运输优化模型参考精选
物流配送优化模型及算法综述

物流配送优化模型及算法综述一、物流配送问题概述物流配送问题是指在给定的时间窗口内,从指定的供应点或仓库将货物分配到指定的需求点或客户,并通过最优路线和车辆载重量进行配送的问题。
其目标是通过合理的路线安排、货物装载和车辆调度,使得整个物流系统的运营成本最小化,同时满足各种约束条件。
二、物流配送优化模型1.车辆路径问题(VRP)车辆路径问题是物流配送问题的经典模型,主要考虑如何确定最佳配送路线和货物装载方案,以最小化总行驶成本或最大化配送效率。
其中常用的模型包括TSP(Traveling Salesman Problem)、CVRP(Capacitated Vehicle Routing Problem)和VRPTW(Vehicle Routing Problem with Time Windows)等。
2.货车装载问题(BPP)货车装载问题是指在给定的车辆装载容量限制下,如何合理地将货物装载到车辆中,以最大化装载效率或最小化装载次数。
该问题常常与VRP结合使用,以使得整个配送过程达到最优。
3.多目标物流配送问题多目标物流配送问题是指在考虑多种目标函数的情况下,如何找到一个平衡的解决方案。
常见的多目标函数包括成本最小化、配送时间最短化、节能减排等。
解决该问题常常需要使用多目标优化算法,如遗传算法、粒子群算法等。
三、物流配送优化算法1.精确求解算法精确求解算法是指通过穷举所有可能的解空间,找到最优解的方法。
常用的精确求解算法包括分支定界法、整数规划法、动态规划法等。
这些算法可以保证找到最优解,但在规模较大的问题上效率较低。
2.启发式算法启发式算法是指通过设定一些启发式规则和策略,寻找近似最优解的方法。
常用的启发式算法包括贪心算法、模拟退火算法、遗传算法等。
这些算法在求解复杂问题时效率较高,但不能保证找到最优解。
3.元启发式算法元启发式算法是指将多种启发式算法结合起来,形成一种综合的解决方案。
常用的元启发式算法包括蚁群算法、粒子群算法等。
物流配送优化模型及算法综述

物流配送优化模型及算法综述随着互联网和电商的发展,物流配送的重要性越来越受到关注。
物流配送的效率直接关系到企业运营的成本和客户满意度,因此,如何优化物流配送成为了重要的问题。
目前,随着信息技术和数学模型的发展,物流配送优化模型及算法也日渐成熟。
本文将对物流配送优化模型及算法进行综述。
一、物流配送优化模型物流配送优化模型主要分为单一时间窗口模型和多时间窗口模型两类。
1. 单一时间窗口模型单一时间窗口模型是指整个配送过程中,每个客户的配送时间窗口都是相同的。
该模型通常采用的是车辆路径问题(Vehicle Routing Problem, VRP)模型。
VRP模型一般会考虑以下多个因素:客户需求量、车辆容量、时间窗口、路线长度、人力成本等。
其中,车辆路径规划是最重要的一环。
在车辆路径规划时,需要考虑配送顺序和路线,使得每个配送点的需求得到满足,同时尽量缩短路径长度和时间成本。
近年来,多种求解VRP问题的算法被提出。
例如,Tabu搜索、模拟退火、粒子群优化等。
这些算法主要基于启发式算法,能够有效地解决VRP问题。
2. 多时间窗口模型多时间窗口模型是指每个客户的配送时间窗口不同,该模型通常采用的是遗传算法(Genetic Algorithm, GA)模型。
GA模型的迭代过程包括评估当前解的质量、选择优良的解、通过交叉和变异生成新的解。
这样的迭代过程以欧几里得距离作为距离函数,可实现基于时间窗口的最优解搜索,进而有效提升物流配送效率。
二、物流配送优化算法1. Ant Colony Optimization蚁群算法(Ant Colony Optimization, ACO)是基于蚂蚁寻路行为的一种启发式算法。
该算法主要通过模拟蚂蚁在寻找食物时释放的信息素来构造解空间。
在物流配送中,该算法可用于规划车辆路径,寻找最佳路线。
2. Particle Swarm Optimization粒子群优化算法(Particle Swarm Optimization, PSO)也是一种启发式算法。
城市物流配送方案优化模型_数学建模

天津大学数学建模选拔赛题目城市物流配送方案优化设计摘要所谓物流配送就是按照用户的货物(商品)订货要求和物流配送计划,在物流配送节点进行存储、分拣、加工和配货等作业后,将配好的货物送交收货人的过程。
本文就如何设计该城市的配送方案和增设新的配送网点并划分配送范围展开讨论。
第一问中,首先,在设计合理的配送方案时,我们要知道评价一个配送方案的优劣需考虑哪些指标。
根据层次分析法所得各指标的权重及各因素之间关系可知:合理的配送方案需要优化货车的调度以及行驶路线。
然后,根据该城市的流配送网络路网信息以及客户位置及需求数据信息,用EXCEL 进行数据统计并用matlab绘制物流信息图,在图中可以清晰地看出客户位置密集和稀疏的区域。
之后,我们运用雷达图分割法将城市分为20个统筹区(以及100个二级子区域)。
接着,我们针对一个二级子区域分析货车行驶的最佳路线。
利用聚类分析和精确重心法在二级子区域N1中设置了7个卸货点,该目标区域内的用户都将在该区域的卸货点取货。
我们利用图论中的Floyd算法和哈密尔顿圈模型求解往返最短路线问题,得知最短路线为1246753配送中心配送中心,最短路程为→→→→→→→→84.4332KM,最短运货用时为2.11小时。
最后,根据用户位置和需货量,计算出货车数量和车次,并给出了其中一种合理的针对整个城市的货车调度配送方案。
第二问中,我们建立了多韦伯模型,通过非线性0-1规划,确定了城市增加的5个配送中心编号经度纬度3 108.0568015 26.717164454 108.679651 26.96689015 108.6892185 25.97394826 109.2116693 26.895898637 109.1749773 26.1636702原配送中心107.972554615162 26.6060305362822评阅编号(由组委会填写)一.问题重述配送是指在经济合理区域范围内,根据客户要求,对物品进行拣选、加工、包装、分割、组配等作业,并按时送达指定地点的物流活动,即按用户定货要求,在配送中心或其它物流结点进行货物配备,并以最合理方式送交用户。
供应链管理中物流运输策略的优化模型

供应链管理中物流运输策略的优化模型在供应链管理中,物流运输策略的优化模型扮演着至关重要的角色。
物流运输策略的合理选择和优化对于供应链的效率、成本和顾客满意度都有着深远的影响。
因此,建立一个可行的、科学的物流运输策略的优化模型是供应链管理中的重要课题之一。
物流运输策略的优化模型旨在寻找最佳的物流运输方案,以最小化运输成本、最大化运输效率、减少运输时间和提高服务质量。
下面将介绍一些常见的物流运输策略的优化模型。
1. 路线优化模型:路线优化模型是用于优化运输路径的一个重要模型。
它考虑了各种因素如运输距离、交通条件、货物特性、供应链中的环境因素等。
通过选择最佳的运输路径,可以减少时间、成本和能源消耗。
在路线优化模型中,需要考虑以下几个环节:起点和终点的选择、中途停留点的选择、运输方式的选择等。
通过数学建模、运筹学和优化算法,可以找到最佳路径,以降低物流成本并提高效率。
2. 调度优化模型:调度优化模型是为了最大程度地利用运输资源,提高运输效率。
调度优化模型可以帮助确定最佳的车辆安排、装货顺序、交货时间等,以最大限度地减少等待时间和非运输时间。
这可以帮助减少运输成本,提高运输效率和顾客满意度。
通过调度优化模型,可以实现以下目标:提高车辆利用率、减少货物滞留时间、缩短运输周期、提高送货准时率等。
这些目标的达成将带来更高的效益和更好的客户服务。
3. 仓储和配送模型:在供应链管理中,仓储和配送环节也是关键环节之一。
通过仓储和配送模型,可以确定最佳的仓储位置、库存水平、配送策略等,以最大程度地减少仓储成本和配送成本。
仓储和配送模型需要考虑以下因素:仓储设备的选择、仓储设施的布局、库存管理策略、配送路线的选择等。
通过综合考虑这些因素,并运用数学建模和优化算法,可以找到最佳的仓储和配送方案,以提高运输效率并降低成本。
4. 物流信息管理模型:物流信息管理模型是指利用信息技术和系统来管理和优化物流运输过程。
它包括信息采集、信息传输、信息分析等各个环节,通过准确获取和处理内外部的物流信息,可以提高物流运输的可见性、响应速度和决策效果。
物流运输路线优化模型研究

物流运输路线优化模型研究物流运输是现代经济发展中不可或缺的一环,而物流运输路线的优化则是提高效率、降低成本的重要手段。
为了解决物流运输中的路线选择问题,学者们提出了许多优化模型。
本文旨在通过研究和分析不同的物流运输路线优化模型,探讨其方法和优缺点。
一、传统的物流运输路线优化模型1. TSP模型(旅行商问题)TSP模型是最经典的物流运输路线优化模型之一。
它的目标是找到一条最短路径,使得经过所有城市,且回到起点。
TSP模型虽然简单易懂,但是当城市数量增加时,计算复杂度呈指数级增长,难以应用于实际物流环境中。
2. VRP模型(车辆路径问题)VRP模型是一种更为复杂的物流运输路线优化模型。
它考虑到了多车辆、容量限制、时间窗口等实际问题,使得其在解决实际物流运输中的路线选择问题上更具有实用性。
VRP模型可以通过遗传算法、模拟退火等启发式算法求解,但问题规模增大时,求解过程的时间复杂度也呈指数级增长。
二、改进的物流运输路线优化模型1. 基于模糊集的物流运输路线优化模型传统的物流运输路线优化模型大多只考虑到了时间和距离等数值因素,忽略了很多实际环境中的不确定性。
模糊集理论可以有效地处理模糊性和不确定性,因此运用模糊集理论构建的物流运输路线优化模型更能适应实际情况。
这种模型可以综合考虑路线长度、时间窗口、交通拥堵等因素,并通过模糊推理方法得出最优路线。
2. 基于人工智能的物流运输路线优化模型近年来,人工智能技术的快速发展为物流运输路线优化带来了全新的思路。
人工智能技术可以通过大数据分析、机器学习等方法,从历史数据中学习和总结经验,为物流运输提供更智能的路线选择。
例如,利用深度学习技术可以对交通拥堵情况进行实时预测,并根据预测结果调整路线,以提高运输效率。
三、物流运输路线优化模型的优缺点1. 优点:(1)提高运输效率:物流运输路线优化模型可以通过合理规划路线,避免交通拥堵,减少运输时间,提高运输效率。
(2)降低运输成本:优化后的路线可以减少里程、节省燃料消耗,降低运输成本。
物流网络优化的数学模型和算法

物流网络优化的数学模型和算法物流是现代社会经济中一个不可或缺的部分。
随着物流需求的增长和复杂度的提高,如何优化物流网络,提高效率,降低成本成为了物流产业中的关键问题。
物流网络优化的数学模型和算法应运而生,成为了解决这个问题的重要手段。
一、物流网络优化的数学模型物流网络优化的数学模型是现代物流业最主要的理论框架之一。
它通过运用数学方法和物流学理论相结合,建立数学模型,对物流网络中的各个环节、各个节点和各个决策问题进行描述和分析,以达到最优化决策。
1. TSP模型TSP(Traveling Salesman Problem)是物流网络优化中一个经典的数学模型。
TSP模型是要求在给定环境下,通过求解旅行商从一个城市出发必须恰好经过其他每个城市一次并回到原城市的最短路径问题。
在物流网络中,TSP模型可以用于求解从收货地点到配送地点的最优运输路径,从而实现整个物流网络的优化。
2. VRP模型VRP(Vehicle Routing Problem)是物流网络优化的又一重要数学模型。
VRP模型是要求在给定环境下,通过求解用有限的车辆从一个集合中的位置出发,分别访问另一集合中的所有位置,并在最终回到起点的过程中最小化总运输成本。
在物流网络中,VRP模型广泛应用于制定物流配送计划,根据车辆位置、载重量、装卸时间、线路拥堵情况等多个因素制定最优配送路线。
3. ILP模型ILP(Integer Linear Programming)是物流网络优化中常用的线性规划数学模型之一。
它是在约束条件下优化线性目标函数的一个数学规划模型。
在物流网络中,ILP模型常用于求解最小化总成本或最大化收益的问题,例如物流设备选型、运输计划制定等。
二、物流网络优化的算法为了解决物流网络优化问题,在数学模型的基础上,物流网络优化算法应用广泛。
常用的物流网络优化算法如下:1. GA算法GA(Genetic Algorithm)是一种有着广泛实际应用价值的智能优化算法。
物流配送中的优化模型及算法研究

物流配送中的优化模型及算法研究随着电商、零售等领域的不断发展,物流配送成为保障商品最终到达消费者手中的重要环节。
而物流配送过程中的时间、成本、效率等问题一直是企业关注的焦点。
如何利用信息技术和数学算法来优化物流配送模式,提升物流配送效率和实现成本控制,成为业内人士研究的重点。
物流配送中的问题在物流配送中,很多企业会面临这些问题:配送路线不合理、交通堵塞、配送距离过远、货物损坏等问题。
比如,一件商品的物流配送路线,往往需要考虑多个配送点、多条路线,同时需要考虑各个配送点的时间窗口、快递员的工作时间、保证货品不受损等问题。
这些问题有时会让企业的物流配送成本大幅增加,效率降低,无法满足客户的需求。
物流配送的优化模型针对物流配送中的问题,很多企业和研究机构尝试研究出不同的优化模型,来实现物流配送的优化和成本控制。
其中比较常见的优化模型有以下几种:1、TSP问题优化模型TSP问题是最经典的旅行商问题。
它的应用场景也很广泛,比如货车配送、网络节点的寻优等。
对于物流配送而言,利用TSP问题优化模型可以大幅缩短配送距离,提升配送效率。
这个模型的核心是建立不同的路径,然后依据时间、距离、成本等因素进行优化,从而找到一条最优化的路径。
2、VRP问题优化模型VRP问题是一种非常具有实际应用价值的优化模型。
这个模型可以将物流配送中多个配送点的问题转化为在有限时间内,最小化车辆行驶距离的问题。
在这个过程中,需要考虑到车辆容量限制、时间窗口限制、工作人员安排等问题,从而得到最优的物流配送路线。
3、GA算法实现模型GA算法(遗传算法)是一种计算学方法,可以模拟在进化过程中物种进行生物遗传机制的过程。
在物流配送的优化中,可以运用GA算法模拟进化过程,不断进行优化迭代,得出最优的物流配送方案。
物流配送优化算法除了常用的优化模型之外,物流配送优化还需要用到一些专门的数学算法,比如贪心算法、模拟退火算法、禁忌搜索算法等等。
1、贪心算法贪心算法是一种小而美的算法,可以利用贪心的思想,选择当前的最优解,快速得出整体的最优解。
物流配送路径优化模型研究

物流配送路径优化模型研究在现代社会中,物流配送是供应链管理中至关重要的一环。
物流配送路径的优化对于提高物流运作效率、降低运输成本、提升人们的生活品质具有重要意义。
为了实现物流配送路径的优化,研究者们提出了多种模型和方法。
本文将探讨几种常见的物流配送路径优化模型,并分析各自的优势和适用场景。
一、启发式算法模型启发式算法是一种通过经验和直觉指导求解问题的算法,常用于解决复杂问题。
在物流配送路径优化中,著名的启发式算法包括遗传算法、模拟退火算法和蚁群算法。
1. 遗传算法遗传算法是人工智能领域的一种优化算法,通过模拟生物进化的过程来寻找问题的最优解。
在物流配送路径优化中,遗传算法可以通过编码和进化运算来生成与解决方案。
它具有全局搜索能力和较强的自适应性,但也存在着计算复杂度较高的问题。
2. 模拟退火算法模拟退火算法受到固体物理学中固体退火过程的启发,通过模拟退火过程来搜索问题的最优解。
在物流配送路径优化中,模拟退火算法可以通过接受较差解的概率来避免陷入局部最优解。
它具有全局搜索能力和较好的收敛性能,但需要选择合适的参数和初始解。
3. 蚁群算法蚁群算法是模拟蚂蚁觅食行为的一种启发式算法,通过蚁群中蚂蚁之间的信息交流和跟踪来寻找问题的最优解。
在物流配送路径优化中,蚁群算法可以通过模拟蚂蚁的行走路径来确定最优的配送路径。
它具有较好的全局搜索性能和自适应性,但需要选择合适的参数和初始解。
二、线性规划模型线性规划是一种通过线性目标函数和线性约束条件来求解问题的数学模型。
在物流配送路径优化中,线性规划模型可以通过建立配送路径的数学表示来求解最优路径问题。
线性规划模型具有计算速度快、精确度高的优势,适用于问题结构简单且参数明确的情况。
三、网络流模型网络流模型是一种将物流配送问题转化为网络问题由网络流算法求解的方法。
在物流配送路径优化中,网络流模型可以将配送路径建模为有向图,通过最小费用流或最大流算法来确定最优路径。
网络流模型具有较强的表达能力和求解能力,适用于中小规模的物流配送问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运输问题摘要 本文根据运输公司提供的提货点到各个客户点的路程数据,利用线性规划的优化方法与动态优化模型——最短路径问题进行求解,得到相关问题的模型。
针对问题一 ,我们采用Dijkstra 算法,将问题转化为线性规划模型求解得出当运送员在给第二个客户卸货完成的时,若要他先给客户10送货,此时尽可能短的行使路线为:109832V V V V V →→→→,总行程85公里。
针对问题二,我们首先利用prim 算法求解得到一棵最小生成树:再采用Dijkstra 算法求得客户2返回提货点的最短线路为12V V →故可得到一条理想的回路是:121098436751V V V V V V V V V V V →→→→→→→→→→后来考虑到模型的推广性,将问题看作是哈密顿回路的问题,建立相应的线性规划模型求解,最终找到一条满足条件的较理想的的货车送货的行车路线:121098436751V V V V V V V V V V V →→→→→→→→→→。
针对问题三,我们首先直接利用问题二得一辆车的最优回路,以货车容量为限定条件,建立相应的规划模型并设计一个简单的寻路算法,最终可为公司确定合理的一号运输方案:两辆车全程总和为295公里(见正文);然后建立线性规划模型得出二号运输方案:两辆车全程总和为290公里(见正文);最后再进一步优化所建的线性规划针对问题四,我们首先用Dijkstra 算法确定提货点到每个客户点间的最短路线,然后结合一些限定条件建立一个目标模型,设计一个较好的解决方案进行求解可得到该方案得到运输总费用是645元。
关键字:Dijkstra 算法, prim 算法, 哈密顿回路问题重述某运输公司为10个客户配送货物,假定提货点就在客户1所在的位置,从第i个客户到第j个客户的路线距离(单位公里)用下面矩阵中的(,)i j(,1,,10)i j=位置上的数表示(其中∞表示两个客户之间无直接的路线到达)。
1、运送员在给第二个客户卸货完成的时候,临时接到新的调度通知,让他先给客户10送货,已知送给客户10的货已在运送员的车上,请帮运送员设计一个到客户10的尽可能短的行使路线(假定上述矩阵中给出了所有可能的路线选择)。
2、现运输公司派了一辆大的货车为这10个客户配送货物,假定这辆货车一次能装满10个客户所需要的全部货物,请问货车从提货点出发给10个客户配送完货物后再回到提货点所行使的尽可能短的行使路线?对所设计的算法进行分析。
3、现因资源紧张,运输公司没有大货车可以使用,改用两辆小的货车配送货物。
每辆小货车的容量为50个单位,每个客户所需要的货物量分别为8,13,6,9,7,15,10,5,12,9个单位,请问两辆小货车应该分别给那几个客户配送货物以及行使怎样的路线使它们从提货点出发最后回到提货点所行使的距离之和尽可能短?对所设计的算法进行分析。
4、如果改用更小容量的车,每车容量为25个单位,但用车数量不限,每个客户所需要的货物量同第3问,并假设每出一辆车的出车费为100元,运货的价格为1元/公里(不考虑空车返回的费用),请问如何安排车辆才能使得运输公司运货的总费用最省?问题1【模型分析与假设】运送员在给第二个客户卸完货后,即从此处赶到第十个客户处,路程越短越好,是一个最短路径问题,为此我们采用Dijkstra算法,考虑到建模的方便我们将问题转化为线性规划模型进行求解。
下面是一些变量的假设与说明:X为0,1变量,其值为1代表行车路线经过第j个客户,为0则代表不经过。
1.ijC为题中给出的邻接矩阵对应位置的值。
2.ij3.为了表达的方便,将邻接矩阵的第一行与第二行互换,第一列与第二列互换。
(因为求的是客户2至客户10的最短线路,而非提货点至客户10)同时将矩阵中数据0或∞用一个足够大的数999代替。
(这是因为目标函数是求最小值)【模型建立与求解】建立问题的模型(1)是:将其转化为lingo代码(见附录[1])后,求解可得以下结果:Global optimal solution found at iteration: 19Objective value: 85.00000Variable Value Reduced CostX( 1, 3) 1.000000 30.00000X( 3, 8) 1.000000 25.00000X( 8, 9) 1.000000 10.00000X( 9, 10) 1.000000 20.00000至此可以知道,运送员应该走的最好路线是:总行程为85公里。
【模型检验与评价】该模型是基于Dijkstra 算法的基础上转化为线性规划模型来求最短路径的模型,优点是实现较简单,也容易求解;但有个令人不是很满意的地方就是其模式固定,要求任两个客户点间最短距离时,需将其一客户的位置与提货点互换,另一个客户的位置则需与客户10的位置互换,将其看成原始的提货点到客户10最短距离的模型进行求解,这样较为烦琐,有待改进。
问题2【模型分析】很明显运输公司分别要对10个客户供货,必须访问每个客户,但问题要求我们建立相应模型寻找一条尽可能短的行车路线,首先不考虑送货员把10个客户所需的货送完货后不返回提货点的情形,利用求最小生成树的prim 算法结合题中所给的邻接矩阵,很快可以得到以下一2V (客户2)返回1V从上分析知送货员从提货点1出发,要走遍客户2,3,…,n 各至少一次,最后返提货点1。
为了更方便地建立起模型首先作以下假设与说明:1.ij X 为0,1整形变量,其值为1代表行车路线经过第j 个客户,为0则代表不经过。
2.ij C 为客户i 到j 的距离(题中给出的邻接矩阵的数据)。
3.为了数据的方便处理,先将邻接矩阵中的数据∞用一个足够大的数999代替。
4.访问客户i 后必须要有一个即将访问的确切客户;访问客户j 前必须要有一个刚刚访问过的确切客户。
故我们用以下条件来分别保证我们的假设。
到此我们得到了一个模型,它是一个指派问题的整数规划模型。
其目标是使式子:∑∑==*101101i j ij ij X C在约束条件下取得最小值。
5.哈密顿图优化问题[5],须添加一个额外变量()10,,3,2 =i u i,目的是为了更好的防止子巡回的产生,即须附加一个约束条件:到现在我就可以建立以下模型对问题求解了。
【模型建立与求解】可建立问题的模型(2)为:同样借助数学软件求解可得结果:从中可以找出一条较为理想的回路是:可见按此模型求解的结果与采用prim 算法求解的结果是一样的。
问题3【模型分析与猜想】用两辆容量为50单位的小货车运货,在每个客户所需固定货物量的情况下,要使得行程之和最短,我们假设每个客户的货物都由同一辆货车提供,这样只要找出两条尽可能短的回路,并保证每条线路客户总需求量在50个单位以内。
实际上这样的两条回路是存在的:由题二得到了一条哈密顿回路可根据货物需求量的大小将其分为前后两部分,并将之分别构成回路。
(注:由于提货点在客户1所在的位置,故不必考虑为客户1送货的情况。
)为了更好地建立模型,先作以下定义:『定义1:』 顺序集合⎭⎬⎫⎩⎨⎧→→→→→→→→→→=1221010998844336677551,,,,,,,,,V V V V V V V V V V V V V V V V V V V V N 代表由模型(2)求解得出的哈密顿回路的路径全集(集合中的元素是不可调换的,故称它为顺序集合); 『定义2:』 函数()i N Get 为集合N 中第i 个元素终点所对应的下标。
(即若i=3,则,()73=N Get )『定义3:』 函数()i N U 为集合N 中第i 个元素终点所对客户的货物需求量(即若i=3则())(33N Get T N U =)其中(()10,,2,1, i T 为向量: ()9,12,5,10,15,7,9,6,13,8的第i 个分量的值)。
接下来我们设计一个简单的算法来寻找较好的路径:Step1:根据以下模型获得一个值k ;Step2:依k 的取值分两条路径:Step3:利用模型(1)分别求得()k N Get V 到1V 的最短路径:()1V V K N Get →→ 以及1V 到()1+K N Get V 的最短路径:()11+→→K N Get V V依据模型很容易求得:k=5(因为根据模型(1)很容易可以确定4V 至1V 的最短路径是14V V →,1V 至8V 的最短路径是851V V V →→,但在代用模型(1)的时候须注意的是相应的客户位置的变换,可参照问题一的求解决方法。
)由此可得两车所行驶的距离之和(单位:公里):【结果优化】从以上得到的两条行车路线来看,两车得经过经过了客户5,根据算法二号车必客户5才能保证行程较短,而根据模型(1)易知路径71V V →优于751V V V →→,因此可优化一号车路线为:143671V V V V V V →→→→→,经检验优化后的两条行车路线上客户货物需求量总和分别是40与46均不超过货车的容量50,故认为此方案更优,这样我们可以给很明显,以上猜想得到的模型来求解这一问题,存在着很大的缺陷,那就是没有更好说服力,不能让人感到很满意,不过这个结果也是很客观的,不会很差。
因此我们想通建立以下模型来弥补这一缺陷。
【模型建立与求解】若对以上猜得到的一种模型不够满意,我们同样可以建立相应的线性规划模型对以上的运输方案进一步优化,考虑到本问题与问题二有相似之处即要考虑回到提货点的情形,因此我们可以在模型(2)上进行改进, 在保证二号不超载(不超出容量)的前提下,先确定第一辆车的最优路径,首先对模型中将会用的变量作一些简单的定义或说明:1.j D 为每个客户的需货量,它是在向量()9,12,5,10,15,7,9,6,13,8的每j 个分量,据上分析知:5036101101≤*≤∑∑==j i j ij D X(不考虑客户1的需求量,因为它在提货点)。
2.由于这里是分两条路线分别给10个客户送货,就没有必要设计每条路线都能够访问每个客户点,但要保证送货员能回提货点,且均从提货点出发回到提货点,则送货员进入一个客户同时也必须出来。
故我们用以下条件来分别保证我们的假设:到此我们得到了一个模型,它是一个指派问题的整数规划模型。
其目标是使式子:∑∑==*101101i j ij ij X C在约束条件下取得最小值。
其余变量的假设与问题二的假设一致。
故可建立模型(3)如下:在5036≤≤j D 约束下,参加附录[3]的代码,在lingo 中求解可得以下结果:最优路线的选择,(以长度为95公里的路线为例)只需将模型(3)中的条件:0101101∑∑===-j j ij ijX X 与∑∑==≥101101i j ij K X 改为条件()i j j Xij ≠==且10,6,4,3,21即要保证第二辆访问到所有第一辆车未访问过的客户,允许其访问第一辆车访问过的客户,故模型基本上不用改动。