高性能炭炭复合材料制备及性能表征PPT课件

合集下载

碳碳复合材料ppt课件

碳碳复合材料ppt课件

循环浸渍-碳化曲线反映了浸渍-碳化工艺特点:
❖ 在进行1~3次浸渍碳化时,复合材料的密度增加较快, 从预制体密度(约1.2~1.3g/cm3)增加到1.6g/cm3以上;
❖ 从第四次循环浸渍碳化开始,则每次复合材料的密度增 加相对较慢。
❖ 为了减少浸渍-碳化次数,提高浸渍碳化效率和改善复 合材料的性能,一般采用真空压力浸渍工艺,形成了压 力浸渍碳化工艺(PIC, Pressure Impregnation Carbonization)。并且在沥青液态浸渍-碳化工艺中得 到应用。
沥青碳化率=0.95QI+0.85(BI-QI)+(0.3-0.5)BS
因此,沥青的碳化率随高分子量芳香族化合物的含量增加而增加。 最高的碳化率达90%,但与碳化时的压力有关。当碳化压力增强时, 低分子量物质挥发气化,并在压力下热解得到固态沥青碳。
★ 沥青碳化特性
★ 沥青碳化特性
沥青的压力碳化经历以下过程:
沥青液态压力浸渍-碳化 工艺是在常压、250℃下先浸 渍,然后在此温度下加压至 100MPa压力下继续浸渍,再 此压力下经650℃碳化。
同样需经历多次PIC工艺 使/C复合材料致密化。
● HIPIC工艺
HIPIC工艺是热等静压浸 渍碳化工艺(Hot Isostatic Pressure Carbonization),即 在等静压炉中进行PIC工艺。
沥青、树脂浸渍-碳化与CVD裂解碳填充孔隙的区别
C/C复合材料CVD/CVI工艺的种类主要有:
❖ 等温 (Isothermal)法; ❖ 压力梯度 (Pressure gradient)法; ❖ 温度梯度(Thrmal gradient)法; ❖ 化学液气相沉积法(Chemical Liquid Vapour

碳碳复合材料的制备方法课件

碳碳复合材料的制备方法课件
❖No三维织物研究的重点在细编织及其工艺、各向纤维的 Image 排列对材料的影响等方面。
❖ 三向织物的细编程度越高, 碳/碳复合材料的性能越好, 尤其是作为耐烧蚀材料更是如此。细编程度常用织物 的正向间距大小来衡量。
❖ 正向间距越小, 编织程度越高, 线的烧蚀率越低。
❖ 在三向编织的基础上, 对四向和七向编织物也进行了 研究, 四向织物是在相应于立方体的四个长对角线方 向上进行编织, 由于编织方向增多, 改善了三向织物的 非轴线方向的性能, 使材料的各部分性能超于平衡, 提 高了强度(主要是剪切强度), 降低了材料的热膨胀 系数。 No
No Image
2.碳/碳复合材料的发展
❖ 碳/碳复合材料的发展主要受宇航工业发展的影响。它 具有高的烧灼热、低的烧蚀率, 抗热冲击和超热环境下 具有高强度等一些列优点, 被认为是一种高性能的烧蚀 材料。
碳/碳复合材料可以作为导弹的鼻锥, 烧蚀率低且烧蚀均 匀, 从而提高导弹的突防能力和命中率。
No Image
抽真空过程中有利于气体反应产物的排除。由于它能
No Image
增加渗透深度, 故适宜制造不透气的石墨材料。
化学气相沉积法工艺简单沉积过程中纤 维不受损伤, 制品的结构较均匀和完整, 故致 密性好, 强度高。为了满足各种使用的需要, 制品的密度和密度梯度也能够加以控制, 所以 此法近年来发展较快。
No Image
No Image
工艺结合起来以提高碳/碳复合材料的物料性能。
(4)把由上述方法制备的但仍然是多孔状的碳/碳复合 材料在能够形成耐热结构的液态单体中浸渍, 是又一种 精制方法, 可选用的这类单体很有限, 但是由四乙烯基 硅酸盐和强无机酸盐催化剂组成的渗透液将会产生具 有良好耐热性的硅-氧网路。硅树脂也可以起到同样的 作用。

《碳碳复合材料简介》课件

《碳碳复合材料简介》课件

高强度与高刚度
具有出色的强度和刚度,适用 于要求高强度和轻质化的领域。
良好的耐损性
具有优异的耐磨、耐热疲劳和 耐腐蚀性能。
碳碳复合材料的应用领域
1
航空航天
广泛应用于飞机结构、发动机部件和导弹热防护等领域。
2
能源工业
用于核电站中的炭碳复合材料管道和储罐,以及燃烧器等高温设备。
3
汽车工业
用于制造高性能汽车制动系统、排气系统和座椅结构。
碳碳复合材料的优势与局限性
优势
高温性能卓越,具有较高的强度和刚度。

局限性
制备工艺复杂,生产成本较高。
碳碳复合材料的发展趋势
随着技术的进步,碳碳复合材料将继续发展,更广泛地应用于航空航天、能 源、汽车等领域。同时,制备工艺将更加成熟,并不断降低生产成本。
结论和总结
碳碳复合材料具有独特的优点,是一种重要的高性能材料。它在航空航天、能源和汽车工业等领域发挥着重要 作用,并有着广阔的发展前景。
《碳碳复合材料简介》 PPT课件
碳碳复合材料是一种由碳纤维和炭素基体组成的高性能复合材料。它具有高 强度、高刚度、高温性能和优异的耐损性。
什么是碳碳复合材料
碳碳复合材料是一种由碳纤维和炭素基体组成的复合材料。碳纤维提供高强 度和高刚度,炭素基体则提供高温抗氧化性能。
碳碳复合材料的制备方法
1 化学气相沉积 (CVD)
通过化学反应在碳纤维表 面沉积炭素来制备碳碳复 合材料。
2 航空电弧加热法 (AIR) 3 热解石墨化 (HTI)
利用航空电弧对碳纤维进 行加热,使其与炭素基体 结合。
先将碳纤维石墨化,然后 与绿石墨和残余碳反应形 成碳碳复合材料。
碳碳复合材料的性质与特点

_碳碳复合材料的制备方法资料38页PPT

_碳碳复合材料的制备方法资料38页PPT
_碳碳复合材料的制备方法资料
11、获得的成功越大,就越令人高兴 。野心 是使人 勤奋的 原因, 节制使 人枯萎 。 12、不问收获,只问耕耘。如同种树 ,先有 根茎, 再有枝 叶,尔 后花实 ,好好 劳动, 不要想 太多, 那样只 会使人 胆孝懒 惰,因 为不实 践,甚 至不接 触社会 ,难道 你是野 人。(名 言网) 13、不怕,不悔(虽然只有四个字,但 常看常 新。 14、我在心里默默地为每一个人祝福 。我爱 自己, 我用清 洁与节 制来珍 惜我的 身体, 我用智 慧和知 识充实 我的头 脑。 15、这世上的一切都借希望而完成。 农夫不 会播下 一粒玉 米,如 果他不 曾希望 它长成 种籽; 单身汉 不会娶 妻,如 果他不 曾希望 有小孩 ;商人 或手艺 人不会 工作, 如果他 不曾希 望因此 而有收 益。-- 马钉路 德。

26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭

27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰

28、知之者不如好之者,好之者不如的决心能够抵得上武器的精良。——达·芬奇

30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
38

CC复合材料(1)(详细分析:复合材料)共5张PPT

CC复合材料(1)(详细分析:复合材料)共5张PPT
基青体经材 碳料化分或为石热墨解化碳制与得浸。渍碳两种,热解碳主要是甲烷、乙树烷、脂丙或烷和沥乙青烯以浸及渍低分子芳烃等组成,经高温裂解生成碳,浸渍碳是树脂或沥
树脂浸渍碳是经高温生成的,通常产碳率较高,但难以石墨化,且电阻率高,热导率差,最终生成的石墨为各向异性的。 碳/碳复合材料是由各种碳纤维或各种碳织物增强碳,或石墨化的树脂碳(或沥青)以及化学气相沉积(CVD)碳所形成的复合材料。 热解碳原料来源丰富,质量可靠,品种多,且成本低,选材范围广。 C/C复合材料且质量小、刚性好,并且是极耐高温的材料,其强度随温度升高而增加,在2500℃达到最大值,同时它有良好的抗烧蚀性能和
抗沥热青震 浸性渍能碳,通是常宇于纤航低维中压非或与常常树重压要下脂的残预材余料碳浸,,料例因如而作产为碳导率弹较的低鼻,锥但体易热。于石压墨制化坯,最终生成的石墨为各向同碳性化的,其电阻率低,C热/导C性复好合,材模料量高
。 2 C/C复合材料的制备
短纤维与沥青或
树脂混合物
喷射制坯
石墨化
石墨化C/C复合材料
基体材料分为热解碳与浸渍碳两种,热解碳主要是甲烷、乙烷、丙烷和乙烯以及低分子芳烃等组成,经高温裂解生成碳,浸渍碳是树脂或沥 青经碳化或石墨化制得。
热解碳原料来源丰富,质量可靠,品种多,且成本低,选材 基体材料分为热解碳与浸渍碳两种,热解碳主要是甲烷、乙烷、丙烷和乙烯以及低分子芳烃等组成,经高温裂解生成碳,浸渍碳是树脂或沥
碳/碳复合材料
9.1 概述
碳/碳复合材料是由各种碳纤维或各种碳织物增强碳,或石 墨化的树脂碳(或沥青)以及化学气相沉积(CVD)碳所形 成的复合材料。
C/C复合材料且质量小、刚性好,并且是极耐高温的材料,其强 度随温度升高而增加,在2500℃达到最大值,同时它有良好的 抗烧蚀性能和抗热震性能,是宇航中非常重要的材料,例如作 为导弹的鼻锥体。C/C复合材料还具有优异的耐摩擦性能和高 的热导率,使其在飞机、汽车刹车片和轴承等方面得到应用。 但是C/C复合材料不能在氧化性气氛中耐受高温,因此关于C/C 复合材料的抗氧化研究是一个重点内容。

C、C复合材料性能特点与应用领域PPT(36张)

C、C复合材料性能特点与应用领域PPT(36张)

内燃发动机
密度低、优异的摩擦性能、热膨胀率低 有利于控制活塞与汽缸之间的空隙
发热元件
强度高,韧性好,耐高温,可减少发热体 体积,扩大工作区
31
4.5 生物学上的应用 生物相容性好,强度高,耐疲劳,韧性好 在生物体内稳定,不被腐蚀 与骨的弹性模量接近,具有良好的生心脏瓣膜
33
5、C/C复合材料研究展望
航天领域
普通航空和其他一般工业领域
发展方向:双元复合向多元复合
研究重点:控制孔隙的最佳数量,提高高温下的抗氧化性能, 降低成本
34
谢 谢!
35

1、有时候,我们活得累,并非生活过于刻薄,而是我们太容易被外界的氛围所感染,被他人的情绪所左右。

2、身材不好就去锻炼,没钱就努力去赚。别把窘境迁怒于别人,唯一可以抱怨的,只是不够努力的自己。

7、时间就像一张网,你撒在哪里,你的收获就在哪里。纽扣第一颗就扣错了,可你扣到最后一颗才发现。有些事一开始就是错的,可只有到最后才不得不承认。

8、世上的事,只要肯用心去学,没有一件是太晚的。要始终保持敬畏之心,对阳光,对美,对痛楚。

9、别再去抱怨身边人善变,多懂一些道理,明白一些事理,毕竟每个人都是越活越现实。

3、大概是没有了当初那种毫无顾虑的勇气,才变成现在所谓成熟稳重的样子。

4、世界上只有想不通的人,没有走不通的路。将帅的坚强意志,就像城市主要街道汇集点上的方尖碑一样,在军事艺术中占有十分突出的地位。

5、世上最美好的事是:我已经长大,父母还未老;我有能力报答,父母仍然健康。

6、没什么可怕的,大家都一样,在试探中不断前行。
19

碳碳(C、C)复合材料介绍(ppt 38页)

碳碳(C、C)复合材料介绍(ppt 38页)
•根据上述的优点,CFC材料在所有的热处 理环境下,都可以发挥其优异的性能,包 括脱蜡,金属热处理,粉末冶金等各样条 件下均可使用。
•CFC产品在生产设备里面的应用,可以减 轻托盘和承载框的重量,因此可以提高生 产能力,减少操作时间,并且可以节省能 源;另外,由于不需要反复操作,可以延 长产品的使用寿命。
•在玻璃瓶搬运中,可以帮助整列排放。
•C/C材料做成的堆放条即使在玻璃瓶 的温度很高的情况下搬运,也不会产 生热变形。因此,可以大幅降低堆放 条的更换和维修次数。
•我们具有高温炉行业的制作经验,根 据这些经验,我们可以制作长度达到3 米以上的产品。
摩擦材料领域
滑动
停止
摩擦系数


应 用 实 例
•螺旋桨翼,叶片 •滑板 •轴承
高机械性能领域-电极材
•由于C/C具有良好的耐腐蚀性,所以可以应用在 腐蚀的环境中。而且产品同时可以实现强度高, 厚度更小,质量更轻的特点。
使用C/C材料所带来的节能案例
• 日本的某一家工厂(钎焊汽车散热器机件)原来有2条生产线。为了 提高生产能力,工厂考虑再增加1条生产线。同时将石墨料架材质改 为C/C,发现能提高生产效率。
高机械性能领域
高机械性能C/C材料介绍:
以前,机械领域的部件多用陶瓷,铝,CFRP等材料制 备,随着该行业的快速大型化,高速化的发展,对于材 料的轻量化和耐热性提出了更高的要求。为了满足客户 的需求,因此提出了高性能C/C材料。
高性能C/C材料的特征:
➢重量轻 ➢高弹性 ➢低热膨胀 ➢高刚度和韧性 ➢高耐热冲击性
耐热材料领域-炉内材料-炉体
•根据C/C符合材料具有“质量轻,强度高,没有热变性”的特性,可以制作 出热处理炉的炉体部分。 •产品与原来石墨材质的炉体相比,由于产品本身强度大,可以采用更少的 材料;从而减轻重量。 •并且增加了热效率性能,提高了生产效率。

碳碳复合材料剖析课件

碳碳复合材料剖析课件
通过优化材料成分和结构设计,提高碳碳复合材料的力学性能、热性能和化学稳 定性,以满足更广泛的应用需求。
多功能化
研发具有光、电、磁、热等功能的碳碳复合材料,拓展其在传感器、能源、环保 等领域的应用。
制造工艺优化
低成本化
简化生产流程,降低原材料和能源消耗,实现大规模生产, 降低成本,提高市场竞争力。
环保化
碳碳复合材料剖析课 件
目录
CONTENTS
• 碳碳复合材料简介 • 碳碳复合材料的制造工艺 • 碳碳复合材料的性能分析 • 碳碳复合材料的增强机制 • 碳碳复合材料的未来发展与挑战 • 案例研究:碳碳复合材料在航空航天领
域的应用
01 碳碳复合材料简介
定义与特性
碳碳复合材料定义
高强度与轻质
由碳纤维和碳基体组成的复合材料,其中 碳纤维提供强度和刚度,碳基体起到粘结 和传递载荷的作用。
应用领域
航空航天
用于制造飞机结构件、发动机 部件和航天器部件等,提高飞
行器的性能和安全性。
汽车工业
用于制造汽车刹车片、传动轴 和气瓶等部件,提高汽车的性 能和安全性。
体育器材
用于制造高尔夫球杆、自行车 车架和弓箭等运动器材,提高 运动表现和竞技水平。
机械工业
用于制造精密机械零件、刀具 和模具等,提高机械加工的精
03 碳碳复合材料的性能分析
力学性能
高强度和模量
碳碳复合材料由于其独特的微观结构和纤 维增强机制,展现出高强度和模量,使其 成为承受高负荷和高温环境的理想选择。
各向异性
由于纤维的排列方向和编织方式,碳碳复 合材料的力学性能在不同方向上表现出差
异性。
抗疲劳性能
碳碳复合材料具有良好的抗疲劳性能,能 在反复应力作用下保持性能稳定,降低疲 劳失效的风险。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自由基链的甲基化为
CH3+C3H6→CH3CH2CHCH3
CH3CH2CHCH3→CH3CH2CH=CH2 +H
CH4+H→CH3+H2
总反应为 C3H6+CH4→CH3
CH2CH=CH2+H2
21
均气相反应
气相热解 芳香烃和多 气相形核
烃类气体
环芳香烃
固体炭颗粒
气-固两相反应
表面吸附 烃类气体
表面化学 反应与表 面脱附
结构重量减轻80% 射程显著增加
导弹发动机喷管
发动机燃烧室
没有高性能C/C复合材料,就没有现代化的国防
10
战略、战术导弹炭/炭复合材料推进系统
重量减轻80% 射程显著增加
过渡环
喉衬
扩散段
11
其它应用领域
高温热防护 半导体工业 热压模具
12
2 C/C复合材料的制备
碳纤维预制体
热固性树脂 浸渍、固化
炭纤维 基体炭 孔隙
10m 3
炭是难熔材料,石墨的熔点高达4177℃。
4
优异的高温力学性能
5
C/C材料应用-现代交通
C/C复合材料质轻、摩擦磨损性能优异,是飞机、高速列 车、磁悬浮列车、赛车等现代交通工具最新一代制动材料。
与金属基相比,C/C 使波音757
减重550Kg 刹车副寿命提高5〜6倍
LOGO
/炭复合材料
二OO九年七月
1提纲Βιβλιοθήκη 1 炭/炭复合材料及其应用 2 炭/炭复合材料的制备 3 炭/炭复合材料的结构与性能 4 炭/炭复合材料快速CVI致密化技术 5 炭/炭复合材料的研究前沿
2
1 C/C复合材料及其应用
C/C复合材料是一种炭纤维增强炭基体的 先进复合材料。。
性能特点
低密度(约1.8 g/cm3) 高比强/比模 耐高温(3000℃) 摩擦磨损性能优异
自由基链的甲基化为 CH3+C2H2→CH3CHCH CH3CHCH→CH3CCH+H
CH4+H→CH3+H2
总反应为 C2H2+CH4→CH3CCH+H
2
5. C3H6的次级反应
CH3+C3H6→CH4+C3H5
C3H5→CH2CCH2+H
CH4+H→CH3+H2
总反应为 C3H6→CH2CCH2+H2
非均匀 形核
热解炭
22
延长气相滞留时间τ
表面扩散
表面化学反应
均气相化学反应
基体表面
气-固相边 界层
沉积速率 曲线
热解炭
热解炭的化学气相沉积是复杂的均气相化学反应 和气-固表面化学反应相互竞争作用的结果。 23
整个CVI过程可分步骤表述如下 :
反应气体进入反应室; 反应气体扩散进入预制纤维多孔体; 反应气体分子吸附在纤维表面; 吸附分子热解成炭; 气相副产物分子脱附并扩散排出多孔体; 气相副产物排出反应室。
成对固体表面和气体分子双方都具有选择性。
气体分子在固体表面的化学吸附随温度的升高而增强,并且当发生脱
附时,往往有新物质生成。
24
CVI工艺的局限性
1. 在1100℃和10kPa压强条件下,甲烷和氢气分子的平均自由程分别 为2.53μm和5.83μm。根据气体分子运动的平均自由程与孔直径的差别 大小,由浓度梯度引起的气体分子在多孔体内的扩散,可分为分子扩 散(Fick diffusion)和努森扩散(Knudsen diffusion)两种。分子 扩散通过气体分子之间的碰撞进行,努森扩散通过气体分子与孔壁的 碰撞进行。
C/C
热核反应实验堆 8
C/C材料应用-航天工程
C/C复合材料具有十分优异的耐高温、抗烧蚀性能,是火 箭发动机喷管、翼缘、鼻锥等关键部件的首选材料。
C/C 可使运载火箭发动机
承受温度提升至3000℃以上 结构重量减轻30〜50%
运载火箭发动机喷管
9
C/C材料应用-现代国防建设
相比于钨渗铜
高超声速飞行器部件
飞机用制动盘
高速列车
磁悬浮列车
赛车
6
C/C材料应用-大型制造业
C/C复合材料耐热、耐腐蚀,广泛应用于现代大型工业加 热、化工等领域。
工业热处理炉
热结构
支架
大型化工 耐蚀 耐热
换热器
反应塔
蝶架 圆衬管 叶轮
发热体
雾化管 管 片
喷嘴 支架
7
C/C材料应用-国家大型核能工程
C/C复合材料具有抗强辐射、耐等离子体冲刷、高导 热等优异综合性能,是“国家大科学工程-聚变实验装 置” 先进第一壁材料。
➢ 炭材料表面的活
性位是指某种气体组 分能够在上面发生化
学吸附的碳原子。
➢ 活性碳原子都有
未饱和的SP单电子 或者空的成键轨道。
气体分子在固体表面的吸附:
气体分子可以在固体表面上发生物理吸附和化学吸附。
物理吸附是高度可逆的过程,气体分子在固体表面的物理吸附随温度
的升高迅速减弱。
化学吸附是气体分子和固体表面的原子发生的成键作用,化学键的形
细编穿刺毡
15
致密化
热解炭的化学气相沉积或渗透
CVI工艺是把炭纤维预制体置于专用的CVI炉中,加热至要求的温度, 通入碳源气(CH4、C2H4、C3H6、C3H8)这些气体热解并在炭纤维上 沉积炭,以填充多孔预制体中的孔隙。 它是高性能炭/炭材料实现增密的 首选工艺。
16
热壁式CVI
冷壁式CVI
C2H3→C2H2+H CH4+H→CH3+H2 总反应为 C2H4→C2H2+H2 自由基链的甲基化 CH3+C2H4→n-C3H7
n-C3H7→C3H6+H
CH4+H→CH3+H2 总反应为
C2H4+CH4→C3H6+H2
20
4. C2H2的次级反应 CH3+C2H2→CH4+C2H
C2H→C2+H
热解炭的化学气相沉积——是指含碳气体(主要是烃类 气体)发生复杂的热解化学反应并在基体表面生成固体 炭的过程。
17
1atm和不同温度下烃分子、氢气、石墨、 C60和无定形碳的吉布斯自由能比较
18
从甲烷生成C2的主要化学反应路线(1100℃,10kPa)
19
甲烷热解的部分基元化学反应
1. 生成C2H6和H2的初级反应 CH4→CH3+H
碳化 900~1500℃
化学气相沉积 (CVD或CVI)
C/C复合材料
石墨化处理 (2100~2800℃)
C/C复合材料
沥青浸渍 反 复 多 次
碳化1000℃
13
C/C复合材料制备的关键技术 坯体的制备
致密化
石墨化 抗氧化涂层
14
坯体的制备
0.3±0.1
0.7±0.1

炭纤维针刺整体毡(0o/90o,0.55±0.05g/cm3)
CH4+H→CH3+H2 2CH3→C2H6
总反应为 2CH4→C2H6+H2 2. C2H6的次级反应
CH3+C2H6→CH4+C2H5 C2H5→C2H4+H CH4+H→CH3+H2
可逆(单分子)反应为 C2H6→2CH3
总反应为 C2H6→C2H4+H2
3. C2H4的次级反应 CH3+C2H4→CH4+C2H3
相关文档
最新文档