一次函数复习讲义 可下载 可修改 优质文档
人教版初二下册数学第十九章《一次函数复习》(29张PPT)

y2 y1 x1 x2 x
《一次函数》复习
四、一次函数定义与性质
一次函数的定义:一般地,形如 k≠0)的函数叫做一次函数,当 y=kb(k ≠0)也叫正比例函数。 y=kx+b ,(k、b是常数, b=0 时,一次函数
一次函数的性质:①一次函数y=kx+b(k≠0)的图象是 一条直线, 称为 直线 y=kx=b ; b个单位长度 ②直线y=kx+b(k≠0)可以看做直y=kx(k≠0)平移 下 而得到,当b>0时,向 上 平移;当b<0时,向 平移。 如果两条直线互相平行,那么两一次函数的k值相同
《一次函数》复习 一、变量与函数
一般的,在一个变化过程中,如果有两 个x与y,并且对于x的每一个变化值, y都有唯一确定的值与其对应,那么 就称y是x的函数,其中x是自变量,如 果当x=a时,y=b,那么b叫做自变量 的值为a时的函数。
《一次函数》复习
巩固练习
S=πR2 。 1、如果圆用R表示半径,用S表示圆的面积,则S和R满足的关系是_______ 2、汽车邮箱中有汽油50L。如果不再加油,那么邮箱中的油量y(单位:L) 随行驶路程x(单位:km)的增加而减少,平均耗油量为0.1L/km。写出表 y=50—0.1x 0≤x ≤50 。。 示y与x的函数关系式_____________ ,自变量x的取值范围是_________ 3、写出下列函数自变量x的取值范围
一次函数讲义优质讲义

15.如图,在△ABC 中,AB =1.8,BC =3.9,∠B =60°,将△ABC 绕点A 按顺时针旋转一定角度得到△ADE ,
当点B 的对应点D 恰好落在BC 边上时,则CD 的长为.
16.如图,在△ABC 中,∠ACB =90°,沿CD 折叠△CBD ,使点B 恰好落
在AC 边上的点E 处.若
∠A =26°,则∠ADE =°.
17.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三
角形,若正方形A ,B ,C ,D 的面积和是49cm), ),
则其中最大的正方形S 的边长为cm.
18.在平面直角坐标系中,规定把一个正方形先沿着x
轴翻折,再向右平
移2个单位称为1次变换.如图,已知正方形ABCD
的顶点A 、B 的坐
标分别是(-1,-1)、(-3,-1),把正方形ABCD 经过连续6次这 样的变换得到正方形A ′B ′C ′D ′,则B 的对应点B ′的坐标是▲.
三.解答题(本大题共9小题,共64分) 19.(本题满分8分)
(1)(4分)求出式子中x 的值:9x 2-16=0.
(2)(4分)232)3(8)2(+---
20.(本题满分5分)求一个正数的算术平方根,有些数可以直接求得,如4,
有些数则不能直接求得,如5,但可以通过计算器求得.还有一种方法可以通过一组数的内在联系,运用规律求得,请同学们观察下表:
-1-1y= -x-2y=2x+1x y P (第13题图)
D E C
A B (第16题图) x y 1234–1–2–3–41234–1–2–3–4C D B A o (第18题图)
(第15题图) D E A C B。
八年级数学下册第十九章一次函数19.2一次函数综合讲义新版新人教版【word版】.doc

一次函数分段函数:(1)分段函数的特征:不同的自变量区间所对应的函数解析式不同,其函数图象是一个折线.(2)分段函数中“折点”既是两段函数的分界点,同时又分别在两段函数上,在求函数解析式要用好“折点”坐标,同时在分析图象时还要注意“折点”表示的实际意义,“折点”的纵坐标通常是不同区间的最值.探究类型之行程问题中的分段函数例:周末,小明骑自行车从家里出发到野外郊游,从家出发1时后达南亚所(景点),游玩一段时间后按原速前往湖光岩.小明离家1时50分后,妈妈驾车沿相同的路线前往湖光岩,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象.(1)求小明骑车的速度和在南亚所游玩的时间;(2)若妈妈在出发后25分钟时,刚好在湖光岩门口追上小明,求妈妈驾车的速度及CD所在直线的函数解析式.练习:1. 周末,小明骑自行车从家里出发到野外郊游.从家出发0.5 h后到达甲地,游玩一段时间后按原速前往乙地.小明离家1 h 20 min后,妈妈驾车沿相同路线前往乙地,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象.已知妈妈驾车的速度是小明骑车速度的3倍.求小明骑车的速度和在甲地游玩的时间;(2)小明从家出发多久后被妈妈追上?此时离家多远?2.小刚上午7:30从家里出发步行上学,途经少年宫时走了1200步,用时10分,到达学校的时间是7:55,为了估测路程等有关数据,小刚特意在学校的田径跑道上,按上学的步行速度,走完100米用了150步.(1)小刚上学步行的平均速度是多少米/分?小刚家和少年宫之间、少年宫和学校之间的路程分别是多少米?(2)下午4:00,小刚从学校出发,以45米/分的速度行走,按上学时的原路回家,在未到少年宫300米处与同伴玩了半小时后,赶紧以110米/分的速度回家,中途没有再停留.问:①小刚到家的时间是下午几时?②小刚回家过程中,离家的路程s(米)与时间t(分)之间的函数关系如图,请写出点B的坐标,并求出线段CD所在直线的函数解析式.探究类型之天然气(或水费)中的分段函数例:为增强公民的节约意识,合理利用天然气资源.某市自1月1日起对市区民用管道天然气价格进行调整,实行阶梯式气价,调整后的收费价格如下表所示:(1)若甲用户3月份的用气量为60 m3,则应缴费______元;(2)若调价后每月支出的燃气费为y(元),每月的用气量为x(m3),y与x 之间的关系如图所示,求a的值及y与x之间的函数关系式;(3)在(2)的条件下,若乙用户2.3月份共用气175 m3(3月份用气量低于2月份用气量),共缴费455元,乙用户2.3月份的用气量各是多少?练习:为响应国家节能减排的号召,鼓励市民节约用电,我市从2012年7月1日起,居民用电实行“一户一表”的阶梯电价,分三个档次收费,第一档是用电量不超过180千瓦时实行“基本电价”,第二、三档实行“提高电价”,具体收费情况如折线图请根据图象回答下列问题:当用电量是180千瓦时时,电费是_________元;(2)第二档的用电量范围是______________;(3)“基本电价”是____________元/千瓦时;探究类型之检票口中的分段函数例:“五·一”假期,某火车客运站旅客流量不断增大,旅客往往需要长时间排队等候检票.经调查发现,在车站开始检票时,有640人排队检票.检票开始后,仍有旅客继续前来排队检票进站.设旅客按固定的速度增加,检票口检票的速度也是固定的.检票时,每分钟候车室新增排队检票进站16人,每分钟每个检票口检票14人.已知检票的前a分钟只开放了两个检票口.某一天候车室排队等候检票的人数y(人)与检票时间x(分钟)的关系如图所示.(1)求a的值.(2)求检票到第20分钟时,候车室排队等候检票的旅客人数.若要在开始检票后15分钟内让所有排队的旅客都能检票进站,以便后来到站的旅客随到随检,问检票一开始至少需要同时开放几个检票口?(2)、主要知识点:一次函数的性质1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b(k≠0)(k为任意不为零的实数b取任何实数)2.当x=0时,b为函数在y轴上的截距。
《一次函数》复习课 优质课件

售收入等于销售成本。
(5)当销售量 大于4 吨时,该
公司盈利(收入大于成本)。
当销售 小于4 吨时,该公司亏
损(收入小于成本)。
5.小聪上午8:00从家里出发,骑车去一家超市购物,然后从这
家超市返回家中。小聪离家的路程s(km)和所经过的时间t (分)之间的函数关系如图所示,请根据图象回答下列问题: (1)小聪去超市途中的速度是多少?回家途中的速度是多少? (2)小聪在超市逗留了多少时间? (3)用恰当的方式表示路程s与时间t之间的关系。 (4)小聪在来去途中,离家1km处的时间是几时几分?
一次函数复习课
一、函数的概念:
在一个变化过程中,如果有两个变量
x与y,并且对于x的每一个确定的值,y都
有唯 一确定的值与其对应,那么我们就说x
是自变量 ,y是x的函数。
二、函数有几种表示方式?
正方形的面积S 与边长 x的函数关系为: S=x2 (x>0)
(1)解析式法 (2)列表法 (3)图象法
(2)当x=_1_h _时,甲、 乙两根蜡烛在燃烧过程中的 高度相等.当x 0<x<1 时,
甲蜡烛比乙蜡烛高,当x 1<x<2.5 时,甲 蜡烛比乙蜡烛低。
2.函数 y 2 x 4 的图像与x轴交点A 的坐标为_(-_6_,_0_) , 与y轴交点B3的坐标为_(_0_,4_)_,△AOB的面积为_12_. 3.如图,表示甲骑电动自行车和乙驾驶汽车均行驶 90km过程中,行驶的路程y与经过的时间x之间的函 数关系.请根据图象填空:电动自行车 出发的早, 早了 2 小时, 汽车 先到达,先到 2 小 时,电动自行车的速度为 18 km/h,汽车的速 度为 90 km/h.
一次函数复习讲义 可下载 可修改 优质文档

【知识网络】【要点梳理】要点一、函数的相关概念 一般地,在一个变化过程中. 如果有两个变量 x 与y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说 x 是自变量,y 是x 的函数. y 是x 的函数,如果当x =a 时y =b ,那么b 叫做当自变量为a 时的函数值. 函数的表示方法有三种:解析式法,列表法,图象法. 要点二、一次函数的相关概念一次函数的一般形式为y kx b =+,其中k 、b 是常数,k ≠0.特别地,当b =0时,一次函数y kx b =+即y kx =(k ≠0),是正比例函数.要点三、一次函数的图象及性质 1、函数的图象如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象. 要点诠释:直线y kx b =+可以看作由直线y kx =平移|b |个单位长度而得到(当b >0时,向上平移;当b <0时,向下平移).说明通过平移,函数y kx b =+与函数y kx =的图象之间可以相互转化.2、一次函数性质及图象特征掌握一次函数的图象及性质(对比正比例函数的图象和性质)变化的世界函 数建立数学模型应 用概 念选择方案概 念再认识表示方法 图 象性 质一次函数 (正比例函数) 一元一次方程 一元一次不等式 二元一次方程组 与数学问题的综合与实际问题的综合列表法 解析法 图象法要点诠释:理解k 、b 对一次函数y kx b =+的图象和性质的影响:(1)k 决定直线y kx b =+从左向右的趋势(及倾斜角α的大小——倾斜程度),b 决定它与y 轴交点的位置,k 、b 一起决定直线y kx b =+经过的象限.(2)两条直线1l :11y k x b =+和2l :22y k x b =+的位置关系可由其系数确定:12k k ≠⇔1l 与2l 相交;12k k =,且12b b ≠⇔1l 与2l 平行; 12k k =,且12b b =⇔1l 与2l 重合;(3)直线与一次函数图象的联系与区别一次函数的图象是一条直线;特殊的直线x a =、直线y b =不是一次函数的图象. 要点四、用函数的观点看方程、方程组、不等式。
一次函数的全章复习课件

例如,速度、加速度和时间的关系,重力 等。
一次函数在工程学中的应用
例如,机械运动、流体力学等。
一次函数在日常生活中的应用
例如,时间与速度的关系、距离与速度的 关系等。
一次函数在数学问题中的应用
一次函数在代数问题中的应用
例如,解一元一次方程、一元一次不等式等。
一次函数在几何问题中的应用
例如,求直线方程、求两点之间的距离等。
解得 k = 3, b = -2。所以解析式 为 y = 3x - 2。
THANKS
感谢观看
对于一次函数,解析式可以用来 表示 $k$ 和 $b$ 的值,进而确
定函数的图像和性质。
通过解析式可以计算出任意自变 量 $x$ 对应的函数值 $y$。
解析式与函数图像的关系
解析式是绘制函数图像的基础。 通过解析式可以确定函数的开口方向、顶点坐标和对称轴等特性。
解析式与函数图像的对应关系是一一对应的,即一个解析式对应一个确定的图像。
y = 3x - 2
答案
解答题
题目
已知一次函数 y = kx + b,当 x = 1 时,y = -2;当 x = -1 时,y = 4。 求 k 和 b 的值。
答案
k = -3, b = 1
选择题解析
01
02
03
04
对于选项A,y = 2x,是一次 函数也是正比例函数,不符合
题意。
对于选项B,y = 3 - 5x,是 一次函数但不是正比例函数,
虽然一次函数在微积分中不是主要研 究对象,但其在导数和积分中的应用 仍不可忽视。
一次函数与三角函数
三角函数可以看作是周期性的一次函 数,两者在图像和性质上有许多相似 之处。
初二数学一次函数期末复习串讲讲义

初二数学一次函数期末复习串讲讲义一.基础知识1、一次函数的概念:若两个变量x,y间的关系式可以表示为y=kx+b(k,b为常数,k≠0)的形式,则y是x的一次函数(x为自变量,y为因变量)特别地,当b=0时,称y是x的正比例函数。
2、一次函数的图象及其性质:(1)、图象:一次函数的图象是一条直线,所以画图象时只要先确定两点,再过这两点画一条直线就可以画出一次函数的图象。
一次函数的图象与k,b的关系如下图所示:b<03、函数表达式的确定:常用方法是待定系数法,一次函数y=kx+b中含有两个待定系数k、b,根据待定系数法,只要列出方程组即可.4、一次函数的应用:(1)、一次函数与一元一次方程、二元一次方程组的关系。
一元一次方程的解就是一次函数与x轴的交点坐标的横坐标的值。
二元一次方程组的解可以把方程组中的两个方程看作是两个一次函数,画出这两个函数的图象,那么它们的交点坐标就是方程组的解。
(2)、一次函数与不等式的关系:可以借助函数图象解决一元一次不等式的有关问题。
二.经典例题例1:(1)如图:三个正比例函数的图像分别对应的解析式是①y=ax,②y=bx,③y=cx,则a、b、c的大小关系是()A、a>b>cB、c>b>aC、b>a>cD、b>c>a解:由正比例函数图像的性质可得:答案:C(2)一次函数y=x+1的图象,不经过的象限是()。
(A)第一象限(B)第二象限(C)第三象限(D)第四象限解:由一次函数y=kx+b的图象性质,有以下结论:题目中y=x+1,k=1>0,则函数图象必过一、三象限;b=1>0,则直线和y轴交于正半轴,可以判定直线位置,也可以画草图,或取两个点画草图判断,图像不过第四象限。
答案:D。
例2、已知变量y与y1的关系为y=2y1,变量y1与x的关系为y1=3x+2,求变量y与x的函数关系。
分析:已知两组函数关系,其中共同的变量是y1,所以通过y1可以找到y与x的关系。
(完整版)初中数学专题讲义--一次函数

初中数学专题讲义--一次函数一、知识归纳1.变量:在一个变化过程中可以取不同数值的量。
常量:在一个变化过程中只能取同一数值的量2.函数:一般地,在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。
3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。
4、确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。
5、函数的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.6、函数解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。
7、描点法画函数图形的一般步骤第一步:列表(表中给出一些自变量的值及其对应的函数值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。
8、函数的表示方法列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。
解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。
图象法:形象直观,但只能近似地表达两个变量之间的函数关系。
9、正比例函数及性质一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.(1)解析式:y=kx(k是常数,k≠0)(2)必过点:(0,0)、(1,k)(3)走向:k>0时,图像经过一、三象限;k<0时,图像经过二、四象限(4)增减性:k>0,y随x的增大而增大;k<0,y随x增大而减小(5)倾斜度:|k|越大,越接近y轴;|k|越小,越接近x轴10、一次函数及性质一般地,形如y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.当b=0时,y=kx+b 即y=kx,所以说正比例函数是一种特殊的一次函数.(1)解析式:y=kx+b(k 、b 是常数,k ≠0) (2)必过点:(0,b )和(-kb,0) (3)走向:⇔⎩⎨⎧>>00b k 直线经过第一、二、三象限 ⇔⎩⎨⎧<>00b k 直线经过第一、三、四象限 ⇔⎩⎨⎧><00b k 直线经过第一、二、四象限 ⇔⎩⎨⎧<<0b k 直线经过第二、三、四象限 (4)增减性: k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小.(5)倾斜度:|k|越大,图象越接近于y 轴;|k|越小,图象越接近于x 轴. (6)图像的平移: 当b>0时,将直线y=kx 的图象向上平移b 个单位;当b<0时,将直线y=kx 的图象向下平移b 个单位.b>0b<0b=0k>0经过第一、二、三象限经过第一、三、四象限经过第一、三象限图象从左到右上升,y 随x 的增大而增大k<0经过第一、二、四象限经过第二、三、四象限经过第二、四象限图象从左到右下降,y 随x 的增大而减小11一次函数y=kx +b 的图象是一条直线,它可以看作是由直线y=kx 平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移). 12、直线y=k 1x+b 1与y=k 2x+b 2的位置关系 (1)两直线平行:k 1=k 2且b 1 ≠b 2 (2)两直线相交:k 1≠k 2(3)两直线重合:k 1=k 2且b 1=b 213、用待定系数法确定函数解析式的一般步骤:(1)根据已知条件写出含有待定系数的函数关系式;(2)将x 、y 的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;(3)解方程得出未知系数的值;(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式. 14、一元一次方程与一次函数的关系任何一元一次方程到可以转化为ax+b=0(a ,b 为常数,a ≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值. 从图象上看,相当于已知直线y=ax+b 确定它与x 轴的交点的横坐标的值. 15、一次函数与一元一次不等式的关系任何一个一元一次不等式都可以转化为ax+b>0或ax+b<0(a ,b 为常数,a ≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量的取值范围. 16、一次函数与二元一次方程组(1)以二元一次方程ax+by=c 的解为坐标的点组成的图象与一次函数y=bc x b a +-的图象相同.(2)二元一次方程组⎩⎨⎧=+=+222111c y b x a c y b x a 的解可以看作是两个一次函数y=1111b cx b a +-和y=2222b cx b a +-的图象交点.函数1、判断下列变化过程存在函数关系的是( D )A.y x ,是变量,x y 2±=B.人的身高与年龄C.三角形的底边长与面积D.速度一定的汽车所行驶的路程与时间2、已知函数12+=x xy ,当a x =时,y = 1,则a 的值为( B ) A.1 B.-1 C.3 D.213、下列各曲线中不能表示y 是x 的函数是( C )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点一 象限内和坐标轴上点坐标特征
【例1】 如果点()12P m m -,
在第四象限,那么m 的取值范围是( ) A .2
10<
<m B .02
1
<<-
m C .0<m D .2
1>
m 【例2】 若点(2)A n ,在x 轴上,则点(21)B n n -+,在( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
【例3】 若点()a b ,在第三象限,则点(132)a b -+-,在( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
考点二 特殊点坐标的特征
【例4】 若点2(2)P m m -,
在第二,四象限的角平分线上,则点1()m m -,关于y 轴的对称点的坐标是__________
【例5】 已知两点(3)A m -,、(4)B n ,
,且AB x ∥轴,则m 、n 满足的条件为____________ 【例6】 已知点(324)N a a --,到x 轴的距离等于到y 轴的距离的2倍,则a 的值为___________
考点三 对称点坐标的特征
【例7】 点()21P -,
关于y 轴对称的点的坐标为( )
A .()21--,
B .()21,
C .()21-,
D .()21-,
【例8】 在平面直角坐标系中,点()23P -,
关于原点对称点P '的坐标是________. 【例9】 已知点P (1a +,21a -)关于x 轴的对称点在第一象限,则a 的取值范围为___________.
考点四 点的坐标与两点间距离
【例10】 在平面直角坐标系中,已知线段AB 的两个端点分别是()41A --,
,()11B ,,将线段AB 平移后得到线段A B '',若点A '的坐标为()22-,,则点B '的坐标为( ) A .()43,
B .()34,
C .()12--,
D .()21--,
【例11】 已知点(35)A ,
、(11)B -,,那么线段AB 的长度为( ) 一次函数
A.4
B.32
C.42
D.5
【例12】 已知直线3y x =+与抛物线223y x x =-++交于A 、B 两点,在线段AB 上有一动点P ,过
点P 作PQ x ⊥轴交抛物线于点Q ,则线段PQ 的最大值为( )
A.32
B.
94
C.
12
D.
14
考点五 函数的唯一性
【例13】 下列各选项中,不是函数的是( )
A
O y x
B
x y
O
C
x
y
O D
x
y
O
【例14】 下列关于变量x 、y 的关系式:①321x y +=;②6y x =;③22x y ⋅=,其中表示y 是x 的
函数的个数是( )
A.0个
B.1个
C.2个
D.3个
考点六 自变量的取值范围
【例15】 函数3113y x x =-+-的自变量x 的取值范围是___________ 【例16】 函数11
7x y x
--=
-的自变量的取值范围是___________ 【例17】 已知等腰三角形的周长为20,设底边长为y ,腰长为x ,则y 与x 的函数关系式为________,
自变量的取值范围是_________
【例】(2014•四川泸州,第14题,3分)使函数y=+有意义的自变量x 的
取值范围是 _____
考点七 函数图象信息题
【例18】 某污水处理厂的一个净化水池设有2个进水口和1个出水口,三个水口至少打开一个.每个
进水口进水的速度由图甲给出,出水口出水的速度由图乙给出.某一天0点到6点,该水池的蓄水量与时间的函数关系如图丙所示.通过对图象的观察,小亮得出了以下三个论断: ⑴0点到3点只进水不出水;
⑵3点到4点不进水只出水, ⑶4点到6点不进水也不出水.
其中正确的是( )
甲 乙 丙
6050
654320
12110
20
时间(小时)
时间(小时)时间()
出水量(立方米)
进水量(立方米)
O O O。