人教版八年级数学上册第14章同步练习题全套-14.3.2一次函数和一元一次不等式

合集下载

初中数学人教版八年级上册第十四章同步练习题带答案

初中数学人教版八年级上册第十四章同步练习题带答案

初初初初初初初初初初初初初初初初初初初初初初初初14.1整式的乘法一、选择题1.计算3a2⋅a3的结果是()A. 4a5B. 4a6C. 3a5D. 3a62.要使(x2+ax+5)⋅(−6x3)的展开式中不含x4的项,则a应等于()D. 1A. −1B. 0C. 163.下列计算错误的是()A. (−a)⋅(−a)2=a3B. (−a)2⋅(−a)2=a4C. (−a)3⋅(−a)2=−a5D. (−a)3⋅(−a)3=a64.已知(x−3)(x2+mx+n)的乘积项中不含x2和x项,则m,n的值分别为()A. m=3,n=9B. m=3,n=6C. m=−3,n=−9D. m=−3,n=95.下列各式中,计算结果错误的是().A. (x+2)(x−3)=x2−x−6B. (x−4)(x+4)=x2−16C. (2x+3)(2x−6)=2x2−3x−18D. (2x−1)(2x+2)=4x2+2x−26.若(x+m)(x+n)=x2−5x−15,则()A. m,n同时为正B. m,n同时为负C. m,n异号且绝对值小的为负D. m,n异号且绝对值大的为负7.已知a m=5,a n=2,则a m+n的值等于()A. 25B. 10C. 8D. 78.下列计算正确的是()A. (x3)2=x5B. (x3)2=x6C. (x n+1)2=x2n+1D. x3⋅x2=x6二、填空题9.若4x=3,则4x+2=________.10.若−x a+b y5与3x4y2b−a的和是单项式,则(2a+2b)(a−3b)的值为.11.若x3n=5,y2n=3,则x6n y4n的值为.12.计算:(m−n)·(n−m)3·(n−m)4=________.13.若m为正偶数,则(a−b)m⋅(b−a)n与(b−a)m+n的结果(填“相等”或“互为相反数”).三、计算题14.计算:(1)(m−2n)(−m−n);(2)(x+1)(x2−x+1);(3)(a−b)(a2+ab+b2);(4)x(x2+x−1)−(2x2−1)(x−4).四、解答题15.小明有一块长为m米,宽为n米的长方形玻璃,长、宽各裁掉a米后恰好能铺盖一张办公桌台面(玻璃与台面的大小相同),则台面面积是多少?16.(1)已知m+4n−3=0,求2m⋅16n的值;(2)已知x2m=2,求(2x3m)2−(3x m)2的值.17.若x=2m+1,y=3+4m.(1)请用含x的式子表示y;(2)如果x=4,求此时y的值.18.(1)已知−2x3m+1y2n与4x n−2y6−m的积和−4x4y2是同类项,求m,n的值;a xb y+8与单项式4a2y b3x−y的和为单项式,求这两个单项式的积.(2)已知单项式−23答案和解析1.【答案】C【解析】解:3a2⋅a3=3a5.故选:C.直接利用单项式乘以单项式运算法则化简得出答案.此题主要考查了单项式乘以单项式运算,正确掌握相关运算法则是解题关键.2.【答案】B【解析】【分析】本题主要考查单项式乘多项式.先展开,然后根据不含x4项可知x4项的系数为0,计算即可.【解答】解:(x2+ax+5)⋅(−6x3)=−6x5−6ax4−30a3,∵展开式中不含x4的项,∴−6a=0,∴a=0,故选B.3.【答案】A【解析】【分析】本题考查了同底数幂的乘法,解答本题的关键是掌握同底数幂的乘法法则.根据同底数幂的乘法法则,结合选项进行判断即可.【解答】解:A、(−a)⋅(−a)2=−a3,原式计算错误,故本选项正确;B、(−a)2⋅(−a)2=a4,计算正确,故本选项错误;C、(−a)3⋅(−a)2=−a5,计算正确,故本选项错误;D、(−a)3⋅(−a)3=a6,计算正确,故本选项错误;故选A.4.【答案】A【解析】【分析】本题考查了多项式乘多项式法则,合并同类项时要注意项中的指数及字母是否相同.多项式乘多项式法则,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.不含某一项就是说这一项的系数为0.【解答】解:∵原式=x3+(m−3)x2+(n−3m)x−3n,又∵乘积项中不含x2和x项,∴(m−3)=0,(n−3m)=0,解得,m=3,n=9.故选A.5.【答案】C【解析】【分析】本题主要考查多项式乘多项式,根据多项式乘多项式的运算法则:用多项式的每一项去乘另一个多项式的每一项,再把所得的积相加,逐项计算即可求解.【解答】解:A.(x+2)(x−3)=x2−3x+2x−6=x2−x−6,故正确;B.(x−4)(x+4)=x2−4x+4x−16=x2−16,故正确;C.(2x+3)(2x−6)=4x2−12x+6x−18=4x2−6x−18,故错误;D.(2x−1)(2x+2)=4x2+4x−2x−2=4x2+2x−2,故正确;故选C.6.【答案】D【解析】【分析】本题主要考查多项式乘多项式.根据多项式乘多项式展开,求出m+n=−5,mn=−15,判断即可.【解答】解:(x+m)(x+n)=x2+(m+n)x+mn,∴m+n=−5,mn=−15,∵mn=−15<0,∴m,n异号,又∵m+n=−5<0,∴m,n中负数的绝对值大,故选D.7.【答案】B【解析】【分析】本题考查了同底数幂的乘法,同底数幂的乘法:底数不变指数相加,根据同底数幂的乘法,可得答案.【解答】解:∵a m=5,a n=2,∴a m+n=a m⋅a n=10,故选B.8.【答案】B【解析】【分析】本题主要考查同底数幂的乘法、幂的乘方、积的乘方的应用,着重培养学生的运算能力.解题的关键是会利用同底数幂的乘法、幂的乘方、积的乘方计算.【解答】A.(x3)2=x6,故A错误;B.(x3)2=x6,故B正确;C.(x n+1)2=x2n+2,故C错误;D.x3⋅x2=x3+2=x5,故D错误.故选B.9.【答案】48【解析】【分析】本题考查同底数幂的运算性质,代数式求值.根据a m●a n=a m+n,将所求代数式变形为4x+2=4x×42,再把4x=3代入计算即可.【解答】解:∵4x=3,∴4x+2=4x×42=3×16=48.故答案为48.10.【答案】−64【解析】【分析】此题考查了多项式乘多项式,以及合并同类项,熟练掌握同类项性质及运算法则是解本题的关键.根据题意得到两式为同类项,确定出a与b的值,代入原式计算即可求出值.【解答】解:∵−x a+b y5与3x4y2b−a的和是单项式,∴−x a+b y5与3x4y2b−a为同类项,即a+b=4①2b−a=5②①+②得b=3,再代入①得a=1,则(2a+2b)(a−3b)=(2+6)×(1−9)=−64,故答案为:−6411.【答案】225【解析】【分析】本题主要考查同底数幂的乘法、幂的乘方、积的乘方的应用。

新人教版八年级上册数学14.3.3一次函数与二元一次方程(组)课课练题库及答案

新人教版八年级上册数学14.3.3一次函数与二元一次方程(组)课课练题库及答案

新人教版八年级上册数学14.3.3一次函数与二元一次方程(组)课课练题库及答案XX年新人教版八年级上册数学14.3.3一次函数与二元一次方程(组)课课练题库及答案14.3.3一次函数与二元一次方程(组)堂堂清试题命题人:陶赖昭二中王双玲审题人:赵守庆一、选择题1.已知方程组2x+1=-x+4的解是 x=1,则直线y=2x+1与y=-x+4的交点是()y=3A. (1,0)B.(1,3)C.(-1,-1)D.(-1,5)2.若直线y= +n与y=mx-1相交于点(1,-2),则( ).A.m= ,n=- B.m= ,n=-1;C.m=-1,n=- D.m=-3,n=-3.方程组 x+y=2 没有解,由此一次函数y=2-x与y= -x的图像必定 ( )2x+2y=3A. 重合B. 平行C. 相交D. 无法判断4.在y=kx+b中,当x=1时y=2;当x=2时y=4,则k,b的值是( ).A. B. C. D.二、填空题5.已知是方程组的解,那么一次函数y=3-x 和y= +1的交点是________.6. 在同一直角坐标系内分别作出一次函数y=2x-2与2y=4x-4的图像,这两个图像的关系是 2x-y-2=0_________,由此可知方程组 4x-2y-4=0的解的情况是__________.三、解答题7. 若直线y=ax+7经过一次函数y=4-3x和y=2x-1的交点,求a的值.8. 已知一次函数y=kx+b的图像经过点A(0,2)和点B(-a,3)且点B在正比例函数y=-3x的图像上.(1) 求a的值; (2) 求一次函数的解析式.四、探究题9.有两条直线y=ax+b,y=cx+5,学生甲解出它们的交点坐标为(3,-2),可学生乙因为把c抄错了,所以解出它们的交点为(34 ,14 ),求这两条直线的表达式.14.3.3一次函数与二元一次方程(组)堂堂清试题答案一、选择题1.B2.C3.B 4.B.二.填空题5.(,)提示:此题不用解方程组,根据一次函数与二元一次方程组的关系,•结合已知就可得到答案.6.重合,无数组解三.解答题7.解方程组得∴两函数的交点坐标为(1,1).把x=1,y=1代入y=ax+7,得1=a+7,解得a=-6.8.(1)因为点B(-a,3)在y=-3x的图像上所以3 a=3a=1则点B(-1,3)(2)y=kx+b的图像经过点A(0,2)和点B(-1,3)把点A(0,2)和点B(-1,3) 分别代入y=kx+b,得b=0 k=-1-k+b=3 解得 b=2则函数的解析式为y=-x+29.因为两直线的交点为(3,-2),把交点坐标代入两直线的解析式得-2=3a+b (1)-2=3c+5所以c= -37因为点(34 ,14 )在直线y=ax+b上,所以14 =34 a+b (2)解(1)(2)组成的方程组得a=-1,b=1所以这两条直线的解析式分别为y=-x+1,y=-37 x+5XX年新人教版八年级上册数学14.3.3一次函数与二元一次方程(组)课课练题库及答案14.3.3一次函数与二元一次方程(组)堂堂清试题命题人:陶赖昭二中王双玲审题人:赵守庆一、选择题1.已知方程组2x+1=-x+4的解是 x=1,则直线y=2x+1与y=-x+4的交点是()y=3A. (1,0)B.(1,3)C.(-1,-1)D.(-1,5)2.若直线y= +n与y=mx-1相交于点(1,-2),则( ).A.m= ,n=- B.m= ,n=-1;C.m=-1,n=- D.m=-3,n=-3.方程组 x+y=2 没有解,由此一次函数y=2-x与y= -x的图像必定 ( )2x+2y=3A. 重合B. 平行C. 相交D. 无法判断4.在y=kx+b中,当x=1时y=2;当x=2时y=4,则k,b的值是( ).A. B. C. D.二、填空题5.已知是方程组的解,那么一次函数y=3-x 和y= +1的交点是________.6. 在同一直角坐标系内分别作出一次函数y=2x-2与2y=4x-4的图像,这两个图像的关系是 2x-y-2=0_________,由此可知方程组 4x-2y-4=0的解的情况是__________.三、解答题7. 若直线y=ax+7经过一次函数y=4-3x和y=2x-1的交点,求a的值.8. 已知一次函数y=kx+b的图像经过点A(0,2)和点B(-a,3)且点B在正比例函数y=-3x的图像上.(1) 求a的值; (2) 求一次函数的解析式.四、探究题9.有两条直线y=ax+b,y=cx+5,学生甲解出它们的交点坐标为(3,-2),可学生乙因为把c抄错了,所以解出它们的交点为(34 ,14 ),求这两条直线的表达式.14.3.3一次函数与二元一次方程(组)堂堂清试题答案一、选择题1.B2.C3.B 4.B.二.填空题5.(,)提示:此题不用解方程组,根据一次函数与二元一次方程组的关系,•结合已知就可得到答案.6.重合,无数组解三.解答题7.解方程组得∴两函数的交点坐标为(1,1).把x=1,y=1代入y=ax+7,得1=a+7,解得a=-6.8.(1)因为点B(-a,3)在y=-3x的图像上所以3 a=3a=1则点B(-1,3)(2)y=kx+b的图像经过点A(0,2)和点B(-1,3)把点A(0,2)和点B(-1,3) 分别代入y=kx+b,得b=0 k=-1-k+b=3 解得 b=2则函数的解析式为y=-x+29.因为两直线的交点为(3,-2),把交点坐标代入两直线的解析式得-2=3a+b (1)-2=3c+5所以c= -37因为点(34 ,14 )在直线y=ax+b上,所以14 =34 a+b (2)解(1)(2)组成的方程组得a=-1,b=1所以这两条直线的解析式分别为y=-x+1,y=-37 x+5XX年新人教版八年级上册数学14.3.3一次函数与二元一次方程(组)课课练题库及答案14.3.3一次函数与二元一次方程(组)堂堂清试题命题人:陶赖昭二中王双玲审题人:赵守庆一、选择题1.已知方程组2x+1=-x+4的解是 x=1,则直线y=2x+1与y=-x+4的交点是()y=3A. (1,0)B.(1,3)C.(-1,-1)D.(-1,5)2.若直线y= +n与y=mx-1相交于点(1,-2),则( ).A.m= ,n=- B.m= ,n=-1;C.m=-1,n=- D.m=-3,n=-3.方程组 x+y=2 没有解,由此一次函数y=2-x与y= -x的图像必定 ( )2x+2y=3A. 重合B. 平行C. 相交D. 无法判断4.在y=kx+b中,当x=1时y=2;当x=2时y=4,则k,b的值是( ).A. B. C. D.二、填空题5.已知是方程组的解,那么一次函数y=3-x 和y= +1的交点是________.6. 在同一直角坐标系内分别作出一次函数y=2x-2与2y=4x-4的图像,这两个图像的关系是 2x-y-2=0_________,由此可知方程组 4x-2y-4=0的解的情况是__________.三、解答题7. 若直线y=ax+7经过一次函数y=4-3x和y=2x-1的交点,求a的值.8. 已知一次函数y=kx+b的图像经过点A(0,2)和点B(-a,3)且点B在正比例函数y=-3x的图像上.(1) 求a的值; (2) 求一次函数的解析式.四、探究题9.有两条直线y=ax+b,y=cx+5,学生甲解出它们的交点坐标为(3,-2),可学生乙因为把c抄错了,所以解出它们的交点为(34 ,14 ),求这两条直线的表达式.14.3.3一次函数与二元一次方程(组)堂堂清试题答案一、选择题1.B2.C3.B 4.B.二.填空题5.(,)提示:此题不用解方程组,根据一次函数与二元一次方程组的关系,•结合已知就可得到答案.6.重合,无数组解三.解答题7.解方程组得∴两函数的交点坐标为(1,1).把x=1,y=1代入y=ax+7,得1=a+7,解得a=-6.8.(1)因为点B(-a,3)在y=-3x的图像上所以3 a=3a=1则点B(-1,3)(2)y=kx+b的图像经过点A(0,2)和点B(-1,3)把点A(0,2)和点B(-1,3) 分别代入y=kx+b,得b=0 k=-1-k+b=3 解得 b=2则函数的解析式为y=-x+29.因为两直线的交点为(3,-2),把交点坐标代入两直线的解析式得-2=3a+b (1)-2=3c+5所以c= -37因为点(34 ,14 )在直线y=ax+b上,所以14 =34 a+b (2)解(1)(2)组成的方程组得a=-1,b=1所以这两条直线的解析式分别为y=-x+1,y=-37 x+5。

【数学】新人教版八年级上册数学1431一次函数与一元一次方程课课练题库及答案

【数学】新人教版八年级上册数学1431一次函数与一元一次方程课课练题库及答案

【关键字】数学新人教版八年级上册数学《XX年新人教版八年级上册数学《14.3.1一次函数与一元一次方程“堂堂清”试题命题人:陶赖昭二中王晓伟审题人:赵守庆(一)填空题:1.从“数”的角度看:一元一次方程kx+b=0(k,b 为常数,且k≠0)的解,就是一次函数y=______的函数值为_____时,相应的自变量x的值;从“形”的角度看,一元一次方程kx+b=0的解就是一次函数y=_____的图像与_____轴交点的______坐标。

2.直线y=kx+b交x轴交于点(2,0),则关于x的方程kx+b=0的解为__________.3.已知关于x的方程ax+b=0的解是x=5,则直线y=ax+b的图像与x轴的交点坐标是______ 4.直线y=3x+6与x轴的交点的横坐标x的值是方程2x+a=0的解,则a的值是______5.已知直线y=2x+8与x轴和y轴的交点的坐标分别是_______、_______.与两条坐标轴围成的三角形的面积是__________.(二)选择题:1.直线y=3x+9与x轴的交点是()A.(0,-3) B.(-3,0) C.(0,3) D.(3,0)2.直线y=kx+3与x轴的交点是(1,0),则k 的值是()A.3 B.2 C.-2 D.-33.已知直线AB∥x轴,且点A的坐标是(-1,1),则直线y=x与直线AB的交点是()A.(1,1) B.(-1,-1) C.(1,-1) D.(-1,1)4.直线y=-2x+b与两坐标轴围成的三角形的面积为4,则b的值为()A、4B、-4C、±4D、±2(三)解答题1.画出函数y=2x+6的图象,利用图象:1、求方程2x+6=0的解,然后观察当自变量x取何值时函数值为102.关于x的一元一次方程m(x+2)-5=9m的解是一次函数y=-2x+4的图像与x轴交点的横坐标,求m的值。

3.已知关于x的方程kx+b=0的解为x=2,一次函数y=kx+b向左平移2个单位长度后经过点(4,1),求一次函数的解析式4.有一个一次函数的图象,可心和黄瑶分别说出了它的两个特征.可心:图象与x轴交于点(6,0)。

初二(上)数学精品同步及答案-14.一次函数综合练习

初二(上)数学精品同步及答案-14.一次函数综合练习

数学初二上册精品同步练习及答案第十四章一次函数基础【知识梳理】1.正比例函数与一次函数的关系:正比例函数是当y=kx+b中b=0时特殊的一次函数。

2.待定系数法确定正比例函数、一次函数的解析式:通常已知一点便可用待定系数法确定出正比例函数的解析式,已知两点便可确定一次函数解析式。

3.一次函数的图像:正比例函数y=kx(k≠0)是过(0,0),(1,k)两点的一条直线;一次函数y=kx+b(k≠0)是过(0,b),( ,0)两点的一条直线。

4.直线y=kx+b(k≠0)的位置与k、b符号的关系:当k>0是直线y=kx+b过第一、三象限,当k<0时直线过第二、四象限;b 决定直线与y轴交点的位置,b>0直线交y轴于正半轴,b<0直线交y轴于负半轴。

5.直线L1与L2的位置关系由k、b来确定:当直线L1∥L2时k相同b不同;当直线L1与L2重合时k、b都相同;当直线L1与L2相交于y轴同一点时,k不同b相同。

6.一次函数经常与一次方程、一次不等式相。

【能力训练】1.一次函数y=x-1的图像不经过( )A.第一象限B.第二象限C.第三象限D.第四象限2.(·福州)已知正比例函数y=kx(k≠0)的图像过第二、四象限,则( )A.y随x的增大而减小B.y随x的增大而增大C.当x<0时,y随x的增大而增大;当x>0时,y随x的增大而减小D.不论x如何变化,y不变3.(·甘肃)结合正比例函数y=4x的图像回答:当x>1时,y的取值范围是( )A.y=1B.1≤y<4C.y=4D.y>44.(·哈尔滨)直线y=x-1与坐标轴交于A、B两点,点C在坐标轴上,△ABC为等腰三角形,则满足条件的点C最多有( )A.4个B.5个C.7个D.8个5.某地的月租费24元,通话费每分钟0.15元,则每月话费y(元)与通话时间x(分钟)之间的关系式是,某居民某月的费是38.7元,则通话时间是分钟,若通话时间62分钟,则费为元.6.如图,表示商场一天的家电销售额与销售量的关系,表示一天的销售成本与销售量的关系.①当时,销售额= 万元,销售成本= 万元.此时,商场是是赢利还是亏损?②一天销售件时,销售额等于销售成本.③对应的函数表达式是 .④写出利润与销售量间的函数表达式.7.某单位为减少用车开支准备和一个体车主或一家出租车公司签订租车合同.设汽车每月行驶xKm,个体车主的月费用是y1元,出租车公司的月费用是y2元,y1、y2分别与x之间的函数关系图像,如图,观察图像并回答下列问题;(1)每月行驶的路程在什么范围内时,租用公司的车更省钱?(2)每月行驶的路程在什么范围内时,租两家的车的费用相同?(3)如果这个单位估计每月行驶的路程在2300Km,那么这个单位租哪家的车比较合算?8.在直角坐标系中,有以A(-1,-1),B(1,-1),C(1,1),D(—1,1)为顶点的正方形.设正方形在直线y=x上方及直线y=-x+2a上方部分的面积为S.(1)求a=时,S的值.(2)当a在实数范围内变化时,求S关于a的函数关系式.9.已知一次函数y=x+m的图像分别交x轴、y轴于A、B两点,且与反比例函数y=的图像在第一象限交于点C(4,n),CD⊥x轴于D.(1)求m、n的值,并作出两个函数图像;(2)如果点P、Q分别从A、C两点同时出发,以相同的速度分别沿线段AD、CA向D、A运动,设AP=k.问k为何值时,以A、P、Q为顶点的三角形与△AOB相似?10.如图,L1、L2分别表示一种白炽灯和一种节能灯的费用y(费用=灯的售价+电费,单位:元)与照明时间x(h)的函数图像,假设两种灯的使用寿命都是2 000h,照明效果一样.(1)根据图像分别求出L1、L2的函数关系式;。

人教版八年级数学上册第14章同步练习题全套-14.2一次函数第三课时(图像和性质)

人教版八年级数学上册第14章同步练习题全套-14.2一次函数第三课时(图像和性质)

人教版八年级数学上册第14章同步练习题全套-14.2一次函数第三课时(图像和性质)14.2一次函数第三课时(图像和性质)◆随堂检测1、在直角坐标系中,画一次函数y=kx+b 的图象通常过点和画一条直线2、在同一直角坐标系中,把直线y=-2x 向平移单位,就得到了y=-2x+3的图像.3、已知一次函数21y x =+,则y 随x 的增大而_______________(填“增大”或“减小”).4、一次函数32-=x y 的大致图像为()5、小敏家距学校1200米,某天小敏从家里出发骑自行车上学,开始她以每分钟1V 米的速度匀速行驶了600米,遇到交通堵塞,耽搁了3分钟,然后以每分钟2V 米的速度匀速前进一直到学校)(21V V <,你认为小敏离家的距离y 与时间x 之间的函数图象大致是()◆典例分析例题:若一次函数()a x a y--=12的图象不经过第一象限,且函数值y 随x 的增大而减小,求a 的取值范围。

分析:许多同学认为图象不经过第一象限就一定通过二、三、四象限,漏掉了可能只通过二四象限。

解: 012<-a 且0≤-a 210<≤a ◆课下作业●拓展提高1、直线b kx y +=与x 轴交于点(-4 , 0),则y > 0时,x 的取值范围是( )A 、x >-4B 、x >0C 、x <-4D 、x <02、一次函数y =ax +b 的图像如图所示,则下面结论中正确的是()A .a <0,b <0B .a <0,b >0C .a >0,b >0D .a >0,b <0能是()3、已知函数y kx b =+的图象如图,则2y kx b =+的图象可4、如图,把直线2y x =-向上平移后得到直线AB ,直线AB 经过点()a b ,,且26a b +=,则直线AB 的解析式是()A .23y x =--B .26y x =--C .23y x =-+D .26y x =-+5、在同一直角坐标系中,画出直线y=x+3与y=x-2的图象,并求出两条直线与x 轴交点间的距离6、已知直线()m x m y 3119-+-=,当m 为何值时直线(1)经过原点x2y =-。

八年级数学上册 第14章《一次函数》同步学习检测(14.1-14.2)(后附完整答案)

八年级数学上册 第14章《一次函数》同步学习检测(14.1-14.2)(后附完整答案)

新人教八年级(上)第14章《一次函数》同步学习检测(§14.1~14.2)(时间45分钟 满分100分)班级 学号 姓名 得分一、填空题(每题3分,共30分)1.已知一个正比例函数的图象经过点(-1,3),则这个正比例函数的表达式是 .2.函数y =x 的取值范围是_______________.3.已知一次函数y =2x +4的图像经过点(m ,8),则m =________.4.若函数y = -2x m +2 +n -2正比例函数,则m 的值是 ,n 的值为________. 5.一次函数113y x =-+的图象与x 轴的交点坐标是_________,与y 轴的交点坐标是__________. 6.长方形相邻两边长分别为x 、y ,面积为30,则用含x •的式子表示y 为__________,则这个问题中,____________常量;____________是变量.7.为了加强公民的节水意识,某市制定了如下收费标准:每户每月的用水量不超过10t 时,水价为每吨1.2元;超过10t 时,超过部分按每吨1.8元收费.该市某户居民5月份用水x (t )(x >10),应交水费y 元,则y 与x 的关系式为_____________.8.函数y =x 的取值范围是_______________.9.如图所示,每个图案是由若干盆花组成的形如三角形的图案,每条边(•包括两个顶点)有n (n >1)盆花,每个图案花盆总个数为S ,按此规律,则S 与n •的函数关系式是_________.(第9题)10.为了直观地表示一周内某支股票价格随时间变化的情况,宜采用的函数表示方法是________________________.二、选择题(每题4分,共32分)11.骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一问题中,因变量是( )A .沙漠B .体温C .时间D .骆驼12.长方形的周长为24cm ,其中一边为x (其中0>x ),面积为y 2cm ,则这样的长方形中y 与x 的关C 3H 8C 2H 6CH 4HH H HH HHHHHH HH HC C C C C H HHH C 系可以写为( )A .2x y = B .()212x y -= C .()x x y ⋅-=12 D .()x y -=12213.函数112++--=x x x y 的自变量x 的取值范围为 ( ) A .x≠1 B .x >-1 C .x≥-1 D .x≥-1且 x≠114.下列各图象中,y 不是x 函数的是 ( )15.小明一出校门先加速行驶,然后匀速行驶一段后,在距家门不远的地方开始减速,而最后停下,下面哪一副图可以近似地刻画出以上情况( )速度 速度 速度 速度时间 时间 时间 时间A .B .C .D . 16. 表格列出了一项实验的统计数据,表示皮球从高度d 落下时弹跳高度b 与下落高d 的关系,试问下面的哪个式子能表示这种 关系(单位cm )( )A .2d b = B .d b 2=C .25+=d bD .2d b =17.如图所示,OA 、BA 分别表示甲、乙两名学生运动的路程与时间的关系图象,图中S 和t 分别表示运动路程和时间,根据图象判断快者的速度比慢者的速度每秒快 ( )A .2.5mB .2mC .1.5mD .1m18.水池有2个进水口,1个出水口,每个进水口进水量时间的关系如图甲所示,出水口水量与时间的关系如图乙所示.某天0点到6点,该水池的蓄水量与时间的关系如图丙所示.下面的论断中:①0点到1点,同时关闭两个进水口4点,同时打开两个进水口 ) A 19.(9分)如图,在靠墙(墙长为18m )的地方围建一个矩形的养鸡场,另三边用竹篱笆围成,如果竹篱笆总长为35m ,求鸡场的长y (m )与宽x (m )的函数关系式,并求自变量的取值范围. 20.(9分)下列是三种化合物的结构式及分子式,结构式分子式 (1)请按其规律,写出后一种化合物的分.子.式..(2)每一种化合物的分子式中H 的个数m 是否是C 的个数n 的函数?如果是,请写出关系式.丙 甲乙(第18题)21.(10分)如图,反映了小明从家到超市的时间与距离之间关系的一幅图. (1)图中反映了哪两个变量之间的关系?超市离家多远? (2)小明到达超市用了多少时间?小明往返花了多少时间? (3)小明离家出发后20分钟到30分钟内可以哪里?(4)小明从家到超市时的平均速度是多少?返回时的平均速度是多少? 22.(10分)打市内电话都按时收费,并于200l 年3月21日起对收费办法作了调整,调整前的收费办法:以3分钟为计时单位(不足3分钟按3分钟计),每个计时单位收0.2元;调整后的收费办法:3分钟内(含3分钟)0.2元,以后每加1分钟加收0.1元.(1)根据调整后的收费办法,求电话费y (元)与通话时间t (分)之间的函数关系式(t >3时设t (分)表示正整数).①当t ≤3时,y = ; ②当t >3时(t (分)表示正整数),y = . (2)对(1),试画出0<t ≤6时函数的图象. (3)就0<t ≤6,求t一、填空题1.80,13 2.是 不是 3.ABC =∠BAD 5.60度 6.90 7.△,△BOD 9.110.此工具是根据三角形全等制作而成的.由O 是AA ',BB '的中点,可得AO A O '=,BO B O '=,又由于AOB ∠与A OB ''∠是对顶角,可知AOB A OB ''∠=∠,于是根据“SAS ”有AOB A OB ''△≌△,从而A B AB ''=,只要量出A B ''的长度,就可以知道工作的内径AB 是否符合标准 二、选择题11.A 12.D 13.C 14.A 15.B 16.D 17.A 18.C 三、解答题19.(1)和(10),(2)和(12),(4)和(8),(5)和(9)是全等图形 20.略 21.略 22.由△ABF ≌△,DCE 可得到BAF CDE AFB DEC ABF DCE AB DC BF CE AF DE ∠=∠∠=∠∠=∠===,,,,,;A F E D A CB D B FC =∥,,∥,△AEC ≌△DFB 等 23.略 24.(1)证明Rt △CDE ≌Rt △AFB ;(2)DF ∥BE 且DF=BE(§11.3)一、填空题1.这个角的平分线上 2.1.5cm 3.30° 4.8 5.MN ⊥PQ 6.三条角平分线 7.6cm 8.到角的两边的距离相等 9.(1)=(2)= 10.135 二、选择题11. D 12. B 13.D 14.D 15.B 16.C 17.D 18.A 三、解答题19.50° 20.画两个角的角平分线的交点P 21.略 22.提示:过点D 做DM ⊥BC 23.①略;②锐角三角形 24.提示:过P 作三边AB 、AC 、BC 的垂线段PD 、PE 、PF(§12.1~12.2)一、填空题1.轴对称图形,5 2.答案不唯一如:“美、善、口、工、士”等 3.4 4.互相重合,轴对称图形,对称轴,成轴 5.1021∶ 6.(2,1),(-2,-1) 7.(2,-3) 8.(-2,1.5)、(-2,-1.5)、(2,-1.5) 9.60° 10.)(),,(3-1.3-1-N M二、选择题11.B 12.B 13.C 14.B 15.B 16.C 17.C 18.B 三、解答题19.对称轴为MN ,2,6,70==︒=z y x 20.不是,答案不唯一 21.略 22.图略,画法:(1)画出∠CAB 的角平分线AE ;(2)连结MN ,作MN 的垂直平分线与AE 交于P ;(3)由点P 即为所求 23.(1)m=1,n=-1,点A 、B 关于x 轴对称;(2)m=-1,n=1,点A 、B 关于y 轴对称. 24.答案不唯一:如(1)都是轴对称图形;阴影部分面积等于4个小正方形面积之和;(2)答案不唯一.(§12.3)一、填空题1.35 2.15 3.80° 4.36° 5.② 6.7或11 7.36 8.线段中垂线 9.)0,41(,5 10.5或4二、选择题11.B 12.D 13.D 14.D 15.B 16.D 17.D 18.C 三、解答题19.⊿ABC ,⊿ADB ,⊿ADC ,∠B=36° 20.EF=8㎝ 21.(1)利用角平分线性质得PC=PD ,所以∠PCD=∠PDC (2)成立 22.略 23.略 24.15°(§13.1~13.2)一、填空题1.14.14 0.1414 2.< 3.4 4.-3,13,3 5.±5 6.-1.5 7.3m 8.-6,-0.008 9.4 10.2,3或-3 二、选择题11.C 12.D 13.B 14.A 15.D 16.C 17.C 18.C 三、解答题19.⑴15 ⑵-0.02 ⑶72±⑷ -0.1 ⑸ 0.7 ⑹ 9 20. ⑴0.01 0.1 1 10 100;⑵被开方数小数点向左(或右)移动三位,它的立方根的小数点向左(或右)移动一位;⑶ ① 14.42 0.144221. ⑴ -2 ⑵ 0.4 ⑶25-⑷ 9 22.(1)x=-3;(2)x=1 2324.±10(§13.3)一、填空题1.5,54 3.34或34 4.2 2-+ 5.一一对应 6.0 、1、 -1 7.< 8.9.3+3 10.6二、选择题11.C 12.D 13.A 14.B 15.C 16.D 17.C18.B 三、解答题19.整数{30-;分数:220.3 1.7327⎧⎫-⎨⎬⎩⎭,,;正分22300100017⎫⎬⎭,, 20.C,(D 21.(1)-(2)1 22.(1)65x =±;(2)0x = 23.325-24.2期中复习一、填空题1.23±,0.6 2.0和1,1±和0 3.2 4.30度5.12x6.Z 7.3 8. 1.4π- 9.1 10.(2,0)二、选择题11.A 12.D 13.D 14.B 15.B 16.B 三、解答题17.略 18.(1(2)52 19.(1)2;(2)- 20.1.58 21.450米22.36度,72度,72度 23.略 24.略 25.略 26.略 27. 28.(1)可行;(2)可行;(3)构造三角形全等,可以.期中测试一、填空题1.千分位 2.0或6- 3.3 41 5.42,3±-6.15 7.90度 8.AB 、BC 9.B E∠=∠(答案不唯一) 10.65 二、选择题11.D 12.D 13.D 14.B 15.C 16.B 三、解答题17.(1)1-(21 18.略 19.能 20.(1)略;(2)DE=DC 21.0.8cm 22.略23.32cm24.略 25.(1)111n n -+;(2)①20072008,②1n n +;(3)10034016 26.略 27.(1)211n +=+;(2)10OA =;(3)554 28.(1)45度;(2)会;(3)2BAC DAE ∠=∠.(§14.1~14.2)一、填空题1.3y x =- 2.25x ≥3.2 4.1,2- 5.(3,0)(0,1) 6.y=30x ,30;x 、y 7.y=1.8x-6 8.2x ≥9.S=3n -3 10.图象法;二、选择题11.C 12.C 13.D 14.C 15.C 16.D 17.C 18.C 三、解答题19.y= —2x+35(0<x <9.5) 20.C 4H 10 m=2n+2 21.(1)距离;时间,900m (2)20分,45分;(3)在商场;(4)45米/分,60米/分 22.(1)①0.2②0.1t-0.1;(2)图象略;(3)当0<t<3时,y=0.2,当4<t ≤5时,y=0.4(§14.3)一、填空题1.4x =- 2.22y x =-+,1<,1> 3.24y x =-+,243y x =- 4.(20),,(04), 5.(13)--,,1-,3-,221x y x y -=⎧⎨-=⎩,6.6 7.1x =-,1x <- 8.3- 9.平行,没有,无解10.103m <≤二、选择题11.C 12.A 13.D 14.A 15.A 16.A 17.B 18.C三、解答题19.(1)当173x =时,0y =;(2)当5x =时,2y =-;(3)当7x =时,4y =20.(1)当95x =时,0y =;(2)当95x <时,0y <;(3)略 21.图略,解为523.2x y ⎧=⎪⎪⎨⎪=⎪⎩, 22.142.a b =⎧⎨=⎩,23.(1)每月行驶路程小于1500千米,租国营公司的车合算;(2)每月行驶路程等于1500千米,租两家车的费用相同;(3)由图象可知租个体车主的车合算 24.(1)41k -<<;(2)直线26x y -=与y 轴的交点为(03)-,,直线31x y +=与y 轴的交点为103⎛⎫⎪⎝⎭,,它们的交点为(41)-,,112043233S ⎛⎫=⨯⨯+=⎪⎝⎭△ (§15.1~15.2)一、填空题1.2009 2.2242a b ab -+、12a - 3.18 4.214a - 5.16610⨯ 6.()ab a b a a 2222+=+ 7.1 8.32231638a b a b -- 9.2、3、1 10.6 二、选择题11.D 12.A 13.B 14.C 15.B 16.C 17.D 18.D 三、解答题19.(1)9a 2—b 2;(2)1002001 20.10x 21.22427a b +,19 22.x =3 23.2ab ac bc c --+24.能,35551113243=;4441114256=;3331115125=.因为256243>>,所以111111256243125>>.所以444555333435>>.(§15.3)一、填空题1.67)(,m a a - 2.36n ,41052⨯ 3.xy x y 44323-+- 4.323b a 5.21n n +6.20085,a x 7.m =-3 8.1 9.92 10.1cm二、选择题11.C 12.A 13.C 14.D 15.C 16.A 17.C 18.D 三、解答题19.(1)24a b ;(2)22473ab b a a +- 20.x y -,1.5 21.(1)yx -221;(2)小亮不能报出一个整式 22.3222x x x ++ 23.±2x 2y 24.(1)9610,10;(2)181210,10;(3)不相等期末复习一、填空题1.2,2±- 2.(2,1) 3.2 4.对称5.无数,直径所在的直线 6.y=-3x7.±2 8.x >-2 9.60 10.4或-203 二、选择题11.D 12.C 13.D 14.B 15.B 16.A 三、解答题17.1 18.- 19.29 20.72-21.(1)2(4)(4)m m m +-;(2)()()()x y a b a b -+- 22.(1)52-;(2)-5 23.略 24.(1)3y x =-+;(2)6 25.(1) 1.832y x =+26.略 27.(1(21 28.略期末测试一、填空题1.(1,2) 2.3326,61x y x x -+- 3.23(2)x x y - 4.6- 5.12± 6.三 7.68.111n n n n n n ++=++ 9.1 10.11n x +-二、选择题11.D 12.C 13.D 14.D 15.A 16.C 三、解答题17.(1)3523-+a a (2)xy 20- (3)ab 18.(1))2(222b ab a a +-;(2)))()((22y x y x y x -++;(3)2)32(y x + 19.73-20.①23;②21 21.略 22.ab π 23.78 24.(1) 1.5 4.5y x =+;(2)21cm 25.略 26.略 27.(1)34k =;(2)9184s x =+(-8<x <0);(3)P (139,28-) 28.(1)l1;(2)B的速度快;(3)15分钟不能追上A;(4)B一定能追上A;(5)B能在A逃入公海前追上。

【免费下载】新人教八年级上第14章一次函数同步学习检测整章测试

2 3.一次函数 y 2x 3 与 y 2x 3 图象的位置关系为_________,即二者_____交点
(“有”或“没有”),由此可知方程组
y 2x 3

y

4.一次函数的图象过点(1,2),且 y 随 x 的增大而增大, 则这个函数解析式是___.
5.过点(0,2)且与直线 y=-x 平行的直线是____.
6.等腰三角形的周长为 30cm,它的腰长为 ycm 与底长 xcm 的函数关系式是___.
7.如图(1)所示的是实验室中常用的
仪器,向以下容器内均匀注水,最
后把容器注满,在注水过程中,容
器的水面高度与时间的关系如图
(2)所示,图中 PQ 为一线段, 则这个容器是__________.
8.已知 y1=2x-5,y2=-2x+3,当_______时,y1≤y2. 9.如下图所示,利用函数图象回答下列问题:
值随自变量 x 值的增大而减小,则此函数的解析式是( )
A.y=2x B. y=-x C. y=-2x D. y=x
14.已知一次函数 y kx b 的图象经过点 A(2,5) 和点B,点B是一次函数 y 2x 1的
图象与 y 轴的交点,则这个一次函数的解析式是 .
(1)方程组
x y 3,

y

2x
(2)不等式 2x>-x+3 的解集为___________; (3)不等式 2x<-x+3 的解集为__________.
的解为__________;
2x
10.放假了,小明和小丽去蔬菜加工厂社会实践,两人同时工作了一段时间后,休息时小

明对小丽说:“我已加工了 28 千克,你呢?” 小丽思考了一会儿说:“我来考考你.图

八年级数学上册 第14章《一次函数》同步学习检测(14.3)(后附完整答案)

(第12题) (第13题)新人教八年级(上)第14章《一次函数》同步学习检测(§14.3)(时间45分钟 满分100分)班级 学号 姓名 得分一、填空题(每题3分,共30分)1.一次函数y =3x +12的图象如图所示,由此可知,方程3x +12=0的解为 .2.一次函数图象如图所示,则它的解析式为 ,当x 时,y >0,当x 时,y <0. 3.二元一次方程组242312x y x y +=⎧⎨-=⎩,的解即为函数 与函数 的图象交点的坐标.4.一次函数y =-2x +4与x 轴的交点坐标为 ,与y 轴的交点坐标是 .5.一次函数y =x -2与y =2x -1的图象交点的坐标为 ,即x = ,y = 是方程组的解. 6.当x =2时,函数y =kx -2与y =2x +k 的值相等,则k = .7.已知一次函数y =kx +b 的图象如图3所示,由图象可知,方程kx +b =0的解为 ,不等式kx +b >0的解集为 . 8.直线132y x =--与直线y =3x +b 都经过y 轴上同一点,则b 的值是 . 9.一次函数y =2x +3与y =2x -3的图象的位置关系是 ,即 交点(填“有”或“没有”),由此可知230230x y x y -+=⎧⎨--=⎩,的解的情况是 .10.一次函数y =(3m -1)x -m 中,y 随x 的增大而减小,且其图象不经过第一象限,则m 的取值范围是 .二、选择题(每题3分,共24分)11.以方程x +y =5的解为坐标的所有点组成的图形是直线( )A .y =x -5B .y =x +5C .y =5-xD .y =-x -512.如图4所示,直线y =kx +b 与x 轴交于点(-4,0),则y >0时,x 的取值范围是( ) A .x >-4B .x >0C .x <-4D .x <013.已知一次函数y =kx +b 的图象如图5所示,当x <0时,y 的取值范围是( ) A .y >0B .y <0C .-2<y <0D .y <-214.已知直线y =-x +3a 和直线y =x +a 的交点坐标为(m ,8),则m 的值为( )A.4 B.8 C.16 D.2415.已知一元一次方程3x-6=0的解为x=2,那么一次函数y=3x-6的函数值为0时,自变量x 的取值为()A.2 B.-3 C.3 D.-216.已知一元一次方程2x-5=7,则直线y=2x-12与x轴的交点坐标为()A.(6,0)B.(-6,0)C.(0,6)D.(0,-6)17.已知二元一次方程x+y=3与3x-y=5有一组相同的解,那么一次函数y=3-x与y=3x-5在直角坐标系内的交点坐标为()A.(1,2)B.(2,1)C.(-1,2)D.(-2,1)18.如果一次函数y=3x+6与y=2x-4的交点坐标为(a,b),则x ay b=⎧⎨=⎩,是下面哪个方程组的解()A.3624y xx y-=⎧⎨-=-⎩B.360240x yx y++=⎧⎨--=⎩C.36240x yx y-=-⎧⎨--=⎩D.3624x yx y-=⎧⎨-=⎩三、解答题(共46分)19.(7分)当自变量x的取值满足什么条件时,函数y=3x-17的值满足下列条件?(1)y=0;(2)y=-2;(3)y=4.20.(7分)已知:一次函数y=5x-9,请回答下列问题:(1)x取什么值时,函数值y等于0?(2)x取什么值时,函数值y始终小于0?(3)想一想,这些与一元一次方程5x-9=0,一元一次不等式5x-9<0有什么关系?21.(7分)用作图象的方法解下列方程组364.y xx y=-⎧⎨+=⎩,22.(7分)已知:直线5x+by=1,3x+y=1,ax+5y=4,2x-3y=8相交于一点,试求a,b的值.23.(9分)某单位急需用车,但又不准备买车,他们准备和一个体车主或一国营出租车公司其中的一家签订租车合同,设汽车每月行驶x(千米),应付给个体车主的费用是y1(元),应付给出租车公司的费用是y2(元),y1、y2分别与x之间的函数关系图象(两条射线)如图,观察图象回答下列问题:(1)每月行驶的路程在什么范围内,租国营公司的车合算?(2)每月行驶的路程为多少时,租两家车的费用相同?(3)如果这个单位估计每月行驶的路程为2300千米,那么这个单位租用哪家的车合算?24.(9分)已知:直线x-2y=-k+6和x+3y=4k+1,若它们的交点在第四象限内.(1)求k 的取值范围.(2)若k 为非负整数,求直线x -2y =-k +6和x +3y =4k +1分别与y 轴的交点,及它们的交点所围成的三角形的面积.参考答案(§11.1~11.2)一、填空题1.80,13 2.是 不是 3.全等三角形,≌ 4.AC =BD ,AB =BA ,∠C =∠D ,∠CAB =∠DBA ,∠ABC =∠BAD 5.60度 6.90 7.ADF BCE △≌△,得F E ∠=∠. 8.∠AOC =∠BOD ,OC =OD ,△BOD 9.1,有两边及其夹角对应相等的两个三角形全等10.此工具是根据三角形全等制作而成的.由O 是AA ',BB '的中点,可得AO A O '=,BO B O '=,又由于AOB ∠与A OB ''∠是对顶角,可知AOB A OB ''∠=∠,于是根据“SAS ”有AOB A OB ''△≌△,从而A B AB ''=,只要量出A B ''的长度,就可以知道工作的内径AB 是否符合标准 二、选择题11.A 12.D 13.C 14.A 15.B 16.D 17.A 18.C 三、解答题19.(1)和(10),(2)和(12),(4)和(8),(5)和(9)是全等图形 20.略 21.略 22.由△ABF ≌△,DCE 可得到BAF CDE AFB DEC ABF DCE AB DC BF CE AF DE ∠=∠∠=∠∠=∠===,,,,,;A F E D A CB D B FC =∥,,∥,△AEC ≌△DFB 等 23.略 24.(1)证明Rt △CDE ≌Rt △AFB ;(2)DF ∥BE 且DF=BE(§11.3)一、填空题1.这个角的平分线上 2.1.5cm 3.30° 4.8 5.MN ⊥PQ 6.三条角平分线 7.6cm 8.到角的两边的距离相等 9.(1)=(2)= 10.135 二、选择题11. D 12. B 13.D 14.D 15.B 16.C 17.D 18.A 三、解答题19.50° 20.画两个角的角平分线的交点P 21.略 22.提示:过点D 做DM ⊥BC 23.①略;②锐角三角形 24.提示:过P 作三边AB 、AC 、BC 的垂线段PD 、PE 、PF(§12.1~12.2)一、填空题1.轴对称图形,5 2.答案不唯一如:“美、善、口、工、士”等 3.4 4.互相重合,轴对称图形,对称轴,成轴 5.1021∶ 6.(2,1),(-2,-1) 7.(2,-3) 8.(-2,1.5)、(-2,-1.5)、(2,-1.5) 9.60° 10.)(),,(3-1.3-1-N M二、选择题11.B 12.B 13.C 14.B 15.B 16.C 17.C 18.B 三、解答题19.对称轴为MN ,2,6,70==︒=z y x 20.不是,答案不唯一 21.略 22.图略,画法:(1)画出∠CAB 的角平分线AE ;(2)连结MN ,作MN 的垂直平分线与AE 交于P ;(3)由点P 即为所求 23.(1)m=1,n=-1,点A 、B 关于x 轴对称;(2)m=-1,n=1,点A 、B 关于y 轴对称. 24.答案不唯一:如(1)都是轴对称图形;阴影部分面积等于4个小正方形面积之和;(2)答案不唯一.(§12.3)一、填空题1.35 2.15 3.80° 4.36° 5.② 6.7或11 7.36 8.线段中垂线 9.)0,41(,5 10.5或4二、选择题11.B 12.D 13.D 14.D 15.B 16.D 17.D 18.C 三、解答题19.⊿ABC ,⊿ADB ,⊿ADC ,∠B=36° 20.EF=8㎝ 21.(1)利用角平分线性质得PC=PD ,所以∠PCD=∠PDC (2)成立 22.略 23.略 24.15°(§13.1~13.2)一、填空题1.14.14 0.1414 2.< 3.4 4.-3,13,3 5.±5 6.-1.5 7.3m 8.-6,-0.008 9.4 10.2,3或-3二、选择题11.C 12.D 13.B 14.A 15.D 16.C 17.C 18.C 三、解答题19.⑴15 ⑵-0.02 ⑶72±⑷ -0.1 ⑸ 0.7 ⑹ 9 20. ⑴0.01 0.1 1 10 100;⑵被开方数小数点向左(或右)移动三位,它的立方根的小数点向左(或右)移动一位;⑶ ① 14.42 0.144221. ⑴ -2 ⑵ 0.4 ⑶25-⑷ 9 22.(1)x=-3;(2)x=1 2324.±10(§13.3)一、填空题1.5,54 3.34或344.22-+5.一一对应6.0 、1、-17.<8.9.3+310.6二、选择题11.C 12.D 13.A 14.B 15.C 16.D 17.C18.B三、解答题19.整数{30-;分数:220.3 1.7327⎧⎫-⎨⎬⎩⎭,,;正分22300100017⎫⎬⎭,,20.C,(D21.(1)-(2)122.(1)65x=±;(2)0x= 23.325-24.2期中复习一、填空题1.23±,0.6 2.0和1,1±和0 3.2 4.30度5.12x6.Z 7.3 8.1.4π-9.1 10.(2,0)二、选择题11.A 12.D 13.D 14.B 15.B 16.B三、解答题17.略18.(1(2)5219.(1)2;(2)2-20.1.58 21.450米22.36度,72度,72度23.略24.略25.略26.略27.28.(1)可行;(2)可行;(3)构造三角形全等,可以.期中测试一、填空题1.千分位2.0或6-3.3 415.42,3±-6.15 7.90度8.AB、BC 9.B E∠=∠(答案不唯一)10.65二、选择题11.D 12.D 13.D 14.B 15.C 16.B三、解答题17.(1)1-(21 18.略 19.能 20.(1)略;(2)DE=DC 21.0.8cm 22.略23.32cm24.略 25.(1)111n n -+;(2)①20072008,②1n n +;(3)10034016 26.略 27.(1)211n +=+;(2)10OA =;(3)554 28.(1)45度;(2)会;(3)2BAC DAE ∠=∠.(§14.1~14.2)一、填空题1.3y x =- 2.25x ≥3.2 4.1,2- 5.(3,0)(0,1) 6.y=30x ,30;x 、y 7.y=1.8x-6 8.2x ≥9.S=3n -3 10.图象法;二、选择题11.C 12.C 13.D 14.C 15.C 16.D 17.C 18.C 三、解答题19.y= —2x+35(0<x <9.5) 20.C 4H 10 m=2n+2 21.(1)距离;时间,900m (2)20分,45分;(3)在商场;(4)45米/分,60米/分 22.(1)①0.2②0.1t-0.1;(2)图象略;(3)当0<t<3时,y=0.2,当4<t ≤5时,y=0.4(§14.3)一、填空题1.4x =- 2.22y x =-+,1<,1> 3.24y x =-+,243y x =- 4.(20),,(04), 5.(13)--,,1-,3-,221x y x y -=⎧⎨-=⎩,6.6 7.1x =-,1x <- 8.3- 9.平行,没有,无解10.103m <≤二、选择题11.C 12.A 13.D 14.A 15.A 16.A 17.B 18.C 三、解答题19.(1)当173x =时,0y =;(2)当5x =时,2y =-;(3)当7x =时,4y =20.(1)当95x =时,0y =;(2)当95x <时,0y <;(3)略 21.图略,解为523.2x y ⎧=⎪⎪⎨⎪=⎪⎩,22.142.a b =⎧⎨=⎩, 23.(1)每月行驶路程小于1500千米,租国营公司的车合算;(2)每月行驶路程等于1500千米,租两家车的费用相同;(3)由图象可知租个体车主的车合算 24.(1)41k -<<;(2)直线26x y -=与y 轴的交点为(03)-,,直线31x y +=与y 轴的交点为103⎛⎫⎪⎝⎭,,它们的交点为(41)-,,112043233S ⎛⎫=⨯⨯+=⎪⎝⎭△ (§15.1~15.2)一、填空题1.2009 2.2242a b ab -+、12a - 3.18 4.214a - 5.16610⨯ 6.()ab a b a a 2222+=+ 7.18.32231638a b a b -- 9.2、3、1 10.6 二、选择题11.D 12.A 13.B 14.C 15.B 16.C 17.D 18.D 三、解答题19.(1)9a 2—b 2;(2)1002001 20.10x 21.22427a b +,19 22.x =3 23.2ab ac bc c --+24.能,35551113243=;4441114256=;3331115125=.因为256243>>,所以111111256243125>>.所以444555333435>>.(§15.3)一、填空题1.67)(,m a a - 2.36n ,41052⨯ 3.xy x y 44323-+- 4.323b a 5.21n n +6.20085,a x 7.m =-3 8.1 9.92 10.1cm二、选择题11.C 12.A 13.C 14.D 15.C 16.A 17.C 18.D 三、解答题19.(1)24a b ;(2)22473ab b a a +- 20.x y -,1.5 21.(1)yx -221;(2)小亮不能报出一个整式 22.3222x x x ++ 23.±2x 2y 24.(1)9610,10;(2)181210,10;(3)不相等期末复习一、填空题1.2,2±- 2.(2,1) 3.2 4.对称5.无数,直径所在的直线 6.y=-3x7.±2 8.x >-2 9.60 10.4或-203 二、选择题11.D 12.C 13.D 14.B 15.B 16.A 三、解答题17.1 18.- 19.29 20.72-21.(1)2(4)(4)m m m +-;(2)()()()x y a b a b -+- 22.(1)52-;(2)-5 23.略 24.(1)3y x =-+;(2)6 25.(1) 1.832y x =+26.略 27.(1(21 28.略期末测试一、填空题1.(1,2) 2.3326,61x y x x -+- 3.23(2)x x y - 4.6- 5.12± 6.三 7.68.111n n n n n n ++=++ 9.1 10.11n x +-二、选择题11.D 12.C 13.D 14.D 15.A 16.C 三、解答题17.(1)3523-+a a (2)xy 20- (3)ab 18.(1))2(222b ab a a +-;(2)))()((22y x y x y x -++;(3)2)32(y x + 19.73-20.①23;②21 21.略 22.ab π 23.78 24.(1) 1.5 4.5y x =+;(2)21cm 25.略 26.略 27.(1)34k =;(2)9184s x =+(-8<x <0);(3)P (139,28-) 28.(1)l 1;(2)B 的速度快;(3)15分钟不能追上A ;(4)B 一定能追上A ;(5)B 能在A 逃入公海前追上。

新人教版八年级上册数学14.3一次函数与一元一次不等式课课练题库及答案

XX 年新人教版八年级上册数学《14.3一次函数与一元一次不等式》课课练题库及答案14.3一次函数与一元一次不等式 “堂堂清”试题命题人: 陶赖昭二中赵守庆 审题人:赵守庆一、选择题1.在一次函数y=-2x+8中,假设y>0,那么()A .x>4B .x0 D .x1C .x3(第2题) (第4题)3.直线L1:y=k1x+b 与直线L2:y=k2x 在同一平面直角坐标系中的图象如下图,那么关于x 的不等式k1x+b>k2x 的解为()A .x>-1B .xy2,那么x 的取值范围是_____.5.当a 取_____时,一次函数y=3x+a+6与y 轴的交点在x轴下方.(•填上一个你数即可) 6.当x 取______时,一次函数y=-2x+7的函数值为负数.(•在横线上填上一个你以为适当的数即可)三、解答题7.小华预备将平常的零用钱节约一些贮存起来,他已存有62元,•从此刻起每一个月存12元,小华的同窗小丽以前没有存过零用钱,听到小华在存零用钱,•表示从此刻起每一个月存20元,争取超过小华. (1)试写出小华的存款总数y1与从此刻开始的月数x•之间的函数关系式和小丽存款数y2与与月数x 之间的函数关系式; (2)从第几个月开始小丽的存款数能够超过小华? 8.我边防局接到情报,在离海岸5海里处有一可疑船只A 正向公海方向行驶,•边防局迅速派出快艇B 追赶.图1-5-3中,LA ,LB 别离表示两船相关于 海岸的距离s (海里)与追赶时刻t (分)之间的关系. 问:(1)A ,B 哪个速度快? (2)B 可否追上A ? 14.3一元一次不等式与一次函数 堂堂清答案 一、 1.B 点拨:由题意知-2x+8>0,2x - 点拨:由题意知3x+2>-x -5,4x>-7,x>- . 5.-7点拨:当a+63.5即可,此题答案不唯一.三 7.解:(1)y1=62+12x ,y2=20x . (2)由20x>62+12x ,得x>7.75,因此从第8个月开始,小丽的存款数能够超过小华. 8.解:(1)因为直线LA 过点(0,5),(10,7)两点, 设直线LA 的解析式为y=k1x+b ,那么 ,因此,因此y= x+5,因为直线LB过点(0,0),(10,5)两点,设直线LB的解析式为y=k2x.当5=10k2,因此k2= ,因此y= x.因为k1<k2,因此B的速度快.(2)因为k1<k2,因此B能追上A.点拨:依照图象提供的信息,别离求出LA,LB的关系式,依照k•值的大小来判定谁的速度快,B可否追上A.事实上,依照图象就能够够直接作出判定.XX年新人教版八年级上册数学《14.3一次函数与一元一次不等式》课课练题库及答案14.3一次函数与一元一次不等式“堂堂清”试题命题人:陶赖昭二中赵守庆审题人:赵守庆一、选择题1.在一次函数y=-2x+8中,假设y>0,那么()A.x>4 B.x0 D.x1 C.x3(第2题)(第4题)3.直线L1:y=k1x+b与直线L2:y=k2x在同一平面直角坐标系中的图象如下图,那么关于x的不等式k1x+b>k2x的解为()A.x>-1 B.xy2,那么x的取值范围是_____.5.当a取_____时,一次函数y=3x+a+6与y轴的交点在x轴下方.(•填上一个你数即可)6.当x取______时,一次函数y=-2x+7的函数值为负数.(•在横线上填上一个你以为适当的数即可)三、解答题7.小华预备将平常的零用钱节约一些贮存起来,他已存有62元,•从此刻起每一个月存12元,小华的同窗小丽以前没有存过零用钱,听到小华在存零用钱,•表示从此刻起每一个月存20元,争取超过小华.(1)试写出小华的存款总数y1与从此刻开始的月数x•之间的函数关系式和小丽存款数y2与与月数x之间的函数关系式;(2)从第几个月开始小丽的存款数能够超过小华?8.我边防局接到情报,在离海岸5海里处有一可疑船只A 正向公海方向行驶,•边防局迅速派出快艇B追赶.图1-5-3中,LA,LB别离表示两船相关于海岸的距离s(海里)与追赶时刻t(分)之间的关系.问:(1)A,B哪个速度快?(2)B可否追上A?14.3一元一次不等式与一次函数堂堂清答案一、1.B点拨:由题意知-2x+8>0,2x-点拨:由题意知3x+2>-x-5,4x>-7,x>-.5.-7点拨:当a+63.5即可,此题答案不唯一.三7.解:(1)y1=62+12x,y2=20x.(2)由20x>62+12x,得x>7.75,因此从第8个月开始,小丽的存款数能够超过小华.8.解:(1)因为直线LA过点(0,5),(10,7)两点,设直线LA的解析式为y=k1x+b,那么,因此,因此y= x+5,因为直线LB过点(0,0),(10,5)两点,设直线LB的解析式为y=k2x.当5=10k2,因此k2= ,因此y= x.因为k1<k2,因此B的速度快.(2)因为k1<k2,因此B能追上A.点拨:依照图象提供的信息,别离求出LA,LB的关系式,依照k•值的大小来判定谁的速度快,B可否追上A.事实上,依照图象就能够够直接作出判定.XX年新人教版八年级上册数学《14.3一次函数与一元一次不等式》课课练题库及答案14.3一次函数与一元一次不等式“堂堂清”试题命题人:陶赖昭二中赵守庆审题人:赵守庆一、选择题1.在一次函数y=-2x+8中,假设y>0,那么()A.x>4 B.x0 D.x1 C.x3(第2题)(第4题)3.直线L1:y=k1x+b与直线L2:y=k2x在同一平面直角坐标系中的图象如下图,那么关于x的不等式k1x+b>k2x的解为()A.x>-1 B.xy2,那么x的取值范围是_____.5.当a取_____时,一次函数y=3x+a+6与y轴的交点在x 轴下方.(•填上一个你数即可)6.当x取______时,一次函数y=-2x+7的函数值为负数.(•在横线上填上一个你以为适当的数即可)三、解答题7.小华预备将平常的零用钱节约一些贮存起来,他已存有62元,•从此刻起每一个月存12元,小华的同窗小丽以前没有存过零用钱,听到小华在存零用钱,•表示从此刻起每一个月存20元,争取超过小华.(1)试写出小华的存款总数y1与从此刻开始的月数x•之间的函数关系式和小丽存款数y2与与月数x之间的函数关系式;(2)从第几个月开始小丽的存款数能够超过小华?8.我边防局接到情报,在离海岸5海里处有一可疑船只A 正向公海方向行驶,•边防局迅速派出快艇B追赶.图1-5-3中,LA,LB别离表示两船相关于海岸的距离s(海里)与追赶时刻t(分)之间的关系.问:(1)A,B哪个速度快?(2)B可否追上A?14.3一元一次不等式与一次函数堂堂清答案一、1.B点拨:由题意知-2x+8>0,2x-点拨:由题意知3x+2>-x-5,4x>-7,x>-.5.-7点拨:当a+63.5即可,此题答案不唯一.三7.解:(1)y1=62+12x,y2=20x.(2)由20x>62+12x,得x>7.75,因此从第8个月开始,小丽的存款数能够超过小华.8.解:(1)因为直线LA过点(0,5),(10,7)两点,设直线LA的解析式为y=k1x+b,那么,因此,因此y= x+5,因为直线LB过点(0,0),(10,5)两点,设直线LB的解析式为y=k2x.当5=10k2,因此k2= ,因此y= x.因为k1<k2,因此B的速度快.(2)因为k1<k2,因此B能追上A.点拨:依照图象提供的信息,别离求出LA,LB的关系式,依照k•值的大小来判定谁的速度快,B可否追上A.事实上,依照图象就能够够直接作出判定.。

14.3.2一次函数与一元一次不等式


y Y=2x-5
分类思想:y=0\y>0\y<0, 类比学习:直线三部分x交点,x上方,x下方
o -5
2.5
x
课堂练习:第126页第1、2题.
第1道题用方程和不等式可以解决函数的问题; 第2道题用函数可以解决方程和不等式的问题; 加强对函数的认识。
小结反思
说出你的收获
X为何值时y=ax+b的值大于0 X为何值时y=ax+b的值小于0
1\理解一次函数与一元一次不等式的关系,会用函数图像法解一元一 次不等式;2\学习用函数观点看待不等式的方法,进一步感受数形结 合的思想,用联系的观点看待数学问题。3\学生经历图像法解不等式 的探究过程,通过合作交流,体验自己和他人的想法,掌握知识, 发展机能,获得愉快的心理体验。
教学目标
教学的 重点难点
Y=2x+10 4 -5 -0.8 o Y=5x+4 2 x
例2拓展:
利用图象解答下列问题: y (2,14) 10
(1)当x取何值时,5x+4=0 ; (2)当x为何值时,2x+10<0; Y=2x+10 (3) x为何值时,不等式 5x+4>2x+10; (4) X取何值时,不等式 5x+4=2x+10.
算机可以代替手工制作图象,只要输入函数解析式,就可以得到精确的图象。
P129第3、4题
加深对整个图象的整体认识。
-5 -0.8 o Y=5x+4
4 2 x
新知应用:
函数可以帮助解决 方程、不等式;反 之,方程、不等式 根据函数y=2x-5图像,观察图像回答以下问题 可以可以帮助研究 • (1)x取何值时,2x-5=0; 函数问题,三者是 紧密联系的整体。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

14.3.2一次函数和一元一次不等式
◆随堂检测
1、已知直线y=2x+k 与x 轴的交点是(-2,0),则关于x 的不等式2x+k<0的解集是
2、对于一次函数y=kx+b ,它的图象与x 轴的交点是 ,当它的图象过一、二、三象限时,不等式kx+b>0的解集是 ,当它的图象不通过第三象限时,不等式kx+b<0的解集为 。

3、若关于x 的不等式ax+1>0(a ≠0)的解集是x<1,则直线y=ax+1与x 轴的交点是 , a 0
4、直线y=-3x+2与x 轴的交点是 ,则不等式-3x+2>0的解集是
◆典例分析
例题:用画图的方法解不等式62
1
12+->+x x
分析:有不少同学会认为用不等式的基本性质可以很方便的求出不等式的
解集,没必要舍近求远用图像法解题。

可欲扬先抑,麻繁的方法学会了,在
将来会它带来的简洁和直观 解一:原不等式可化为
052
5
>-x ,作直线55.2-=x y 的图象,由图看出,
当x>2时,这条直线上的点在x 轴上方。

即055.2>-=x y 。

所以不等式的解集为x>2 解二:把原不等式两边看做是两个一次呼吸,在坐标系中画出
直线12+=x y 与62
1
+-=x y ,从图象上看出交点为(2,5),


2>x 时,直线12+=x y 上的点在直线62
1
+-=x y 相应点
的上方,此
时62
1
12+->+x x 。

所以解集是2>x 。

◆课下作业
●拓展提高
1、已知直线2-=x y 与2+-=x y 相交于点(2,0)则不等式22+->-x x 的解集是
2、已知不等式335->+-x x 的解集是2<x ,则直线5+-=x y 与33-=x y 的交点坐标是 。

3、已知直线的图象如图所示,则0>+b kx 的解集是 。

4、已知一次函数23-=x y ,当3=y 时,x 是方程 解;当2<y 是,x 是不等式 的解;当53<<-y 时,x 是不等式 的解。

5、在直角坐标系中画出直线3
7
32+-=x y ,若直线k x y -=与之相交于第四象限,求k 的取值范围.
6、在同一直角坐标系中直线
b x y +=1与直线12-=ax y 交于点(-2,1)
(1)求a ,b 的值,在同一直角坐标系中画出两个函数的图象。

(2)利用图象求出:当x 取何值时有①1y >2y ②1y <0且2y >0
●体验中考
1、(2009年新疆)如图,直线(0)y kx b k =+<与x 轴交于点(30),
,关于x 的不等式0kx b +>的解集是
( ) A .3x < B .3x >
C .0x >
D .0x <
2、(2009仙桃)直线11:l y k x b =+与直线
22:l y k x c =+在同一平面直角坐标系中的图象如图所示,则关于x 的不等式12k x b k x c +<+的解集为
( )
A.x >1
B.x <1
C.x >-2
D.x <-2
参考答案 ◆随堂检测 1、X<-2 2、)0,(
k b -,k b x ->,k b x -> 3、 (1,0),< 4、)0,3
2(,3
2<x ◆课下作业 ●拓展提高 1、2>x 2、(2,3) 3、1>x
4、233-=x ,223<-x ,5233<-<-x
5、K>3.5
6、(1)如图
(2)①2->x 时,1y >2y
②3
-<x 1y <0且2y >0
●体验中考
1、A
2、B。

相关文档
最新文档