要损失一定的机械能。

流体流经直管时所造成机械能损失称为直管阻力损失。

流体通过管件、阀门时因流体运动方向和速度大小改变所引起的机械能损失称为局部阻力损失。

2.1直管阻力摩擦系数λ的测定流体在水平等径直管中稳定流动时,阻力损失为:2221udlppphffλρρ=−=Δ= (1)即, 22lupdfρλΔ= (2)式中:λ—直管阻力摩擦系数,无因次;d —直管内径,m;fpΔ—流体流经l米直管的压力降,Pa;fh—单位质量流体流经l米直管的机械能损失,J/kg;ρ—流体密度,kg/m3;l —直管长度,m;u —流体在管内流动的平均流速,m/s。

滞流(层流)时,64=λ(3)μρdu=Re (4)式中:Re —雷诺准数,无因次;μ—流体粘度,kg/(m·s)。

湍流时λ是雷诺准数Re和相对粗糙度(ε/d)的函数,须由实验确定。

由式(2)可知,欲测定λ,需确定l、d,测定、u、ρ、μ等参数。

l、d 为装置参数(装置参数表格中给出),ρ、μ通过测定流体温度,再查有关手册而得, u通过测定流体流量,再由管径计算得到。

fpΔ例如本装置采用涡轮流量计测流量V(m3/h)。

2900dVuπ= (5)fpΔ可用U型管、倒置U型管、测压直管等液柱压差计测定,或采用差压变送器和二次仪表显示。

(1)当采用倒置U型管液柱压差计时(6) gRpfρΔ=式中:R-水柱高度,m。

(2)当采用U型管液柱压差计时()gRpfρρΔ−=0 (7)式中:R-液柱高度,m;0ρ-指示液密度,kg/m3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二 流体流动阻力系数的测定
一、实验目的:
1.学习直管摩擦阻力△P f 、直管摩擦系数λ的测定方法。

2.掌握直管摩擦系数λ与雷诺数Re 和相对粗糙度之间的关系及其变化规律。

3.掌握局部摩擦阻力△P f 、局部阻力系数ζ的测定方法。

4.学习压强差的几种测量方法和提高其测量精确度的一些技巧。

二、实验内容:
1.测定实验管路内流体流动的阻力和直管摩擦系数λ。

2.测定并绘制实验管路内流体流动的直管摩擦系数λ与雷诺数Re 和相对粗糙度之间的关系曲线。

3.测定管路部件局部摩擦阻力△P f 和局部阻力系数ζ。

三、实验原理:
1.直管摩擦系数λ与雷诺数Re 的测定
流体在管道内流动时,由于流体的粘性作用和涡流的影响会产生阻力。

流体在直管内流动阻力的大小与管长、管径、流体流速和管道摩擦系数有关,它们之间存在如下关系: 2
2
u d l h f
P f λρ
==∆ (1)
22u
P l d f
∆⋅⋅=
ρλ (2)μ
ρ
⋅⋅=
u d Re (3)
式中:-d 管径,m ; -∆f P 直管阻力引起的压强降,Pa ;
-l 管长,m ; -ρ流体的密度,kg / m 3; -u 流速,m / s ; -μ流体的粘度,N·
s / m 2。

直管摩擦系数λ与雷诺数Re 之间有一定的关系,这个关系一般用曲线来表示。

在实验装置中,直管段管长l 和管径d 都已固定。

若水温一定,则水的密度
ρ和粘度μ也是定值。

所以本实验实质上是测定直管段流体阻力引起的压强降
f P ∆与流速u (流量V )之间的关系。

根据实验数据和式(1-2)可计算出不同流速下的直管摩擦系数λ,用式(3)计算对应的Re ,从而整理出直管摩擦系数和雷诺数的关系,绘出λ与Re 的关系曲线。

2.局部阻力系数ζ的测定: 2
2
'u P h f
f ζρ
=∆=
' (4) 2'2u P f
∆⋅⎪⎪⎭
⎫ ⎝⎛=ρζ (5)
式中:-ζ局部阻力系数,无因次;
-∆'f P 局部阻力引起的压强降,Pa ;
-'f h 局部阻力引起的能量损失,J /kg 。

图一 局部阻力测量取压口布置图
局部阻力引起的压强降'f P ∆ 可用下面的方法测量:在一条各处直径相等的直管段上,安装待测局部阻力的阀门,在其上、下游开两对测压口a-a'和b-b ',见图1-1,使ab =bc a 'b '=b 'c ' 则 △P f ,a b =△P f ,bc ; △P f ,a 'b '= △P f ,b 'c '
在a~a '之间列柏努利方程式: P a -P a ' =2△P f ,a b +2△P f ,a 'b '+△P 'f (6) 在b~b '之间列柏努利方程式: P b -P b ' = △P f ,bc +△P f ,b 'c '+△P 'f
= △P f ,a b +△P f ,a 'b '+△P 'f (7) 联立式(1-6)和(1-7),则:'f P ∆=2(P b -P b ')-(P a -P a ')
为了便于区分,称(P b -P b ')为近点压差,(P a -P a ')为远点压差。

其数值通过差压传感器来测量。

四、实验装置基本情况: 1.实验装置技术参数
离心泵:型号WB 70/055 流量8m 3/h 扬程:12m 电机功率550W 被测直管段:光滑管管径d=0.0078 (m) 管长L-1.70 (m) 材料不锈钢
粗糙管管径d=0.01 (m) 管长L-1.70(m) 材料不锈钢
被测局部阻力直管:管径d=0.015(m) 管长L-1.70(m) 材料不锈钢
玻璃转子流量计:型号LZB—25 测量范围100~1000(L/h)
型号LZB—10 测量范围10~100(L/h)
压差传感器:型号LXWY 测量范围200 KPa
数字显示仪表: 温度测量Pt100 数显仪表:AI501B
压差测量压差传感器数显仪表:AI501BV24
2. 单相流动阻力测定实验装置流程示意图(见图二)
图二单相流动阻力测定实验装置流程示意图
1-水箱;2-离心泵;3、4-放水阀;5、13-缓冲罐;6-局部阻力近端测压阀;
7、15-局部阻力远端测压阀;8、20-粗糙管测压阀;9、19-光滑管测压阀;10-局部阻力管阀;11-U型管进出水阀;12-压力传感器;14-大流量调节阀;
15、16-水转子流量计;17-光滑管阀;18-粗糙管阀;21-倒置U型管放空阀;22-倒置U型管;23-水箱放水阀;24-放水阀;
3. 单相流动阻力测定实验装置面板示意图见图-3
图三实验装置面板示意图
五、实验方法及步骤:
(1)向储水槽内注水至水满为止。

(最好使用蒸馏水,以保持流体清洁)
(2)光滑管阻力测定:
·关闭粗糙管路阀门,将光滑管路阀门全开,在流量为零条件下,打开通向倒置U型管的进水阀,检查导压管内是否有气泡存在。

若倒置U型管内液柱高度差不为零,则表明导压管内存在气泡。

需要进行赶气泡操作。

导压系统如图三所示。

操作方法如下:
加大流量,打开U型管进出水阀门11,使倒置U型管内液体充分流动,以赶出管路内的气泡;若观察气泡已赶净,将流量调节阀24关闭,U型管进出水阀11关闭,慢慢旋开倒置U型管上部的放空阀26后,分别缓慢打开阀门3、4,使液柱降至中点上下时马上关闭,管内形成气—水柱,此时管内液柱高度差不一定为零。

然后关闭放空阀26,打开U型管进出水阀11,此时U型管两液柱的高度差应为零(1—2mm的高度差可以忽略),如不为零则表明管路中仍有气泡存在,需要重复进行赶气泡操作。

·该装置两个转子流量计并联连接,根据流量大小选择不同量程的流量计测量流量。

·差压变送器与倒置U型管亦是并联连接,用于测量压差,小流量时用∪型管压差计测量,大流量时用差压变送器测量。

应在最大流量和最小流量之间进行实验操作,一般测取15~20组数据。

注:在测大流量的压差时应关闭U型管的进出水阀11,防止水利用U型管形成
回路影响实验数据。

图四导压系统示意图
3、4-排水阀;11-U型管进水阀;12-压力传感器;26-U型管放空阀;27-U型管
(3) 粗糙管阻力测定:关闭光滑管阀,将粗糙管阀全开,从小流量到最大流量,测取15~20组数据。

(4) 测取水箱水温。

待数据测量完毕,关闭流量调节阀,停泵。

(5) 粗糙管、局部阻力测量方法同前。

六、实验操作注意事项:
1.启动离心泵之前以及从光滑管阻力测量过渡到其它测量之前,都必须检查所有流量调节阀是否关闭。

2.利用压力传感器测量大流量下△P时,应切断空气—水倒置∪型玻璃管的阀门否则将影响测量数值的准确。

3.在实验过程中每调节一个流量之后应待流量和直管压降的数据稳定以后方可记录数据。

七、数据处理
计算过程
1.流体阻力测量
2.局部阻力系数 的测定
3.单相流动阻力实验数据记录表(光滑管)见表1
表1 单相流动阻力实验数据记录表(光滑管)
4.单相流体阻力实验装置数据记录(局部阻力)见表3 表3 流体阻力实验数据记录表(局部阻力)
5.单相流动阻力实验数据记录(粗糙管)见表2
表2 单相流动阻力实验数据记录表(粗糙管)。

相关文档
最新文档