经验整流电路简单的计算公式

合集下载

三相桥式整流电容计算公式

三相桥式整流电容计算公式

三相桥式整流电容计算公式三相桥式整流电容的计算公式在电路设计和分析中可是个相当重要的家伙呢!咱先来说说三相桥式整流电路是啥。

简单来讲,就是把三相交流电变成直流电的一个装置。

在这个过程中,电容就起到了平滑直流电、减少电压波动的重要作用。

那这电容的大小到底咋算呢?这就有个公式啦:C = I × Δt / ΔV 。

这里的 C 就是电容值,I 是负载电流,Δt 是电容放电时间,ΔV 是允许的电压波动。

比如说,咱们有个三相桥式整流电路,给一个电机供电,电机的工作电流是 5 安培。

咱们希望电压波动不超过 5%,也就是 0.05 ×额定电压。

假设电路的工作频率是 50Hz ,一个周期是 0.02 秒,那电容放电时间咱们可以取半个周期,也就是 0.01 秒。

然后把这些数带进公式里算一下,就能得出大概需要多大的电容啦。

我之前在一个工厂里碰到过这么个事儿。

那台设备老是出问题,启动的时候一卡一卡的,师傅们检查了半天,发现就是三相桥式整流电路里的电容选小了。

当时可把大家急坏了,生产线上等着这台设备开工呢。

后来经过仔细计算,换了个合适的电容,这设备立马就欢快地跑起来啦,那效率,蹭蹭往上涨!再给您说细点,这电容值的计算还得考虑一些实际情况。

比如说,环境温度高的时候,电容的性能可能会下降,那咱们就得适当选大一点的电容。

还有啊,如果负载变化比较大,那也得留点儿余量,免得电压波动太大影响设备正常工作。

总之,三相桥式整流电容的计算不是个简单事儿,得综合考虑各种因素。

但只要咱们掌握了方法,多积累点经验,就能让电路稳稳当当工作,不出岔子。

希望上面这些能让您对三相桥式整流电容的计算公式有个更清楚的了解,在实际应用中能派上用场!。

桥式整流公式

桥式整流公式

桥式整流公式
摘要:
一、桥式整流公式简介
1.桥式整流电路的构成
2.桥式整流电路的作用
二、桥式整流公式推导
1.桥式整流电路的电压电流关系
2.桥式整流电路的电流电压关系
3.桥式整流公式的推导过程
三、桥式整流公式应用
1.整流电路的计算
2.桥式整流电路的实验验证
3.桥式整流电路在实际中的应用
正文:
桥式整流公式是用于描述桥式整流电路中电压、电流关系的公式。

桥式整流电路是一种四端网络,由两个共阳极的晶体管或二极管组成,可以对交流电信号进行整流处理。

桥式整流公式的推导过程主要分为两步。

首先,根据基尔霍夫电压定律,可以得到桥式整流电路的电压电流关系。

其次,根据欧姆定律,可以得到桥式整流电路的电流电压关系。

最后,将这两个关系结合起来,就可以推导出桥式整流公式。

桥式整流公式可以应用于整流电路的计算、桥式整流电路的实验验证以及桥式整流电路在实际中的应用等方面。

例如,在设计桥式整流电路时,可以通过桥式整流公式计算出电路中的电流、电压等参数,从而指导电路的设计。

此外,在实验验证桥式整流电路的工作原理时,也可以利用桥式整流公式进行实验数据的分析和处理。

整流电路公式范文

整流电路公式范文

整流电路公式范文整流电路是一种将交流电转换为直流电的电路,在电力供应、通信以及电子设备中广泛应用。

整流电路的基本工作原理是使用二极管将交流信号转换为单向的直流信号。

下面我们将详细介绍整流电路的公式及其工作原理。

1.单相半波整流电路公式:单相半波整流电路由一个二极管和一个负载电阻组成,其工作原理如下:当输入信号为正弦波时,二极管导通时,输出电压等于输入电压;当输入信号为负弦波时,二极管不导通,输出电压等于零。

因此,输出电压的波形为半波整流。

单相半波整流电路的输出电压计算公式为:Vout = Vpk * (1 - exp(-t/(R * C)))其中Vout为输出电压峰值;Vpk为输入电压峰值;t为时间;R为负载电阻;C为滤波电容。

2.单相全波整流电路公式:单相全波整流电路由两个二极管和一个负载电阻组成,其工作原理如下:当输入信号为正弦波时,D1导通,负载电阻处于正向偏置状态,输出电压等于输入电压;当输入信号为负弦波时,D2导通,负载电阻处于反向偏置状态,输出电压等于输入电压的相反数。

因此,输出电压的波形为全波整流。

单相全波整流电路的输出电压计算公式为:Vout = Vpk * (1 - exp(-t/(2 * R * C)))其中Vout为输出电压峰值;Vpk为输入电压峰值;t为时间;R为负载电阻;C为滤波电容。

3.三相桥式整流电路公式:三相桥式整流电路由四个二极管和一个负载电阻组成,其工作原理如下:当输入信号为正弦波时,二极管D1和D3导通,负载电阻处于正向偏置状态,输出电压等于输入电压;当输入信号为负弦波时,二极管D2和D4导通,负载电阻处于反向偏置状态,输出电压等于输入电压的相反数。

因此,输出电压的波形为全波整流。

三相桥式整流电路的输出电压计算公式为:Vout = √3 * Vpk * (1 - exp(-t/(2 * R * C)))其中Vout为输出电压峰值;Vpk为输入电压峰值;t为时间;R为负载电阻;C为滤波电容。

整流电路电压公式

整流电路电压公式

整流电路电压公式整流电路电压公式整流电路是一种用于将交流电转换为直流电的电路,常用于电源供应、信号处理和电子设备等方面。

在整流电路中,有一些基本的公式可以用来计算电压。

单相半波整流电路单相半波整流电路是最简单的整流电路之一,它只能将输入交流电的正半周期转换为直流电。

一般来说,单相半波整流电路的电压公式可以表示为:V_0 = V_m * sin(ωt)其中,V_0为输出直流电压,V_m为输入交流电的峰值电压,ω为角频率,t为时间。

例如,假设输入交流电的峰值电压为10V,角频率为100 rad/s,现在需要计算输出直流电压在t=时的值。

根据上述公式,可以计算如下:V_0 = 10 * sin(100 * )= 10 * sin(1)≈因此,在t=时,输出直流电压约为。

单相全波整流电路单相全波整流电路可以将输入交流电的所有周期都转换为正向的直流电。

它相比于单相半波整流电路更加高效。

一般来说,单相全波整流电路的电压公式可以表示为:V_0 = 2 * V_m * sin(ωt)其中,V_0为输出直流电压,V_m为输入交流电的峰值电压,ω为角频率,t为时间。

例如,假设输入交流电的峰值电压为10V,角频率为100 rad/s,现在需要计算输出直流电压在t=时的值。

根据上述公式,可以计算如下:V_0 = 2 * 10 * sin(100 * )= 2 * 10 * sin(1)≈因此,在t=时,输出直流电压约为。

三相全波整流电路三相全波整流电路是一种使用三相交流电源的整流电路,可以将输入交流电的所有周期都转换为正向的直流电。

在三相全波整流电路中,通常使用的电压公式如下:V_0 = 3 * √2 * V_m * sin(ωt)其中,V_0为输出直流电压,V_m为输入交流电的峰值电压,ω为角频率,t为时间。

总结整流电路的电压公式是计算输出直流电压的重要工具。

在单相半波整流电路中,电压公式为V_0 = V_m * sin(ωt);在单相全波整流电路中,电压公式为V_0 = 2 * V_m * sin(ωt);在三相全波整流电路中,电压公式为V_0 = 3 * √2 * V_m * sin(ωt)。

整流滤波功率因数计算公式

整流滤波功率因数计算公式

整流滤波功率因数计算公式在电力系统中,功率因数是一个非常重要的参数,它反映了电路中有用功率和视在功率之间的关系。

功率因数的大小直接影响到电力系统的稳定性和效率。

在实际的电路中,由于电路中存在着电感元件和电容元件,因此功率因数并不是一个恒定的值,而是会随着电路中的元件参数的变化而变化。

因此,对于含有整流滤波电路的电路,需要通过计算来确定其功率因数。

整流滤波电路是一种常见的电源电路,它通常由整流器和滤波器组成。

整流器用于将交流电转换为直流电,而滤波器则用于滤除直流电中的脉动成分,使得输出电压更加稳定。

在实际的电力系统中,整流滤波电路广泛应用于各种电源设备中,因此对其功率因数的计算具有重要的意义。

整流滤波功率因数的计算公式如下:其中,P是有用功率,Q是无用功率,U是电压有效值,I是电流有效值,cosφ是功率因数。

在实际的电路中,由于整流滤波电路中存在着电感元件和电容元件,因此功率因数的计算并不是一个简单的问题。

通常情况下,可以通过测量电路中的电压和电流来确定功率因数,但是对于含有整流滤波电路的电路来说,由于电压和电流之间存在着相位差,因此直接测量得到的功率因数并不准确。

因此,需要通过计算来确定整流滤波电路的功率因数。

在实际的工程中,可以通过以下步骤来计算整流滤波电路的功率因数:1. 首先,测量电路中的电压和电流的有效值,可以通过示波器或者多用表来进行测量。

2. 然后,根据测量得到的电压和电流的有效值,计算电路中的有用功率和无用功率。

有用功率可以通过P=UIcosφ来计算,无用功率可以通过Q=UIsinφ来计算。

3. 最后,根据计算得到的有用功率和无用功率,可以通过上述的功率因数计算公式来计算整流滤波电路的功率因数。

通过上述的计算步骤,可以得到整流滤波电路的功率因数。

在实际的工程中,为了提高整流滤波电路的功率因数,可以通过改变电路中的元件参数来实现。

例如,可以通过改变电感元件和电容元件的数值来调节整流滤波电路的功率因数。

PFC电路简介与设计计算

PFC电路简介与设计计算

PFC电路简介及设计计算传统的工频交流整流电路,因为整流桥后面有一个大的;要设计一个功率因数校正电路,首先我们要给出我们的;已知参数:;交流电源的频率fac——50Hz最低交流电压有效;开关频率fs——65KHz输出电压纹波峰峰值Vo;那么我们可以进行如下计算:;1,输出电流Iout=Pout/Udc=600/;2,最大输入功率Pin=Pout/η=600/0;3,输入电流最大有效传统的工频交流整流电路,因为整流桥后面有一个大的电解电容来稳定输出电压,所以使电网的电流波形变成了尖脉冲,滤波电容越大,输入电流的脉宽就越窄,峰值越高,有效值就越大。

这种畸变的电流波形会导致一些问题,比如无功功率增加、电网谐波超标造成干扰等。

功率因数校正电路的目的,就是使电源的输入电流波形按照输入电压的变化成比例的变化。

使电源的工作特性就像一个电阻一样,而不在是容性的。

目前在功率因数校正电路中,最常用的就是由BOOST变换器构成的主电路。

而按照输入电流的连续与否,又分为DCM、CRM、CCM模式。

DCM模式,因为控制简单,但输入电流不连续,峰值较高,所以常用在小功率场合。

CCM模式则相反,输入电流连续,电流纹波小,适合于大功率场合应用。

介于DCM和CCM之间的CRM称为电流临界连续模式,这种模式通常采用变频率的控制方式,采集升压电感的电流过零信号,当电流过零了,才开通MOS管。

这种类型的控制方式,在小功率PFC电路中非常常见。

今天我们主要谈适合大功率场合的CCM模式的功率因数校正电路的设计。

要设计一个功率因数校正电路,首先我们要给出我们的一些设计指标,我们按照一个输出500W左右的APFC电路来举例:已知参数:交流电源的频率fac——50Hz最低交流电压有效值Umin——85Vac最高交流电压有效值Umax——265Vac输出直流电压Udc——400VDC输出功率Pout——600W最差状况下满载效率η——92%开关频率fs——65KHz输出电压纹波峰峰值Voutp-p——10V那么我们可以进行如下计算:1,输出电流Iout=Pout/Udc=600/400=1.5A2,最大输入功率Pin=Pout/η=600/0.92=652W3,输入电流最大有效值Iinrmsmax=Pin/Umin=652/85=7.67A4,那么输入电流有效值峰值为Iinrmsmax*1.414=10.85A5,高频纹波电流取输入电流峰值的20%,那么Ihf=0.2*Iinrmsmax=0.2*10.85=2.17A 6,那么输入电感电流最大峰值为:ILpk=Iinrmsmax+0.5*Ihf=10.85+0.5*2.17=11.94A7,那么升压电感最小值为Lmin=(0.25*Uout)/(Ihf*fs)=(0.25*400)/(2.17*65KHz)=709uH8,输出电容最小值为:Cmin=Iout/(3.14*2*fac*Voutp-p)=1.5/(3.14*2*50*10)=477.7uF,实际电路中还要考虑hold up时间,所以电容容量可能需要重新按照hold up的时间要求来重新计算。

三相全波整流电压输出平均值计算公式

三相全波整流电压输出平均值计算公式

三相全波整流电压输出平均值计算公式首先,我们需要知道三相全波整流电路的工作原理。

三相全波整流电路由六个二极管和三个电感组成。

当输入交流电源的相电压Vm(t)通过二极管桥整流后,电流只能在一个方向上流动,得到整流输出电压。

假设输入交流电源的相电压为Vm(t) = Vm * cos(ωt),其中Vm为峰值电压,ω为角频率。

在一个完整的周期内,上述相电压Vm(t)将经历一个完整的半周波周期,并且与角频率为2π/3的三相相电压波形同步。

因此,接下来我们只需要计算一个半周波周期的电压输出平均值即可。

首先,我们对Vm(t)进行整流,得到整流输出电压Vo(t) = ,Vm(t),= Vm * ,cos(ωt)。

然后,我们需要计算Vo(t)在一个半周波周期内的面积,该面积即为半周期电压输出平均值。

在一个半周波周期的开始时刻t0,Vo(t)的值为0,随着时间的推移,Vo(t)的值随着cos函数的变化而变化。

在整个半周波周期内,Vo(t)的值可以分为四个阶段进行计算:1. 阶段一:0 ≤ ωt ≤ π/2、在此阶段内,Vo(t)的值等于Vm * cos(ωt)。

2. 阶段二:π/2 ≤ ωt ≤ π。

在此阶段内,Vo(t)的值等于Vm * sin(ωt)。

3. 阶段三:π ≤ ωt ≤ 3π/2、在此阶段内,Vo(t)的值等于-Vm* cos(ωt)。

4. 阶段四:3π/2 ≤ ωt ≤ 2π。

在此阶段内,Vo(t)的值等于-Vm * sin(ωt)。

因此,在半周波周期内,Vo(t)的值可以表示为如下的函数:Vo(t) = Vm * cos(ωt) (0 ≤ ωt ≤ π/2)Vm * sin(ωt) (π/2 ≤ ωt ≤ π)-Vm * cos(ωt) (π ≤ ωt ≤ 3π/2)-Vm * sin(ωt) (3π/2 ≤ ωt ≤ 2π)接下来,我们需要计算Vo(t)在半周波周期内的面积,即半周期电压输出平均值。

单相桥式半控整流电路ud计算公式

单相桥式半控整流电路ud计算公式

单相桥式半控整流电路ud计算公式单相桥式半控整流电路,这可是电学领域中一个挺关键的知识点呢。

咱们先来说说啥是单相桥式半控整流电路。

简单来讲,它就是由四个半导体器件组成的一种电路结构。

在这个电路里,电流的流向和电压的变化都有一定的规律。

要弄清楚这个电路的 ud 计算公式,咱们得一步步来。

首先,咱们得知道在不同的控制角下,电路的工作状态是不一样的。

比如说,当控制角很小的时候,电流能顺畅地通过电路;但当控制角变大,情况就变得复杂一些啦。

在计算 ud 的时候,咱们得考虑到很多因素。

比如说,电源电压的大小、负载的电阻值,还有控制角的大小等等。

那具体的计算公式是啥呢?ud = 0.9U2(1 + cosα) / 2 ,这里的 U2 是交流电源的有效值,α 就是咱们说的控制角。

给您讲个我之前遇到的事儿吧。

有一次我在给学生们讲这个知识点,有个特别较真儿的学生,一直缠着我问为啥是这个公式。

我就给他一步一步地推导,从最基本的电路原理开始,一点点地给他解释。

那孩子听得特别认真,眼睛一眨不眨的。

最后他终于弄明白了,那种满足的表情,让我觉得当老师可真有成就感。

回到这个公式,咱们来具体分析分析每个部分的含义。

0.9U2 这部分呢,是在理想情况下,没有考虑控制角时的输出电压平均值。

后面那部分(1 + cosα) / 2 ,就是因为控制角的存在而对输出电压产生的影响。

在实际应用中,这个公式能帮助我们很好地计算出电路的输出电压。

比如说,在设计一个电源电路的时候,我们可以根据需要的输出电压,通过这个公式来确定控制角的大小,或者根据已知的控制角和电源电压,计算出实际的输出电压值。

总之,单相桥式半控整流电路的ud 计算公式虽然看起来有点复杂,但只要咱们理解了其中的原理,掌握起来也不是那么难。

希望通过我的讲解,能让您对这个知识点有更清晰的认识。

加油,一起在电学的世界里探索更多的奥秘!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

经验整流电路简单的计算公式Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】整流二极管可用半导体锗或硅等材料制造。

硅整流二极管的击穿电压高,反向漏电流小,高温性能良好。

通常高压大功率整流二极管都用高纯单晶硅制造。

这种器件的结面积较大,能通过较大电流(可达上千安),但工作频率不高,一般在几十千赫以下。

整流二极管主要用于各种低频整流电路。

整流电路分类:单向、三相与多项整流电路;还可分为半波、全波、桥式整流电路;又可分为可控与不可控;当全部或部分整流元件为可控硅(晶闸管)时称可控整流电路(一)不可控整流电路1、单向二极管半波整流电路半波整说是以"牺牲"一半交流为代价而换取整流效果的,电流利用率很低;因此常用在高电压、小电流的场合,而在一般无线电装置中很少采用。

输出直流电压U=流过二极管平均电流 I=U/RL=RL二极管截止承受的最大反向电压是 Um反=2、单向二极管全波整流电路因此称为全波整流,全波整流不仅利用了正半周,而且还巧妙地利用了负半周,从而大大地提高了整流效率(Usc=,比半波整流时大一倍)另外,这种电路中,每只整流二极管承受的最大反向电压,是变压器次级电压最大值的两倍,因此需用能承受较高电压的二极管。

输出直流电压U=流过二极管平均电流只是负载平均电流的一半,即流过负载的电流I=RL流过二极管电流I=RL二极管截止时承受的反向电压因此选择二极管参数的依据与半波整流电路相比有所不同,由于交流正负两个半周均有电流流过负载,因此变压器的利用率比半波整流高。

二极管全波整流的另一种形式即桥式整流电路,是目前小功率整流电路最常用的整流电路。

3、二极管全波整流的结论都适用于桥式整流电路,不同点仅是每个二极管承受的反向电压比全波整流小了一半。

桥式电路中每只二极管承受的反向电压等于变压器次级电压的最大值,比全波整洗电路小一半!U=流过负载电流I=RL流过二极管电流I=RL二极管截止承受反向电压U=另外,在高电压或大电流的情况下,如果手头没有承受高电压或整定大电滤的整流元件,可以把二极管串联或并联起来使用。

图5-7 示出了二极管并联的情况:两只二极管并联、每只分担电路总电流的一半,三只二极管并联,每只分担电路总电流的三分之一。

总之,有几只二极管并联,"流经每只二极管的电流就等于总电流的几分之一。

但是,在实际并联运用时",由于各二极管特性不完全一致,不能均分所通过的电流,会使有的管子困负担过重而烧毁。

因此需在每只二极管上串联一只阻值相同的小电阻器,使各并联二极管流过的电流接近一致。

这种均流电阻R一般选用零点几欧至几十欧的电阻器。

电流越大,R应选得越小。

图5-8示出了二极管串联的情况。

显然在理想条件下,有几只管子串联,每只管子承受的反向电压就应等于总电压的几分之一。

但因为每只二极管的反向电阻不尽相同,会造成电压分配不均:内阻大的二极管,有可能由于电压过高而被击穿,并由此引起连锁反应,逐个把二极管击穿。

在二极管上并联的电阻R,可以使电压分配均匀。

4、1)滤波电容未接入时的半波整流电路输出电压与变压器次级的电流(即流过二极管的电流)纹波大,输出直流电压比较小,为2)负载开路时候半波整流电路:输出电压波纹为零,为理想的直流电压且输出直流电压高输出电压保持不变3)有载情况下电容滤波整流电路当二极管截止时,电容两端电压就不能保持不变,电容向负载放电,负载电流等于电容的放电电流;输出电压可达到。

当电容C愈大,放电进行愈慢,将使截止期加长,在稳定情况下,电容C在一个周期内充电电荷等于放电电荷。

故当截止期加长,导通时间相对缩短,充电电流将相对地增大。

我们知道,在电流平均值相同条件下,脉冲的宽度愈窄,幅度愈高,其有效值愈大,故具有电容滤波的整流电路,在输出直流电流相同的条件下,二极管的发热较为严重。

滤波电容愈大,这种现象也愈显着。

特别在开机瞬间,这时滤波电容C上未充电,故其开始几周的充电电流不但幅值大,而且持续时间长。

为了限制二极管的电流,有时给二极管串一限流电阻,但导致一定功率的损耗。

但是滤波电容越大,滤波效果越好。

通常认为滤波电路的放电时间常数CR L比交流电源周期T大三至五倍,滤波效果能令人满足;即C≥(3-5)T/R L;可用于半波整流滤波电路选择电容的估算公式。

4)整流器主要参数对输出电压的影响1、固定负载电阻RL滤波电容C,变化整流器内阻。

当整流器内阻增大时,充电电流在内阻上所产生的电压大,电容两端可能电压减小,输出电压减小,纹波电压变化不大4、固定整流器内阻和滤波电容。

当负载电阻减小时,放电速度加快,输出电压减小,波纹增大。

因此这种电路适用于电流较小的场合。

5)具有电容滤波的单向全波和桥式整流器输出直流电压仍为U=()U2滤波电容的估算,由于电容放电时间比半波缩短一半,C≥(3-5)T/2R L(注:提高频率可以降低对滤波电容的容量)在桥式整流或全波整流电路中,若无电容滤波,输出电压U=若有电容滤波,但负载开路时,则有输出电压为U=有电容滤波并且有负载的情况息,输出电压介于之间所哟滤波效果为R L C=(2-5)T/2如果整流电路内阻很小,一般可认为输出电压为6)电感滤波电路整流电路输出端经过一个串联电感线圈再接到负载电感可以产生滤波作用。

可以这样理解:整流后的交流成分大部分降在电感线圈上,而直流成分基本上在负载上,输出电感的交流成分大大减小。

电感量愈大,负载RL愈小,输出直流电压就愈平稳,滤波效果就愈大。

由于电感滤波电路输出电压大小与负载大小无关,而负载电阻RL愈小(输出电流大),滤波效果愈好,因此适合用于负载电流较大的场合。

7)其他形式的滤波电路1、电感电容倒L型滤波电路:无论对小电流和较大带电流的负载都能起到很好的滤波作用2、π型滤波电路相当于一级电容滤波和一级倒L型滤波电路串联而成。

因此可进一步提高滤波效果5、RC滤波电路输出直流电压为U=RL/(RL+R) 由于R会影响输出直流电压大小因此适合小电流情况下工作8)1、低通滤波工作原理:串联电感具有隔直同交的作用,并联电容的容抗随频率上升而下降,而对高频信号具有旁路作用,L和C共同作用,使输出电压的高频分量大为减小。

2、高通滤波器工作原理:串联电容阻止低频信号通过而让高频通过,并联电感则对直流信号和低频信号起旁路作用3、带通滤波器让通频带以内的信号顺利通过,而通频带以外的信号则被一抑制掉。

L、C串并联组合特性分析6、带阻滤波器举例:输出直流电压30V 负载电流500mA 用220V 50HZ交流电网供电a)确定电路:桥式整流b)选择二极管:流过二极管电流I=1/2I负载=500/2=250mA二极管反向承受电压为,根据经验数据,电容滤波电路输出直流电压大都可达到变压器次级有效值倍,这里取倍。

U2=30/=25V每个最大反向电压为U反==35V因此选择2CP33A,其最大整流电流为500mA,最高反向电压为50V3)选择滤波电容应使放电时间常数τ为电源电压半个周期的3-5倍,这里取5倍τ=5T/2=5/2f=5/2*50=RL=30/=60欧C=τ/RL=60=835微法取滤波电容为1000微法,在空载输出电压可达=35V,故耐压可取50V。

4)变压器要求U2=Umax/=25V一般来说,有效值大于平均值。

当滤波电容愈大,电流脉冲愈窄,二者的差别愈大,可达倍甚至更大,取I==*500=800mA例题二已知负载电阻RL=80欧,负载电压U为110V,采用单向桥式整流电路,交流电源电压为380V,如何选用二极管1)负载电流为I=110/80=2)每个二极管通过的电流为;3)变压器次级电压有效值:U2=110/=122v4)考虑到变压器次级绕组及管子的压降,变压器次级电压大约高出10%,即122*=134V5)二极管反向耐压为U RM=*134=189V选用的二极管最大整流为1A,最高反向电压300V的整流二极管,如2CE11C例题三:一桥式整流电容滤波电路,其交流电源频率f=50HZ,负载电阻RL为120欧,输出电压为30V,如何选择电容解:采用电容时,输出波形的平直程度和电容C的充放电时间常数τ=R L C 有关,一般R L C=5*T/2且T=1/f=1/50=R L C=5*2=已知R L=120欧,C= R L=417微法。

选取C=470微法耐压50V的电解电容其他类型整流滤波电路各种滤波电路特性对比表LC用于电流较大、要求输出电压脉动较小的场合,用于高频更为合适。

LC组成的π型电路滤波效果比LC滤波器更好,但对整流二极管电流冲击大π型RC滤波:电阻对交直流都具有同样的降压作用,但与其与电容配合后,就使脉动电压的交流分量较多的降落在电阻两端,而较小的降落在负载上,故而实现滤波作用。

R愈大,C2愈大,滤波效果愈好。

但R太大会使直流压降增加,所以这种滤波电路主要应用于负载电流较小而又要求输出电压脉动很小的场合。

单L型l滤波:可得到比较平滑的直流1、二倍压整流电路倍压整流电路主要产生高电压小电流直流电压;优点是可以在不增加次级绕组线圈和二极管反峰电压的条件下,通过多次倍压得到较高的直流电压输出。

整流电路总结:半波整流电路简单,所用元件少,但其输出直流成分小,脉动成分大。

桥式整流电路:滤波效果好,但使用二极管数量多倍压整流电路:输出电压高,但只能输出很小的电路,带负载能力差。

相关文档
最新文档