人教版八年级数学下册一次函数知识点总结

合集下载

八年级下册数学一次函数知识点

八年级下册数学一次函数知识点

八年级下册数学一次函数知识点一次函数是初中数学中的一个重要知识点,也是高中数学的基础。

在数学学习中,我们将一次函数作为重点之一,需要在学习中系统地掌握它的定义、性质和应用。

一、一次函数定义一次函数也称为线性函数,其定义为f(x)=kx+b(其中k和b为常数),在数轴上显示为一条直线。

其中,k代表斜率,b代表截距。

当x=0时,f(x)=b,即函数在y轴上的截距。

当k>0时,函数呈现上升趋势,当k<0时,函数呈现下降趋势。

二、一次函数的性质1.斜率的意义斜率k代表函数在x轴上每移动一个单位所对应的y轴上的变化量,即直线的倾斜程度。

当k>0时,函数呈现上升趋势,当k<0时,函数呈现下降趋势。

2.截距的意义截距b代表函数在y轴上的截距,即当x=0时,函数在y轴上的坐标。

3.定义域和值域定义域为所有实数,当k≠0时,函数的值域也为所有实数。

4.单调性和奇偶性当k>0时,函数呈现上升趋势,单调递增;当k<0时,函数呈现下降趋势,单调递减。

一次函数是奇函数,即f(-x)=-f(x)。

三、一次函数的应用1.函数求解一次函数在实际生活中有着广泛的应用。

例如:一辆汽车从A 地出发到B地,行驶了t小时,速度为v千米/小时,设汽车运动的距离为s千米,根据速度公式v=s/t,我们可以得到一次函数f(t)=vt,其中斜率为速度,截距为0。

2.图像分析通过观察函数的图像,我们可以对其斜率和截距有更直观的认识。

例如,一条直线的斜率越大,说明函数的变化越明显;截距越大,说明函数的起点越靠上。

3.解决实际问题一次函数在实际生活和工作中有很好的应用,例如根据统计数据制定生产计划、预测股票趋势等。

此外,一次函数还可以用于计算地图上两点之间的距离、计算物品的价格和数量等。

四、学习建议在学习一次函数时,我们应该从基础开始逐渐深入。

首先学习函数的定义、性质和应用,掌握其相关概念和公式,之后要进行大量的实际计算练习,例如对图像进行分析或根据问题建立函数公式,强化应用能力。

八年级数学一次函数知识点总结

八年级数学一次函数知识点总结

千里之行,始于足下。

八年级数学一次函数知识点总结
一次函数是指形如y = ax + b的函数,其中a和b为常数。

一次函数的特点是:
1. 直线的图像:一次函数的图像是一条直线,因为它的函数关系是线性的。

2. 斜率和截距:a表示直线的斜率,b表示直线在y轴上的截距。

3. 变量:x表示自变量,y表示因变量,即函数的值。

一次函数的关系:
1. y = ax + b表示函数关系,其中a表示斜率。

斜率是指函数图像上任
意两点之间的垂直距离与水平距离的比值。

2. 直线的方程:直线的方程可以由两点确定,也可以由斜率和一个已知点来确定。

常用的直线方程有点斜式(y - y1 = m(x - x1))、斜截式(y = mx + b)和一般式(Ax + By + C = 0)。

3. 平行和垂直:两条直线平行的条件是它们的斜率相等,垂直的条件是它们的斜率的乘积为-1。

一次函数的应用:
1. 实际问题:一次函数可以用于描述线性关系的实际问题,如速度和时间之间的关系、成本和产量之间的关系等。

2. 线性方程组:一次函数可以用于解决线性方程组的问题,通过求解方程组的交点可以得到函数的解。

总结:
一次函数是数学中最简单的函数之一,它以直线的形式描述了变量之间的
线性关系。

理解一次函数的概念和特点,掌握直线方程的表示和应用,能够解
决实际问题和线性方程组等数学应用。

第1页/共1页。

八年级数学下册第十九章一次函数知识点总结归纳完整版(带答案)

八年级数学下册第十九章一次函数知识点总结归纳完整版(带答案)

八年级数学下册第十九章一次函数知识点总结归纳完整版单选题1、已知函数y=2x−1x+2,当x=a时的函数值为1,则a的值为()A.3B.-1C.-3D.1答案:A分析:当x=a时的函数值为1,把x=a代入函数式中,得2a−1a+2=1求解a=3.∵函数y=2x−1x+2中,当x=a时的函数值为1,∴2a−1a+2=1,∴2a−1=a+2,∴a=3.故答案为A小提示:此题考查函数值, 令y=1,解分式方程,即可求出2、在平面直角坐标系中,点A(3,0),B(0,4).以AB为一边在第一象限作正方形ABCD,则对角线BD所在直线的解析式为()A.y=−17x+4B.y=−14x+4C.y=−12x+4D.y=4答案:A分析:过点D作DE⊥x轴于点E,先证明△ABO≅△DAE(AAS),再由全等三角形对应边相等的性质解得D(7,3),最后由待定系数法求解即可.解:正方形ABCD中,过点D作DE⊥x轴于点E,∵∠ABO+∠BAO=∠BAO+∠DAE=90°∴∠ABO=∠DAE∵∠BOA=∠AED=90°,AB=AD∴△ABO≅△DAE(AAS)∴AO=DE=3,OB=AE=4∴D(7,3)设直线BD所在的直线解析式为y=kx+b(k≠0),代入B(0,4),D(7,3)得{b=47k+b=3∴{k=−1 7b=4∴y=−17x+4,故选:A.小提示:本题考查待定系数法求一次函数的解析式,涉及正方形性质、全等三角形的判定与性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.3、若x=2是关于x的方程mx+n=0(m≠0,n>0)的解,则一次函数y=−m(x−1)−n的图象与x轴的交点坐标是()A.(2,0)B.(3,0)C.(0,2)D.(0,3)答案:B分析:直线y=mx+n与x轴的交点的横坐标就是函数值为0时的方程的解,根据题意得到一次函数y=mx+n的图象与x轴的交点为(2,0),进而得到一次函数y=-mx-n的图象与x轴的交点为(2,0),由于一次函数y=-mx-n的图象向右平移一个单位得到y=-m(x-1)-n,即可求得一次函数y=-m(x-1)-n的图象与x轴的交点坐标.解:∵方程的解为x=2,∴当x=2时mx+n=0;∴一次函数y=mx+n的图象与x轴的交点为(2,0),∴一次函数y=-mx-n的图象与x轴的交点为(2,0),∵一次函数y=-mx-n的图象向右平移一个单位得到y=-m(x-1)-n,∴一次函数y=-m(x-1)-n的图象与x轴的交点坐标是(3,0),故选:B.小提示:本题主要考查了一次函数与一元一次方程的关系.任何一元一次方程都可以转化为ax+b=0 (a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.4、如图所示,一次函数y=kx+b(k≠0)的图象经过点P(3,2),则方程kx+b=2的解是()A.x=1B.x=2C.x=3D.无法确定答案:C分析:将点P(3,2)代入直线解析式,然后与方程对比即可得出方程的解.解:一次函数y=kx+b(k≠0)的图象经过点P(3,2),∴2=3k+b,∴x=3为方程2=kx+b的解,故选:C.小提示:题目主要考查一次函数与一元一次方程的联系,理解二者联系是解题关键.5、现有甲、乙两个长方体蓄水池,将甲池中的水匀速注入乙池,甲、乙两个蓄水池中水的深度y(米)(小时)之间的函数图象如图所示,当甲、乙两池中水的深度相同时,y的值为()A.3.2米B.4米C.4.2米D.4.8米答案:A分析:先利用待定系数法求出两个蓄水池的函数解析式,再联立求出交点坐标即可得.解:设甲蓄水池的函数解析式为y=kx+b,由题意,将点(3,0),(0,4)代入得:{3k+b=0b=4,解得{k=−43b=4,则甲蓄水池的函数解析式为y=−43x+4,同理可得:乙蓄水池的函数解析式为y=2x+2,联立{y=−43x+4y=2x+2,解得{x=0.6y=3.2,即当甲、乙两池中水的深度相同时,y的值为3.2米,故选:A.小提示:本题考查了一次函数的实际应用,熟练掌握待定系数法是解题关键.6、在函数y=2x−3中,当自变量x=5时,函数值等于()A.1B.4C.7D.13答案:C分析:把x=5代入y=2x−3求解即可.解:把x=5代入y=2x−3得y=2×5-3=7,故选:C.小提示:本题考查求函数值,属基础题目,难度不大.7、若y=(m﹣1)x+m2﹣1是y关于x的正比例函数,则该函数图象经过的象限是()A.第一、三象限B.第一、四象限C.第二、三象限D.第二、四象限答案:D分析:根据正比例函数的定义知,m2−1=0且m−1≠0,由此可求得m的值,从而可知正比例函数图象所经过的象限.由题意知:m2−1=0且m−1≠0由m2−1=0得:m=±1由m−1≠0得:m≠1∴m=-1此时正比例函数解析式为y=-2x∵-2<0∴函数图象经过第二、四象限故选:D.小提示:本题考查了正比例函数的概念,把形如y=kx(k≠0)的函数称为正比例函数,掌握正比例函数概念是解题关键.特别注意一次项系数不为零.8、在平面直角坐标系中,直线l1与l2关于直线y=1对称,若直线l1的表达式为y=−2x+3,则直线l2与y轴的交点坐标为()A.(0,12)B.(0,23)C.(0,0)D.(0,−1)答案:D分析:先求解y=−2x+3与x,y轴的交点B,A坐标,再求解A关于y=1的对称点A′的坐标即可得到答案.解:如图,∵y=−2x+3,令x=0,y=3,令y=0,x=32,∴A(0,3),B(3,0),2作A,B关于直线y=1对称的点A′,B′,∵直线l1与l2关于直线y=1对称,即上图中的直线AB与直线A′B′关于直线y=1对称,∴x A=x A′=0,y A−1=1−y A′,∴y A′=−1,∴A′(0,−1),所以直线l2与y轴的交点坐标为:(0,−1).故选:D.小提示:本题考查的是求解一次函数与坐标轴的交点的坐标,坐标与图形,轴对称的坐标变化,掌握数形结合的方法是解题的关键.9、直线y=kx+2过点(﹣1,4),则k的值是()A.﹣2B.﹣1C.﹣1D.24答案:A分析:由直线y=kx+2过点(﹣1,4),利用一次函数图象上点的坐标特征可得出关于k的一元一次方程,解之即可得出k值.解:∵直线y=kx+2过点(﹣1,4),∴4=﹣k+2,∴k=﹣2.故选:A.小提示:本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b 是解题的关键.10、如图,已知A(1,3),B(5,1),若直线y=kx+1与线段AB有公共点,则k的取值范围是()A.k≠0B.k>1C.0≤k≤1D.0≤k≤2答案:D分析:先求出直线过点A、B的k值,再结合图象即可求得k的取值范围.解:当直线y=kx+1过点A(1,3)时,则k+1=3,解得:k=2,当直线y=kx+1过点B(5,1)时,则5k+1=1,解得:k=0,当x=0时,y=1,则直线经过定点(0,1),∵直线y=kx+1与线段AB有公共点,∴0≤k≤2,故选:D.小提示:本题考查一次函数的图象与性质,熟练掌握一次函数的性质是解答的关键.填空题11、如图,A(−2,1),B(2,3)是平面直角坐标系中的两点,若一次函数y=kx−1的图象与线段AB有交点,则k 的取值范围是_______.答案:k<-1或k>2分析:将A、B点坐标分别代入计算出对应的k值,然后利用一次函数图象与系数的关系确定k的范围.解:当直线y=kx-1过点A时,得-2k-1=1,解得k=-1,当直线y=kx-1过点B时,得2k-1=3,解得k=2,∵一次函数y=kx−1的图象与线段AB有交点,∴k<-1或k>2,所以答案是:k<-1或k>2.小提示:此题考查了一次函数图象与系数的关系:当k>0时,图象过第一、三象限,y随x的增大而增大,越靠近y轴正半轴k值越大;当k<0时,图象过二、四象限,y随x的增大而减小越靠近y轴正半轴k值越小.12、某超市糯米的价格为5元/千克,端午节推出促销活动:一次购买的数量不超过2千克时,按原价售出,超过2千克时,超过的部分打8折.若某人付款14元,则他购买了_______千克糯米;设某人的付款金额为x 元,购买量为y千克,则购买量y关于付款金额x(x>10)的函数解析式为______.答案: 3 y=4x+2##y=2+4x分析:根据题意列出一元一次方程,函数解析式即可求解.解:∵14>10,∴超过2千克,设购买了a千克,则2×5+(a−2)×0.8×5=14,解得a=3,设某人的付款金额为x元,购买量为y千克,则购买量y关于付款金额x(x>10)的函数解析式为:y=2×5+(x−2)×5×0.8=10+4x−8=4x+2,所以答案是:3,y=4x+2.小提示:本题考查了一元一次方程的应用,列函数解析式,根据题意列出方程或函数关系式是解题的关键.13、张老师带领x名学生到某动物园参观,已知成人票每张10元,学生票每张5元,设门票的总费用为y元,则y=__________________,当学生有45人时,需要的总费用为________元.答案: 10+5x(x为正整数), 235分析:总费用=成人票用钱数+学生票用钱数,根据关系列式即可.根据题意可知y=5x+10.当x=45时,y=45×5+10=235元.故答案为5x+10;235.小提示:解决问题的关键是读懂题意,找到所求的量的等量关系.关系为:总费用=成人票用钱数+学生票用钱数.14、已知一次函数y =(2m +1)x +m ﹣3的图象不经过第二象限,则m 的取值范围为______.答案:−12<m ⩽3 分析:根据一次函数图象经过的象限可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围. 解:∵一次函数y =(2m +1)x +m −3的图象不经过第二象限,∴该图象经过第一、三象限或第一、三、四象限,{2m +1>0m −3≤0,解得:﹣12<m ≤3. 所以答案是:﹣12<m ≤3.小提示:本题考查了一次函数的性质及解不等式组,解题的关键是熟知一次函数的性质并正确的应用.15、正比例函数的图像过A 点,A 点的横坐标为3.且A 点到x 轴的距离为2,则此函数解析式是___________________ .答案:y =23x 或y =-23x分析:根据题意确定A 点纵坐标是2或者-2,设出正比例函数解析式,然后分情况将A 点坐标代入解析式即可求出.根据题意可得A 点坐标(3,2)或(3,-2),设正比例函数解析式为:y=kx ,代入解析式可得:k=23或-23,∴函数解析式是y =23x 或y =-23x .所以答案是:y =23x 或y =-23x .小提示:本题主要考查了正比例函数解析式,根据题意确定点A 的坐标是解题的关键.解答题16、已知函数y=(5m−3)x2−n+(m+n),(1)当m、n为何值时,此函数是一次函数?(2)当m、n为何值时,此函数是正比例函数?答案:(1)n=1,m≠35(2)n=1,m=-1分析:(1)根据一次函数的定义知2−n=1,且5m−3≠0,据此可以求得m、n的值;(2)根据正比例函数的定义知2−n=1,m+n=0,据此可以求得m、n的值.(1)解:当函数y=(5m−3)x2−n+(m+n)是一次函数时,2−n=1,且5m−3≠0,解得,n=1,m≠35;(2)解:当函数y=(5m−3)x2−n+(m+n)是正比例函数时,{2−n=1 m+n=05m−3≠0,解得,n=1,m=−1.小提示:本题考查了一次函数、正比例函数的定义,解题的关键是掌握正比例函数是一次函数的一种特殊形式.17、今年植树节期间,某景观园林公司购进一批成捆的A,B两种树苗,每捆A种树苗比每捆B种树苗多10棵,每捆A种树苗和每捆B种树苗的价格分别是630元和600元,而每棵A种树苗和每棵B种树苗的价格分别是这一批树苗平均每棵价格的0.9倍和1.2倍.(1)求这一批树苗平均每棵的价格是多少元?(2)如果购进的这批树苗共5500棵,A种树苗至多购进3500棵,为了使购进的这批树苗的费用最低,应购进A种树苗和B种树苗各多少棵?并求出最低费用.答案:(1)这一批树苗平均每棵的价格是20元;(2)购进A种树苗3500棵,B种树苗2000棵,能使得购进这批树苗的费用最低为111000元.分析:(1)设这一批树苗平均每棵的价格是x元,分别表示出两种树苗的数量,根据“每捆A种树苗比每捆B种树苗多10棵”列方程即可求解;(2)设购进A种树苗t棵,这批树苗的费用为w,得到w与t的关系式,根据题意得到t的取值范围,根据函数增减性即可求解.解:(1)设这一批树苗平均每棵的价格是x元,根据题意,得6300.9x −6001.2x=10,解之,得x=20.经检验知,x=20是原分式方程的根,并符合题意.答:这一批树苗平均每棵的价格是20元.(2)由(1)可知A种树苗每棵价格为20×0.9=18元,种树苗每棵价格为20×1.2=24元,设购进A种树苗t棵,这批树苗的费用为w,则w=18t+24(5500−t)=−6t+132000.∵w是t的一次函数,k=−6<0,w随着t的增大而减小,t≤3500,∴当t=3500棵时,w最小.此时,B种树苗有5500−3500=2000棵,w=−6×3500+132000=111000.答:购进A种树苗3500棵,B种树苗2000棵,能使得购进这批树苗的费用最低为111000元.小提示:本题考查了分式方程的实际应用,一次函数实际应用,不等式应用等问题,根据题意得到相关“数量关系”,根据数量关系得到方程或函数解析式是解题关键.18、某市出租车的计费标准如下:行驶路程不超过5 km时,收费8元,行驶路程超过5 km的部分,按每千米1.5元计费.(1)求出租车收费y(元)与行驶路程x(km)之间的函数关系式;(2)若某人一次乘出租车付出了车费11元,求他这次乘坐了多少千米的路程?答案:(1)y={8(0<x≤5)1.5x+0.5(x>5);(2)若某人一次乘出租车付出了车费11元,则这次乘坐了7km的路程.分析:(1)要先根据行驶路程的距离是否超出5千米来进行分类讨论,然后分别列出函数解析式即可;(2)先根据车费判断出此人的大概行驶路程,然后根据(1)中得出的不同的函数,看符合哪种情况,然后代入其中求出此人乘坐的路程.解:(1)由题意得:当0<x≤5时,y=8当x>5时,y=8+1.5(x-5)=1.5x+0.5∴出租车收费y元与行驶路程x(km)之间的函数关系式为y={8(0<x≤5)1.5x+0.5(x>5)(2) ∵11元>8元.∴y=11时,1.5x+0.5=11,解得x=7,∴若某人一次乘出租车付出了车费11元,则这次乘坐了7km的路程..小提示:本题主要考查一次函数关系式的应用问题.注意自变量的取值范围不能遗漏,不同的取值要进行分类讨论.。

人教版八年级下册数学一次函数知识点归纳

人教版八年级下册数学一次函数知识点归纳

一次函数知识点总结一、本节学习指导本节的知识相当重要,同学们要引起重视,如果给出一个式子让其判断是不是一次函数,判断方法我们要掌握。

关于一次函数的解析式的几种求法我们要会,特别是其中最常用的“待定系数法”。

本节有配套免费学习视频。

二、知识要点1、一次函数:形如y=kx+b (k≠0, k, b为常数)的函数。

注意:(1)要使y=kx+b是一次函数,必须k≠0。

如果k=0,则kx=0,y=kx+b 就不是一次函数;(2)当b=0时,y=kx,y叫x的正比例函数。

2、图象:一次函数的图象是一条直线。

【重点】(1)两个常有的特殊点:与y轴交于(0,b);与x轴交于(-b/k,0)(2)由图象可以知道,直线y=kx+b与直线y=kx平行,例如直线:y=2x+3与直线y=2x-5都与直线y=2x平行。

3、性质:【重点】(1)图象的位置:(2)增减性k>0时,y随x增大而增大k<0时,y随x增大而减小4.求一次函数解析式的方法【重点】(1)由已知函数推导或推证(2)由实际问题列出二元方程,再转化为函数解析式,此类题一般在没有写出函数解析式前无法(或不易)判断两个变量之间具有什么样的函数关系。

(3)用待定系数法求函数解析式。

(最常用)“待定系数法”的基本思想就是方程思想,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程(组)来解决,题目的已知恒等式中含有几个等待确定的系数,一般就需列出几个含有待定系数的方程,本单元构方程一般有下列几种情况:①利用一次函数的定义x的系数不为0,x的最高次数为1,构造方程组。

②利用一次函数y=kx+b 中常数项b 恰为函数图象与y 轴交点的纵坐标,即由b 来定点;直线y=kx+b 平行于y=kx ,即由k 来定方向 。

③利用函数图象上的点的横、纵坐标满足此函数解析式构造方程。

④利用题目已知条件直接构造方程 。

例:(1)若函数是1)1(2-++=k x k y 正比例函数,则k 的值为( )(2)已知32)12(--=mx m y 是正比例函数,且y 随x 的增大而减小,则m 的值为_______.(3)当m=_______时,函数54)3(12-++=-x x m y m 是一次函数.解:(1)由于y=(k +1)x +k ²-1是正比例函数,∴,∴k=1,∴应选B (2)是正比例函数的条件是:m2-3=1且2m -1≠0,要使y随x 的增大而减小还应满足条件2m -1<0,综合这两个条件得当m=-2时,是正比例函数且y 随x 的增大而减小.(3)根据一次函数的定义可知,是次函数的条件是:解得m=1或-3,故填1或-3.三、经验之谈: 1、判断一个式子是不是一次函数,首先看“k ”是否等于零,其次看最高次项是否等于1次。

八年级数学下册《一次函数》知识点归纳

八年级数学下册《一次函数》知识点归纳

八年级数学下册《一次函数》知识点归纳知识点1 一次函数和正比例函数的概念若两个变量x,y间的关系式可以表示成y=kx+b(k,b 为常数,kne;0)的形式,则称y是x的一次函数(x为自变量),特别地,当b=0时,称y是x的正比例函数.知识点2 函数的图象由于两点确定一条直线,一般选取两个特殊点:直线与y轴的交点,直线与x轴的交点。

.不必一定选取这两个特殊点.画正比例函数y=kx的图象时,只要描出点(0,0),(1,k)即可.知识点3一次函数y=kx+b(k,b为常数,kne;0)的性质(1)k的正负决定直线的倾斜方向;①kgt;0时,y的值随x值的增大而增大;②k﹤O时,y的值随x值的增大而减小.(2)|k|大小决定直线的倾斜程度,即|k|越大①当bgt;0时,直线与y轴交于正半轴上;②当blt;0时,直线与y轴交于负半轴上;③当b=0时,直线经过原点,是正比例函数.(4)由于k,b的符号不同,直线所经过的象限也不同;①如图所示,当kgt;0,bgt;0时,直线经过第一、二、三象限(直线不经过第四象限);②如图所示,当kgt;0,b③如图所示,当k﹤O,bgt;0时,直线经过第一、二、四象限(直线不经过第三象限);④如图所示,当k﹤O,b﹤O时,直线经过第二、三、四象限(直线不经过第一象限).(5)由于|k|决定直线与x轴相交的锐角的大小,k相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的.另外,从平移的角度也可以分析,例如:直线y=x+1可以看作是正比例函数y=x向上平移一个单位得到的.知识点4 正比例函数y=kx(kne;0)的性质(1)正比例函数y=kx的图象必经过原点;(2)当kgt;0时,图象经过第一、三象限,y随x的增大而增大;(3)当klt;0时,图象经过第二、四象限,y随x的增大而减小.知识点5 点P(x0,y0)与直线y=kx+b的图象的关系(1)如果点P(x0,y0)在直线y=kx+b的图象上,那么x0,y0的值必满足解析式y=kx+b;(2)如果x0,y0是满足函数解析式的一对对应值,那么以x0,y0为坐标的点P(1,2)必在函数的图象上.例如:点P(1,2)满足直线y=x+1,即x=1时,y=2,则点P(1,2)在直线y=x+l的图象上;点Pprime;(2,1)不满足解析式y=x+1,因为当x=2时,y=3,所以点Pprime;(2,1)不在直线y=x+l的图象上.知识点6 确定正比例函数及一次函数表达式的条件(1)由于正比例函数y=kx(kne;0)中只有一个待定系数k,故只需一个条件(如一对x,y的值或一个点)就可求得k的值.(2)由于一次函数y=kx+b(kne;0)中有两个待定系数k,b,需要两个独立的条件确定两个关于k,b的方程,求得k,b的值,这两个条件通常是两个点或两对x,y的值.知识点7 待定系数法先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法.其中未知系数也叫待定系数.例如:函数y=kx+b中,k,b就是待定系数.知识点8 用待定系数法确定一次函数表达式一般步骤(1)设函数表达式为y=kx+b;(2)将已知点的坐标代入函数表达式,解方程(组);(3)求出k与b的值,得到函数表达式.思想方法小结 (1)函数方法.(2)数形结合法.知识规律小结 (1)常数k,b对直线y=kx+b(kne;0)位置的影响.①当bgt;0时,直线与y轴的正半轴相交;当b=0时,直线经过原点;当b﹤0时,直线与y轴的负半轴相交.②当k,b异号时,直线与x轴正半轴相交;当b=0时,直线经过原点;当k,b同号时,直线与x轴负半轴相交.③当kgt;O,bgt;O时,图象经过第一、二、三象限;当kgt;0,b=0时,图象经过第一、三象限;为大家推荐的一次函数知识点归纳,大家仔细阅读了吗?更多知识点总结尽在。

八年级下册数学一次函数知识点

八年级下册数学一次函数知识点

八年级下册数学一次函数知识点数学知识点:一次函数一、概念一次函数也被称为线性函数,是指函数关系中的自变量的最高次数为一的函数。

一次函数的一般形式为y = ax + b ,其中a和b是实数,a不为零。

二、图像特征1. 斜率一次函数的斜率代表了其图像的倾斜程度。

斜率为正时,函数图像呈现上升趋势;斜率为负时,函数图像呈现下降趋势。

2. 截距一次函数的截距是指它与x轴和y轴的交点。

x轴的截距为函数的根,y轴的截距为b。

3. 函数图像一次函数的图像是一条直线,其斜率和截距决定了直线的位置和倾斜程度。

三、性质与运算1. 平行与相交两条一次函数图像平行,则它们的斜率相等;两条一次函数图像相交,则它们的斜率不相等。

2. 垂直两条直线互相垂直,则其斜率的乘积为-1。

3. 变换对一条任意的一次函数y = ax + b,可以进行平移、缩放和翻转等运算,得到不同的图像。

四、求解与应用1. 解一次方程一次函数可以用于解一次方程,即求解 ax + b = 0 中的x的值。

2. 实际问题应用一次函数可以用于描述很多实际问题,例如直线运动、费用与数量关系等。

通过建立相应的函数关系,可以解决实际问题。

3. 数据分析与预测通过一次函数对给定数据进行拟合,可以得到一条直线,并利用这条直线进行数据分析和预测。

五、常见误区1. 不是一次函数的误判有时候,某些函数看起来像是一次函数,但在具体计算时发现其自变量存在其他次数,因此需要仔细判断。

2. 导数与斜率的混淆一次函数的斜率等于其导数,但导数远不止于斜率的概念,需要清楚区分。

总结:一次函数是数学中一个重要的概念,它的图像特征、性质与运算、求解与应用以及常见误区等方面都需要我们理解和掌握。

通过学习一次函数,我们可以更好地理解数学中的平面坐标系和直线方程,并能够运用数学知识解决实际问题。

八年级下册数学一次函数知识点

八年级下册数学一次函数知识点一次函数是中学数学中的重要内容之一,它在解决实际问题中有着广泛的应用。

在这篇文章中,我们将逐步介绍八年级下册数学中一次函数的基本概念、性质和解题方法。

一、一次函数的基本概念一次函数又称为线性函数,是指函数的表达式中只包含一次项和零次项,不含其他次数的项。

一次函数的一般形式可以表示为 y = kx + b,其中 k 和 b 是常数,且 k 不等于零。

在一次函数中,x 是自变量,y 是因变量。

k 表示函数的斜率,决定了函数图像的倾斜程度;b 表示函数的截距,决定了函数图像与 y 轴的交点位置。

二、一次函数的性质1.斜率 k 的含义和性质斜率 k 反映了函数图像的倾斜程度。

当 k 大于零时,函数图像逐渐上升;当 k小于零时,函数图像逐渐下降;当 k 等于零时,函数图像是水平的。

2.截距 b 的含义和性质截距 b 决定了函数图像与 y 轴的交点位置。

当 b 大于零时,函数图像与 y 轴的交点在 y 轴上方;当 b 小于零时,函数图像与 y 轴的交点在 y 轴下方;当 b 等于零时,函数图像与 y 轴的交点在原点上。

3.函数图像的性质一次函数的图像是一条直线,它可以通过斜率 k 和截距 b 来确定。

当斜率 k 不等于零时,函数图像是一条斜线;当斜率 k 等于零时,函数图像是一条水平线;当截距 b 不等于零时,函数图像与 y 轴有交点;当截距 b 等于零时,函数图像通过原点。

三、一次函数的解题方法1.求函数图像与坐标轴的交点要确定一次函数图像与 x 轴的交点,只需将函数表达式中的 y 置为零,解方程得到 x 的值。

同样地,要确定一次函数图像与 y 轴的交点,只需将函数表达式中的x 置为零,解方程得到 y 的值。

2.求函数图像的斜率函数图像的斜率可以通过任意选取两个点,计算它们的坐标变化量,然后利用斜率的定义公式Δy/Δx 来求得。

3.求函数的表达式已知函数图像通过两个点A(x₁, y₁) 和B(x₂, y₂) 时,可以利用斜率公式k = (y₂ - y₁) / (x₂ - x₁) 来求得斜率 k。

【人教版】初中数学知识点总结 一次函数

一次函数的图象和性质一、知识要点:1、一次函数:若两个变量x,y存在关系为y=kx+b (k≠0, k,b为常数)的形式,则称y 是x的函数。

注意:(1)k≠0,自变量x的最高次项的系数为1;(2)当b=0时,y=kx,y叫x的正比例函数。

2、图象:一次函数的图象是一条直线,(1)两个常有的特殊点:与y轴交于(0,b);与x轴交于(-,0)。

(2)正比例函数y=kx(k≠0)的图象是经过(0,0)和(1,k)的一条直线;一次函数y=kx+b(k≠0)的图象是经过(-,0)和(0,b)的一条直线。

(3)由图象可以知道,直线y=kx+b与直线y=kx平行,例如直线:y=2x+3与直线y=2x-5都与直线y=2x平行。

3、一次函数图象的性质:(1)图象在平面直角坐标系中的位置:(2)增减性:k>0时,y随x增大而增大;k<0时,y随x增大而减小。

4、求一次函数解析式的方法求函数解析式的方法主要有三种:一是由已知函数推导,如例题1;二是由实际问题列出两个未知数的方程,再转化为函数解析式,如例题4的第一问。

三是用待定系数法求函数解析式,如例2的第二小题、例7。

其步骤是:①根据题给条件写出含有待定系数的解析式;②将x、y的几对值或图象上几个点的坐标代入上述的解析式中,得到以待定系数为未知数的方程或方程组;③解方程,得到待定系数的具体数值;④将求出的待定系数代入要求的函数解析式中。

二、例题举例:例1、已知变量y与y1的关系为y=2y1,变量y1与x的关系为y1=3x+2,求变量y与x 的函数关系。

分析:已知两组函数关系,其中共同的变量是y1,所以通过y1可以找到y与x的关系。

例2、解答下列题目(1)(甘肃省中考题)已知直线与y轴交于点A,那么点A的坐标是()。

(A)(0,–3)(B)(C)(D)(0,3)(2)(杭州市中考题)已知正比例函数,当x=–3时,y=6.那么该正比例函数应为()。

(A)(B)(C)(D)(3)(福州市中考题)一次函数y=x+1的图象,不经过的象限是()。

八年级数学《一次函数》知识点总结

八年级数学《一次函数》知识点总结八年级数学下册《一次函数》知识点总结一.常量、变量:在一个变化过程中,数值发生变化的量叫做变量;数值始终不变的量叫做常量。

二、函数的概念:函数的定义:一般的,在一个变化过程中,如果有两个变量x与,并且对于x的每一个确定的值,都有唯一确定的值与其对应,那么我们就说x是自变量,是x的函数.三、函数中自变量取值范围的求法:(1)用整式表示的函数,自变量的取值范围是全体实数。

(2)用分式表示的函数,自变量的取值范围是使分母不为0的一切实数。

(3)用寄次根式表示的函数,自变量的取值范围是全体实数。

用偶次根式表示的函数,自变量的取值范围是使被开方数为非负数的一切实数。

(4)若解析式由上述几种形式综合而成,须先求出各部分的取值范围,然后再求其公共范围,即为自变量的取值范围。

(5)对于与实际问题有关系的,自变量的取值范围应使实际问题有意义。

四、函数图象的定义:一般的,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么在坐标平面内由这些点组成的图形,就是这个函数的图象.五、用描点法画函数的图象的一般步骤1、列表(表中给出一些自变量的值及其对应的函数值。

)注意:列表时自变量由小到大,相差一样,有时需对称。

2、描点:(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。

3、连线:(按照横坐标由小到大的顺序把所描的各点用平滑的曲线连接起来)。

六、函数有三种表示形式:(1)列表法(2)图像法(3)解析式法七、正比例函数与一次函数的概念:一般地,形如=x(为常数,且≠0)的函数叫做正比例函数.其中叫做比例系数。

一般地,形如=x+b(,b为常数,且≠0)的函数叫做一次函数.当b=0时,=x+b即为=x,所以正比例函数,是一次函数的特例.八、正比例函数的图象与性质:(1)图象:正比例函数=x(是常数,≠0))的图象是经过原点的一条直线,我们称它为直线=x。

新人教版八年级下册数学第十九章一次函数知识点总结

新人教版八年级下册数学第十九章一次函数知识点总结八年级下册数学第十九章一次函数知识点总结一、基本概念:1.变量是在一个变化过程中数值发生变化的量,而常量是在一个变化过程中数值始终不变的量。

2.函数定义是指在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x 的函数。

当x=a时y=b,那么b叫做当自变量的值为a时的函数值。

3、定义域是指一个函数的自变量x允许取值的范围。

4、确定函数定义域的方法有以下几种:1)关系式为整式时,函数定义域为全体实数;2)关系式含有分式时,分式的分母不等于零;3)关系式含有二次根式时,被开放方数大于等于零;4)关系式中含有指数为零的式子时,底数不等于零;5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。

5、函数解析式是用来表示函数关系的数学式子,使函数有意义的自变量的取值的全体,叫做自变量的取值范围。

6、函数图像的性质是对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图像。

7、函数的三种表示法及其优缺点:1)解析法:两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。

2)列表法:把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

3)图像法:用图像表示函数关系的方法叫做图像法。

8、由函数解析式画其图像的一般步骤:1)列表:列表给出自变量与函数的一些对应值。

2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点。

3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

9、正比例函数和一次函数:所有一次函数或者正比例函数的图像都是一条直线。

1)正比例函数定义:一般地,形如y=kx(k为常数,k≠)y叫x的正比例函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四川省乐山市马边县
2019年5月8日
一、常量与变量
在一个变化过程中,数值保持不变的量叫常量,数值发生改变的量叫变量。

实际上,常量就是具体的数,变量就是表示数的字母。

(注意“π”是常量) 二、自变量与函数
在一个变化过程中,有两个变量x 和y ,如果x 每取一个值,y 都有唯一确定....的值与它对应,那么,把x 叫自变量,y 叫x 的函数。

判断两个变量是否有函数关系就是“看对于自变量的每一个确定的值,函数值是否有惟一确定的值和它对应。

” 三、函数值
如果x=a 时,y=b ,那么把“y=b 叫做x=a 时的函数值”。

四、表示函数的方法
方法(一)解析式法。

方法(二)列表法 方法(三)图像法 五、自变量的取值范围
在一个变化过程中,自变量允许取值的区域,叫自变量的取值范围。

六、自变量取值范围的求法 (一)对于解析式
1、解析式是整式。

自变量取一切实数。

2、自变量在分母。

取使分母不等于0的实数。

3、自变量在根号内
(1)在错误!未找到引用源。

内。

自变量取一切实数。

(2)在错误!未找到引用源。

内。

取使根号内的值为非负数的实数。

(二)对于实际问题
自变量的取值要符合实际意义。

在一个函数解析式中,同时有几种代数式时,函数的自变量的取值范围应是各种代数式中自变量的取值范围的公共部分
例:求函数错误!未找到引用源。

中自变量x 的取值范围。

解:要使错误!未找到引用源。

有意义, 必须错误!未找到引用源。

且错误!未找到引用源。

即,错误!未找到引用源。

所以错误!未找到引用源。

中自变量x 的取值范围是。

错误!未找到引用源。

说明:求使函数有意义的自变量的值,就是
求函数自变量的取值范围。

七、 函数图象的画法步骤
把每个点描在平面直角坐标系中。

(三)连线。

把描出的点按照自变量由小到大的顺序,用平滑的线....连结起来。

八、正比例函数
1、定义:形如错误!未找到引用源。

(k 是常数,错误!未找到引用源。

)的函数叫做正比例函数。

2、图象:是经过(0,0)与(1,k )的直线。

3、性质:
(1)错误!未找到引用源。

(2)错误!未找到引用源。

九、一次函数 (一)定义:
形如错误!未找到引用源。

b 错误!未找到引用源。

的函数叫做一次函数。

因为当b=0时,y=kx ,所以“正比例函数是特殊的一次函数”。

(二)图象:
是经过(错误!未找到引用源。

,0)与(0,b )两点的直线。

因此一次函数y=kx +b 的图象也称为直线y=kx +b.
其中,(错误!未找到引用源。

,0)是直线与x 轴的交点坐标,
(0,b )是直线与y 轴的交点坐标。

(三)性质:(如下图)
四川省乐山市马边县
2019年5月8日
1、错误!未找到引用源。

2、错误!未找到引用源。

3、错误!未找到引用源。

4、错误!未找到引用源。

5、错误!未找到引用源。

6、错误!未找到引用源。

(四)l 1:y=k 1x+b 1与l 2:y=k 2x+b 2的关系 1、k 1=k 2错误!未找到引用源。

l 1错误!未找到引用源。

2 ;
说明:当k 1=k 2,b 1=b 2时,l 1与l 2重合。

从错误!未找到引用源。

(1)b>0,向上平移,(2)b<0,向下平移。

反之,从错误!未找到引用源。

(1)b>0,向下平移,(2)b<0,向上平移。

2、k 1错误!未找到引用源。

2错误!未找到引用源。

l 1与l 2相交;当k 1错误!未找到引用源。

2=-1时,l 1错误!未找到引用源。

l 2。

3、求l 1与l 2的交点坐标就是
解关于x 、y 的二元一次方程组错误!未找到引用源。

(五)一次函数与二元一次方程组的关系
因为二元一次方程组中的两个二元一次方程都可以化为两个一次函数解析式,所以两个一次函数图象的交点坐标就是原二元一次方程组的解。

因此,可以通过两个一次函数图象交点坐标求出二元一次方程组的解。

(六)一次函数与一元一次方程的关系
因为错误!未找到引用源。

与x 轴相交于一点,此时y=0,得到错误!未找到引用源。

,这是个一元一次方程。

所以一元一次方程的解,就是对应的一次函数图象与x 轴交点的横坐标。

即可以通过画一次函数的图象求出对应的一元一次方程的解。

(七)一次函数与一元一次不等式的关系
因为一次函数的图象与x 轴相交与一点,在x 轴上方的部分,直线上的点对应的
函数值y 是正数,即错误!未找到引用源。

; 在x 轴下方的部分,直线上的点对应的函数值y 是负数,即错误!未找到引用源。

;即可以通过画一次函数的图象求出对应的一元一次不等式的解集。

(八)判定点是否在函数图象上(或函数图象是否经过点)的方法
将这个点的坐标代入函数解析式,如果满足函数解析式,这个点就在函数的图象上,如果不满足函数解析式,这个点就不在其函数的图象上.
(九)用待定系数法确定函数解析式的一般步骤:
(1)根据已知条件写出含有待定系数的函数关系式;
(2)将x 、y 的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;
(3)解方程得出未知系数的值;
(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式.
(十)点在函数图象上(或函数图象经过点)的意思是“把点的横坐标x 和纵坐标y 代入函数解析式中,等号成立”。

十、一次函数的应用
在实际生活中,应用函数知识解决实际问题,关键是建立函数模型,即列出符合题意的函数解析式,再利用方程(组)求解.。

相关文档
最新文档