2017年全国硕士研究生入学统一考试数学三真题及答案解析
2017年数三考研真题_附答案解析

2017年数三考研真题_附答案解析2017年全国硕⼠研究⽣⼊学统⼀考试数学三试题及参考答案⼀、选择题:1~8⼩题,每⼩题4分,共32分,下列每题给出的四个选项中,只有⼀个选项是符合题⽬要求的.1.若函数1,0(),0x f x axb x ?->?=??≤?在0x =处连续,则()(A)12ab =(B)12ab =-(C)0ab =(D)2ab =2.⼆元函数(3)z xy x y =--的极值点()(A)(0,0)(B)(0,3)(C)(3,0)(D)(1,1)3.设函数()f x 可导,且()()0f x f x '>则()(A)()()11f f >-(B)()()11f f <-(C)()()11f f >-(D)()()11f f <-4.若级数2111n sin kln n n ∞=??--∑收敛,则k =()(A)1(B)2(C)-1(D)-25.设α为n 维单位列向量,E 为n 阶单位矩阵,则()(A)T E αα-不可逆(B)T E αα+不可逆(C)2T E αα+不可逆(D)2T E αα-不可逆6.已知矩阵200021001A=??210020001B =??100020002C ??=,则()(A)A 与C 相似,B 与C 相似(B)A 与C 相似,B 与C 不相似(C)A 与C 不相似,B 与C 相似(D)A 与C 不相似,B 与C 不相似7.设A B 、、C 为三个随机事件,且A 与C 相互独⽴,与C 相互独⽴,则A B ?与C 相互独⽴的充要条件是()(A)A 与B 相互独⽴(B)A 与B 互不相容(C)AB 与C 相互独⽴(D)AB 与C 互不相容8.设12,......(2)n X X X n ≥来⾃总体(,1)N µ的简单随机样本,记11nii X X n ==∑则下列结论中不正确的是()(A)21()ni i X µ=-∑服从2χ分布(B)212()n X X -服从2χ分布(C)21()n ii XX =-∑服从2χ分布(D)2()n X µ-服从2χ分布⼆、填空题:9~14⼩题,每⼩题4分,共24分。
2017考研数学三真题及答案解析

ln 2
ln 2
2
.
5
19.(本题满分 10 分)
设
a0
1, a1
0, an1
n
1
1
(na
n
a n 1 )(n
1, 2,3 ),
,
S(x)
为幂级数
n0
an xn
的和函数
(1)证明 an xn 的收敛半径不小于1. n0
(2)证明 (1 x)S(x) xS(x) 0(x (1,1)) ,并求出和函数的表达式.
0
2
10.差分方程 yt1 2 yt 2t 的通解为
.
【详解】齐次差分方程 yt1 2 yt 0 的通解为 y C 2x ;
设
yt 1
2 yt
2t
的特解为
yt
at 2t
,代入方程,得 a
1 2
;
所以差分方程
yt 1
2 yt
2t
的通解为
y
C 2t
1 t2t. 2
11.设生产某产品的平均成本 C(Q) 1 eQ ,其中产量为 Q ,则边际成本为
8.设
X1, X 2,, X n(n
2)
为来自正态总体 N (,1) 的简单随机样本,若
X
1 n
n i 1
Xi
,则下列结论中不
正确的是( )
n
(A) ( X i )2 服从 2 分布 i 1
(B) 2 X n X1 2 服从 2 分布
n
(C) ( X i X )2 服从 2 分布 i 1
时, g(x) g(0) 0 ,进一步得到当 x (0,1) 时, f (x) 0 ,也就是 f (x) 在 (0,1) 上单调减少.
2017年全国考研数学三真题

2017年全国硕士研究生入学统一考试真题试卷《数学三》试题一、选择题:1—8小题.每小题4分,共32分.1.若函数0(),0x f x b x >=⎪≤⎩在0x =处连续,则 (A )12ab =(B )12ab =- (C )0ab = (D )2ab = 2.二元函数(3)z xy x y =--的极值点是( )(A )(0,0) (B )03(,) (C )30(,) (D )11(,) 3.设函数()f x 是可导函数,且满足()()0f x f x '>,则(A )(1)(1)f f >- (B )11()()f f <- (C )11()()f f >- (D )11()()f f <-4. 若级数211sin ln(1)n k n n ∞=⎡⎤--⎢⎥⎣⎦∑收敛,则k =( )(A )1 (B )2 (C )1- (D )2- 5.设α为n 单位列向量,E 为n 阶单位矩阵,则(A )T E αα-不可逆 (B )T E αα+不可逆 (C )2T E αα+不可逆 (D )2T E αα-不可逆6.已知矩阵200021001A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,210020001B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,100020002C ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则(A ),A C 相似,,B C 相似 (B ),A C 相似,,B C 不相似 (C ),A C 不相似,,B C 相似 (D ),A C 不相似,,B C 不相似7.设,A B ,C 是三个随机事件,且,A C 相互独立,,B C 相互独立,则A B U 与C 相互独立的充分必要条件是( )(A ),A B 相互独立 (B ),A B 互不相容 (C ),AB C 相互独立 (D ),AB C 互不相容8.设12,,,(2)n X X X n ≥L 为来自正态总体(,1)N μ的简单随机样本,若11ni i X X n ==∑,则下列结论中不正确的是( )(A )21()ni i X μ=-∑服从2χ分布 (B )()212n X X -服从2χ分布(C )21()n i i X X =-∑服从2χ分布 (D )2()n X μ-服从2χ分布二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) 9.3(sin x dx ππ-+=⎰ .10.差分方程122t t t y y +-=的通解为 .11.设生产某产品的平均成本()1Q C Q e -=+,其中产量为Q ,则边际成本为 . 12.设函数(,)f x y 具有一阶连续的偏导数,且已知(,)(1)y y df x y ye dx x y e dy =++,(0,0)0f =,则(,)f x y =13.设矩阵101112011A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,123,,ααα为线性无关的三维列向量,则向量组123,,A A A ααα的秩为 .14.设随机变量X 的概率分布为{}122P X =-=,{}1P X a ==,{}3P X b ==,若0EX =,则DX = . 三、解答题15.(本题满分10分)求极限0limt x dt +→16.(本题满分10分)计算积分3242(1)D y dxdy x y ++⎰⎰,其中D是第一象限中以曲线y =x 轴为边界的无界区域.17.(本题满分10分)求21lim ln 1nn k k k n n →∞=⎛⎫+ ⎪⎝⎭∑18.(本题满分10分) 已知方程11ln(1)k x x-=+在区间(0,1)内有实根,确定常数k 的取值范围.19.(本题满分10分)设011111,0,()(1,2,3),1n n n a a a na a n n +-===+=+L ,()S x 为幂级数0n n n a x ∞=∑的和函数(1)证明0n n n a x ∞=∑的收敛半径不小于1.(2)证明(1)()()0((1,1))x S x xS x x '--=∈-,并求出和函数的表达式. 20.(本题满分11分)设三阶矩阵()123,,A ααα=有三个不同的特征值,且3122.ααα=+ (1)证明:()2r A =;(2)若123,βααα=+,求方程组Ax β=的通解. 21.(本题满分11分)设二次型222123123121323(,,)2282f x x x x x ax x x x x x x =-++-+在正交变换x Qy =下的标准形为221122y y λλ+,求a 的值及一个正交矩阵Q .22.(本题满分11分)设随机变量,X Y 相互独立,且X 的概率分布为{}10{2}2P X P X ====,Y 的概率密度为2,01()0,y y f y <<⎧=⎨⎩其他.(1)求概率P Y EY ≤();(2)求Z X Y =+的概率密度. 23.(本题满分11分)某工程师为了解一台天平的精度,用该天平对一物体的质量做了n 次测量,该物体的质量μ是已知的,设n 次测量结果12,,,n X X X L 相互独立且均服从正态分布2(,).N μσ该工程师记录的是n 次测量的绝对误差,(1,2,,)i i Z X i n μ=-=L ,利用12,,,n Z Z Z L 估计参数σ.(1)求i Z 的概率密度;(2)利用一阶矩求σ的矩估计量; (3)求参数σ最大似然估计量.2017年全国硕士研究生入学统一考试真题试卷《数学三》试题答案一、选择题:1—8小题.每小题4分,共32分.1.解:0001112lim ()lim lim 2x x x xf x ax ax a +++→→→-===,0lim ()(0)x f x b f -→==,要使函数在0x =处连续,必须满足1122b ab a =⇒=.所以应该选(A )2.解:2(3)32zy x y xy y xy y x∂=---=--∂,232z x x xy y ∂=--∂,解方程组22320320z y xy y xz x x xy y ∂⎧=--=⎪∂⎪⎨∂⎪=--=∂⎪⎩,得四个驻点.对每个驻点验证2AC B -,发现只有在点11(,)处满足230AC B -=>,且20A C ==-<,所以11(,)为函数的极大值点,所以应该选(D )3.解:设2()(())g x f x =,则()2()()0g x f x f x ''=>,也就是()2()f x 是单调增加函数.也就得到()()22(1)(1)(1)(1)f f f f >-⇒>-,所以应该选(C ) 4.解:iv n →∞时22221111111111sin ln(1)(1)22k k k o k o n n n n n n n n n ⎛⎫⎛⎫⎛⎫⎛⎫--=---+=++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭显然当且仅当(1)0k +=,也就是1k =-时,级数的一般项是关于1n的二阶无穷小,级数收敛,从而选择(C ).5.解:矩阵T αα的特征值为1和1n -个0,从而,,2,2T T T T E E E E αααααααα-+-+的特征值分别为0,1,1,1L ;2,1,1,,1L ;1,1,1,,1-L ;3,1,1,,1L .显然只有T E αα-存在零特征值,所以不可逆,应该选(A ).6.解:矩阵,A B 的特征值都是1232,1λλλ===.是否可对解化,只需要关心2λ=的情况.对于矩阵A ,0002001001E A ⎛⎫⎪-=- ⎪ ⎪⎝⎭,秩等于1 ,也就是矩阵A 属于特征值2λ=存在两个线性无关的特征向量,也就是可以对角化,也就是~A C .对于矩阵B ,010*******E B -⎛⎫ ⎪-= ⎪ ⎪⎝⎭,秩等于2 ,也就是矩阵A 属于特征值2λ=只有一个线性无关的特征向量,也就是不可以对角化,当然,B C 不相似故选择(B ).7. 解:显然,A B U 与C 相互独立的充分必要条件是()()()P ABC P AB P C =,所以选择(C ).8.解:(1)显然22()~(0,1)()~(1),1,2,i i X N X i n μμχ-⇒-=L 且相互独立,所以21()nii Xμ=-∑服从2()n χ分布,也就是(A )结论是正确的;(2)222221(1)()(1)~(1)ni i n S X X n S n χσ=--=-=-∑,所以(C )结论也是正确的;(3)注意221~(,)()~(0,1)()~(1)X N X N n X nμμμχ⇒-⇒-,所以(D )结论也是正确的;(4)对于选项(B):22111()~(0,2)~(0,1)()~(1)2n n X X N N X X χ-⇒⇒-,所以(B )结论是错误的,应该选择(B )二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) 9.解:由对称性知330(sin 22x dx ππππ-+==⎰⎰.10.解:齐次差分方程120t t y y +-=的通解为2x y C =; 设122t t t y y +-=的特解为2t t y at =,代入方程,得12a =;所以差分方程122t t t y y +-=的通解为12 2.2t ty C t =+11.解:答案为1(1)Q Q e -+-.平均成本()1Q C Q e -=+,则总成本为()()Q C Q QC Q Q Qe -==+,从而边际成本为 12.解:(,)(1)()y y y df x y ye dx x y e dy d xye =++=,所以(,)y f x y xye C =+,由(0,0)0f =,得0C =,所以(,)y f x y xye =.13.解:对矩阵进行初等变换101101101112011011011011000A ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,知矩阵A 的秩为2,由于123,,ααα为线性无关,所以向量组123,,A A A ααα的秩为2. 14.解:显然由概率分布的性质,知112a b ++= 12133102EX a b a b =-⨯+⨯+⨯=+-=,解得11,44a b ==29292EX a b =++=,229()2DX EX E X =-=.三、解答题15.(本题满分10分)解:令x t u -=,则,t x u dt du =-=-,0t x u dt du -=⎰⎰16.(本题满分10分) 解:17.(本题满分10分) 解:由定积分的定义 18.(本题满分10分) 解:设11(),(0,1)ln(1)f x x x x=-∈+,则令22()(1)ln (1)g x x x x =++-,则2(0)0,(1)2ln 21g g ==-2(ln(1))()0,(0,1)1x x g x x x+-''=<∈+,所以()g x '在(0,1)上单调减少,由于(0)0g '=,所以当(0,1)x ∈时,()0)0g x g ''<=,也就是()g x ()g x '在(0,1)上单调减少,当(0,1)x ∈时,()(0)0g x g <=,进一步得到当(0,1)x ∈时,()0f x '<,也就是()f x在(0,1)上单调减少.00011ln(1)1lim ()lim lim ln(1)ln(1)2x x x x x f x x x x x +++→→→⎛⎫-+=-== ⎪++⎝⎭,1(1)1ln 2f =-,也就是得到111ln 22k -<<. 19.(本题满分10分) 解:(1)由条件11111()(1)1n n n n n n a na a n a na a n +-+-=+⇒+=++ 也就得到11(1)()()n n n n n a a a a +-+-=--,也就得到111,1,2,1n n n n a a n a a n +--=-=-+L也就得到111(1),1,2,(1)!n n n a a n n ++-=-=+Llim 1n n n ρ=≤≤=,所以收敛半径1R ≥ (2)所以对于幂级数0nn n a x ∞=∑, 由和函数的性质,可得11()n n n S x na x ∞-='=∑,所以也就是有(1)()()0((1,1))x S x xS x x '--=∈-.解微分方程(1)()()0x S x xS x '--=,得()1xCe S x x-=-,由于0(0)1S a ==,得1C =所以()1xe S x x-=-.20.(本题满分11分)解:(1)证明:因为矩阵有三个不同的特征值,所以A 是非零矩阵,也就是()1r A ≥. 假若()1r A =时,则0r =是矩阵的二重特征值,与条件不符合,所以有()2r A ≥,又因为31220ααα-+=,也就是123,,ααα线性相关,()3r A <,也就只有()2r A =. (2)因为()2r A =,所以0Ax =的基础解系中只有一个线性无关的解向量.由于31220ααα-+=,所以基础解系为121x ⎛⎫⎪= ⎪ ⎪-⎝⎭;又由123,βααα=+,得非齐次方程组Ax β=的特解可取为111⎛⎫ ⎪⎪ ⎪⎝⎭;方程组Ax β=的通解为112111x k ⎛⎫⎛⎫ ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,其中k 为任意常数.21.(本题满分11分)解:二次型矩阵21411141A a -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭因为二次型的标准形为221122y y λλ+.也就说明矩阵A 有零特征值,所以0A =,故2.a =令0E A λ-=得矩阵的特征值为1233,6,0λλλ=-==.通过分别解方程组()0i E A x λ-=得矩阵的属于特征值13λ=-的特征向量1111ξ⎛⎫⎪=-⎪⎪⎭,属于特征值特征值26λ=的特征向量2101ξ-⎛⎫⎪=⎪⎪⎭,30λ=的特征向量3121ξ⎛⎫⎪=⎪⎪⎭, 所以()123,,0Q ξξξ⎛ == ⎝为所求正交矩阵. 22.(本题满分11分) 解:(1)1202()2.3Y EY yf y dy y dy +∞-∞===⎰⎰所以{}230242.39P Y EY P Y ydy ⎧⎫≤=≤==⎨⎬⎩⎭⎰(2)Z X Y =+的分布函数为 故Z X Y =+的概率密度为 23.(本题满分11分) 解:(1)先求i Z 的分布函数为当0z <时,显然()0Z F z =;当0z ≥时,{}{}()21i Z i i X z zF z P Z z P X z P μμσσσ⎧-⎫⎛⎫=≤=-≤=≤=Φ-⎨⎬⎪⎝⎭⎩⎭; 所以i Z的概率密度为222,0()()0,0z Z Z z f z F z z σ-⎧≥'==<⎩.(2)数学期望2220()z i EZ z f z dz ze dz σ-+∞+∞===⎰⎰令11n i i EZ Z Z n ===∑,解得σ的矩估计量1ni i Z σ===.(3)设12,,,n Z Z Z L 的观测值为12,,,n z z z L .当0,1,2,i z i n >=L 时似然函数为221121()(,)ni i n nz i i L f z σσσ=-=∑==∏,取对数得:2211ln ()ln 2ln(2)ln 22nii n L n n zσπσσ==---∑令231ln ()10n i i d L n z d σσσσ==-+=∑,得参数σ最大似然估计量为σ=。
2017年考研数学三真题和解析

2017年考研数学三真题一、选择题 1—8小题.每小题4分,共32分.1.若函数0(),0x f x b x >=⎪≤⎩在0x =处连续,则 (A )12ab =(B )12ab =-(C )0ab =(D )2ab =【详解】0001112lim ()lim lim 2x x x xf x ax ax a +++→→→-===,0lim ()(0)x f x b f -→==,要使函数在0x =处连续,必须满足1122b ab a =⇒=.所以应该选(A )2.二元函数(3)z xy x y =--的极值点是( )(A )(0,0) (B )03(,) (C )30(,) (D )11(,)【详解】2(3)32zy x y xy y xy y x∂=---=--∂,232z x x xy y ∂=--∂,2222222,2,32z z z zy x x x y x y y x∂∂∂∂=-=-==-∂∂∂∂∂∂ 解方程组22320320z y xy y x z x x xy y∂⎧=--=⎪∂⎪⎨∂⎪=--=∂⎪⎩,得四个驻点.对每个驻点验证2AC B -,发现只有在点11(,)处满足230AC B -=>,且20A C ==-<,所以11(,)为函数的极大值点,所以应该选(D )3.设函数()f x 是可导函数,且满足()()0f x f x '>,则(A )(1)(1)f f >- (B )11()()f f <- (C )11()()f f >- (D )11()()f f <- 【详解】设2()(())g x f x =,则()2()()0g x f x f x ''=>,也就是()2()f x 是单调增加函数.也就得到()()22(1)(1)(1)(1)f f f f >-⇒>-,所以应该选(C )4. 若级数211sin ln(1)n k nn ∞=⎡⎤--⎢⎥⎣⎦∑收敛,则k =( ) (A )1 (B )2 (C )1- (D )2-【详解】iv n →∞时22221111111111sin ln(1)(1)22k k k o k o n n n n n n n n n ⎛⎫⎛⎫⎛⎫⎛⎫--=---+=++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭显然当且仅当(1)0k +=,也就是1k =-时,级数的一般项是关于1n的二阶无穷小,级数收敛,从而选择(C ).5.设α为n 单位列向量,E 为n 阶单位矩阵,则(A )TE αα-不可逆 (B )TE αα+不可逆 (C )2TE αα+不可逆 (D )2TE αα-不可逆【详解】矩阵Tαα的特征值为1和1n -个0,从而,,2,2T T T TE E E E αααααααα-+-+的特征值分别为0,1,1,1;2,1,1,,1;1,1,1,,1-;3,1,1,,1.显然只有T E αα-存在零特征值,所以不可逆,应该选(A ).6.已知矩阵200021001A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,210020001B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,100020002C ⎛⎫⎪= ⎪ ⎪⎝⎭,则(A ),A C 相似,,B C 相似 (B ),A C 相似,,B C 不相似 (C ),A C 不相似,,B C 相似 (D ),A C 不相似,,B C 不相似【详解】矩阵,A B 的特征值都是1232,1λλλ===.是否可对解化,只需要关心2λ=的情况.对于矩阵A ,0002001001E A ⎛⎫⎪-=- ⎪ ⎪⎝⎭,秩等于 1 ,也就是矩阵A 属于特征值2λ=存在两个线性无关的特征向量,也就是可以对角化,也就是~A C .对于矩阵B ,010*******E B -⎛⎫ ⎪-= ⎪ ⎪⎝⎭,秩等于 2 ,也就是矩阵A 属于特征值2λ=只有一个线性无关的特征向量,也就是不可以对角化,当然,B C 不相似故选择(B ). 7.设,A B ,C 是三个随机事件,且,A C 相互独立,,B C 相互独立,则A B 与C 相互独立的充分必要条件是( )(A ),A B 相互独立 (B ),A B 互不相容 (C ),AB C 相互独立 (D ),AB C 互不相容 【详解】(())()()()()()()()()()P A B C P AC AB P AC P BC P ABC P A P C P B P C P ABC =+=+-=+-()()(()()())()()()()()()()P A B P C P A P B P AB P C P A P C P B P C P AB P C =+-=+-显然,AB 与C 相互独立的充分必要条件是()()()P ABC P AB P C =,所以选择(C ). 8.设12,,,(2)n X X X n ≥为来自正态总体(,1)N μ的简单随机样本,若11ni i X X n ==∑,则下列结论中不正确的是( )(A )21()ni i X μ=-∑服从2χ分布 (B )()212n X X -服从2χ分布(C )21()nii XX =-∑服从2χ分布 (D )2()n X μ-服从2χ分布解:(1)显然22()~(0,1)()~(1),1,2,i i X N X i n μμχ-⇒-=且相互独立,所以21()ni i X μ=-∑服从2()n χ分布,也就是(A )结论是正确的;(2)222221(1)()(1)~(1)nii n S XX n S n χσ=--=-=-∑,所以(C )结论也是正确的;(3)注意221~(,)()~(0,1)()~(1)X N X N n X nμμμχ⇒-⇒-,所以(D )结论也是正确的;(4)对于选项(B ):22111()~(0,2)~(0,1)()~(1)2n n X X N N X X χ-⇒⇒-,所以(B )结论是错误的,应该选择(B )二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) 9.3(sin x dx ππ-=⎰ .解:由对称性知33(sin22x dx ππππ-==⎰⎰.10.差分方程122tt t y y +-=的通解为 .【详解】齐次差分方程120t t y y +-=的通解为2xy C =; 设122t t t y y +-=的特解为2tt y at =,代入方程,得12a =; 所以差分方程122t t t y y +-=的通解为12 2.2tt y C t =+11.设生产某产品的平均成本()1QC Q e -=+,其中产量为Q ,则边际成本为 .【详解】答案为1(1)QQ e -+-.平均成本()1QC Q e-=+,则总成本为()()QC Q QC Q Q Qe-==+,从而边际成本为()1(1).Q C Q Q e -'=+-12.设函数(,)f x y 具有一阶连续的偏导数,且已知(,)(1)yydf x y ye dx x y e dy =++,(0,0)0f =,则(,)f x y =【详解】(,)(1)()yyydf x y ye dx x y e dy d xye =++=,所以(,)yf x y xye C =+,由(0,0)0f =,得0C =,所以(,)yf x y xye =.13.设矩阵101112011A ⎛⎫⎪= ⎪ ⎪⎝⎭,123,,ααα为线性无关的三维列向量,则向量组123,,A A A ααα的秩为 .【详解】对矩阵进行初等变换101101101112011011011011000A ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,知矩阵A 的秩为2,由于123,,ααα为线性无关,所以向量组123,,A A A ααα的秩为2.14.设随机变量X 的概率分布为{}122P X =-=,{}1P X a ==,{}3P X b ==,若0EX =,则DX = .【详解】显然由概率分布的性质,知112a b ++= 12133102EX a b a b =-⨯+⨯+⨯=+-=,解得11,44a b ==29292EX a b =++=,229()2DX EX E X =-=.三、解答题15.(本题满分10分)求极限0lim t x dt +→【详解】令x t u -=,则,t x u dt du =-=-,t x u dt du -=⎰⎰02limlim limlim 3t x u u x x x x dt e du du ++++--→→→→====计算积分3242(1)Dy dxdy x y ++⎰⎰,其中D是第一象限中以曲线y =与x 轴为边界的无界区域. 【详解】33242242002424200220(1)(1)1(1)4(1)1111411282Dy y dxdy dx dy x y x y x y dx x y dx x x π+∞+∞+∞=++++++=++⎛⎛⎫=-=- ⎪ ++⎝⎭⎝⎭⎰⎰⎰⎰⎰17.(本题满分10分) 求21limln 1nn k kk nn →∞=⎛⎫+ ⎪⎝⎭∑ 【详解】由定积分的定义120111201lim ln 1lim ln 1ln(1)11ln(1)24nn n n k k k k k k x x dx n n n n n x dx →∞→∞==⎛⎫⎛⎫+=+=+ ⎪ ⎪⎝⎭⎝⎭=+=∑∑⎰⎰18.(本题满分10分) 已知方程11ln(1)k x x-=+在区间(0,1)内有实根,确定常数k 的取值范围.【详解】设11(),(0,1)ln(1)f x x x x=-∈+,则22222211(1)ln (1)()(1)ln (1)(1)ln (1)x x x f x x x x x x x ++-'=-+=++++ 令22()(1)ln (1)g x x x x =++-,则2(0)0,(1)2ln 21g g ==-2()ln (1)2ln(1)2,(0)0g x x x x g ''=+-+-=2(ln(1))()0,(0,1)1x x g x x x+-''=<∈+,所以()g x '在(0,1)上单调减少,由于(0)0g '=,所以当(0,1)x ∈时,()0)0g x g ''<=,也就是()g x ()g x '在(0,1)上单调减少,当(0,1)x ∈时,()(0)0g x g <=,进一步得到当(0,1)x ∈时,()0f x '<,也就是()f x 在(0,1)上单调减少.00011ln(1)1lim ()lim lim ln(1)ln(1)2x x x x x f x x x x x +++→→→⎛⎫-+=-== ⎪++⎝⎭,1(1)1ln 2f =-,也就是得到111ln 22k -<<.设011111,0,()(1,2,3),1n n n a a a na a n n +-===+=+,()S x 为幂级数0n n n a x ∞=∑的和函数(1)证明nn n a x∞=∑的收敛半径不小于1.(2)证明(1)()()0((1,1))x S x xS x x '--=∈-,并求出和函数的表达式. 【详解】(1)由条件11111()(1)1n n n n n n a na a n a na a n +-+-=+⇒+=++ 也就得到11(1)()()n n n n n a a a a +-+-=--,也就得到111,1,2,1n n n n a a n a a n +--=-=-+1112110112101(1)(1)!n n n n n n n n n n n a a a aa a a a a a a a a a a a n ++--------=⨯⨯⨯=-----+也就得到111(1),1,2,(1)!n n n a a n n ++-=-=+111121121()()()(1)!nk n n n n n k a a a a a a a a k +++-==-+-++-+=-∑ lim1!n n n n ρ=≤++≤=,所以收敛半径1R ≥ (2)所以对于幂级数nn n a x∞=∑, 由和函数的性质,可得11()n nn S x na x∞-='=∑,所以11111101111111(1)()(1)(1)((1))()n n nn n n n n n nnn n n n nn n n nn n n n n n n n x S x x na xna xna x n a x na x a n a na x a x a xx a x xS x ∞∞∞--===∞∞+==∞+=∞∞∞+-==='-=-=-=+-=++-====∑∑∑∑∑∑∑∑∑也就是有(1)()()0((1,1))x S x xS x x '--=∈-.解微分方程(1)()()0x S x xS x '--=,得()1xCe S x x -=-,由于0(0)1S a ==,得1C =所以()1xe S x x-=-.设三阶矩阵()123,,A ααα=有三个不同的特征值,且3122.ααα=+ (1)证明:()2r A =;(2)若123,βααα=+,求方程组Ax β=的通解.【详解】(1)证明:因为矩阵有三个不同的特征值,所以A 是非零矩阵,也就是()1r A ≥.假若()1r A =时,则0r =是矩阵的二重特征值,与条件不符合,所以有()2r A ≥,又因为31220ααα-+=,也就是123,,ααα线性相关,()3r A <,也就只有()2r A =.(2)因为()2r A =,所以0Ax =的基础解系中只有一个线性无关的解向量.由于31220ααα-+=,所以基础解系为121x ⎛⎫⎪= ⎪ ⎪-⎝⎭;又由123,βααα=+,得非齐次方程组Ax β=的特解可取为111⎛⎫ ⎪⎪ ⎪⎝⎭;方程组Ax β=的通解为112111x k ⎛⎫⎛⎫ ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,其中k 为任意常数.21.(本题满分11分)设二次型222123123121323(,,)2282f x x x x x ax x x x x x x =-++-+在正交变换x Qy =下的标准形为221122y y λλ+,求a 的值及一个正交矩阵Q .【详解】二次型矩阵21411141A a -⎛⎫⎪=- ⎪ ⎪-⎝⎭因为二次型的标准形为221122y y λλ+.也就说明矩阵A 有零特征值,所以0A =,故 2.a =114111(3)(6)412E A λλλλλλλ---=+=+---令0E A λ-=得矩阵的特征值为1233,6,0λλλ=-==.通过分别解方程组()0i E A x λ-=得矩阵的属于特征值13λ=-的特征向量1111ξ⎛⎫⎪=-⎪⎪⎭,属于特征值特征值26λ=的特征向量2101ξ-⎛⎫⎪=⎪⎪⎭,30λ=的特征向量3121ξ⎛⎫⎪=⎪⎪⎭, 所以()123,,0Q ξξξ⎛ == ⎝为所求正交矩阵. 22.(本题满分11分)设随机变量,X Y 相互独立,且X 的概率分布为{}10{2}2P X P X ====,Y 的概率密度为2,01()0,y y f y <<⎧=⎨⎩其他. (1)求概率P Y EY ≤();(2)求Z X Y =+的概率密度. 【详解】(1)1202()2.3Y EY yf y dy y dy +∞-∞===⎰⎰所以{}230242.39P Y EY P Y ydy ⎧⎫≤=≤==⎨⎬⎩⎭⎰(2)Z X Y =+的分布函数为{}{}{}{}{}{}{}[](),0,20,2,211{}2221()(2)2Z Y Y F z P Z z P X Y z P X Y z X P X Y z X P X Y z P X Y z P Y z P Y z F z F z =≤=+≤=+≤=++≤===≤+=≤-=≤+≤-=+-故Z X Y =+的概率密度为[]1()()()(2)2,012,230,Z Z f z F z f z f z z z z z '==+-≤≤⎧⎪=-≤<⎨⎪⎩其他 23.(本题满分11分)某工程师为了解一台天平的精度,用该天平对一物体的质量做了n 次测量,该物体的质量μ是已知的,设n 次测量结果12,,,n X X X 相互独立且均服从正态分布2(,).N μσ该工程师记录的是n 次测量的绝对误差,(1,2,,)i i Z X i n μ=-=,利用12,,,n Z Z Z 估计参数σ.(1)求i Z 的概率密度;(2)利用一阶矩求σ的矩估计量; (3)求参数σ最大似然估计量. 【详解】(1)先求i Z 的分布函数为{}{}()i Z i i X z F z P Z z P X z P μμσσ⎧-⎫=≤=-≤=≤⎨⎬⎩⎭当0z <时,显然()0Z F z =;当0z ≥时,{}{}()21i Z i i X z zF z P Z z P X z P μμσσσ⎧-⎫⎛⎫=≤=-≤=≤=Φ-⎨⎬ ⎪⎝⎭⎩⎭; 所以i Z的概率密度为222,0()()0,0z Z Z z f z F z z σ-⎧≥'==<⎩.(2)数学期望2220()z i EZ z f z dz ze dz σ-+∞+∞===⎰⎰令11n i i EZ Z Z n ===∑,解得σ的矩估计量1ni i Z σ===.(3)设12,,,n Z Z Z 的观测值为12,,,n z z z .当0,1,2,i z i n >=时似然函数为221121()(,)ni i nnz i i L f z σσσ=-=∑==∏,取对数得:2211ln ()ln 2ln(2)ln 22nii n L n n zσπσσ==---∑令231ln ()10n i i d L n z d σσσσ==-+=∑,得参数σ最大似然估计量为σ=。
2017年全国硕士研究生入学统一考试数学三真题及答案解析 .doc

2017年全国硕士研究生入学统一考试数学三真题及答案解析一、选择题(本题共8小题,每小题4分,满分32分)(1)若函数⎪⎩⎪⎨⎧≤>-=0,,0,cos 1)(x b x axxx f 在0=x 处连续,则( ) )(A 21=ab 。
)(B 21-=ab 。
)(C 0=ab 。
D (2=ab 。
【答案】)(A【解】aax x f x 21cos 1lim)00(0=-=++→,b f f =-=)00()0(,因为)(x f 在0=x 处连续,所以)00()0()00(-==+f f f ,从而21=ab ,应选)(A 。
(2)二原函数)3(y x xy z--=的极值点为( ))(A )0,0(。
)(B )3,0(。
)(C )0,3(。
)(D )1,1(。
【答案】)(D【解】由⎪⎩⎪⎨⎧=--='=--='023,02322x xy x z y xy y z yx 得⎩⎨⎧==0,0y x ⎩⎨⎧==1,1y x ⎩⎨⎧==3,0y x ⎩⎨⎧==0,3y x y z xx 2-='',y x z xy 223--='',x z yy 2-='',当)0,0(),(=y x 时,092<-=-B AC ,则)0,0(不是极值点;当)1,1(),(=y x 时,032>=-B AC 且02<-=A ,则)1,1(为极大点,应选)(D 。
(3)设函数)(x f 可导,且0)()(>'⋅x f x f ,则( ))(A )1()1(->f f 。
)(B )1()1(-<f f 。
)(C |)1(||)1(|->f f 。
)(D |)1(||)1(|-<f f 。
【答案】)(C 【解】若0)(>x f ,则0)(>'x f ,从而0)1()1(>->f f ;若0)(<x f ,则0)(<'x f ,从而0)1()1(<-<f f ,故|)1(||)1(|->f f ,应选)(C 。
2017年考研数学三真题及答案解析

2017全国研究生入学考试考研数学三试题本试卷满分150,考试时间180分钟一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上.(1)若函数0,(),0,x f x b x >=⎪≤⎩在0x =,处连续,则( )(A )12ab =(B )12ab =-(C )0ab =(D )2ab =(2)二元函数(3)z xy x y =--的极值点是( ) (A )(0,0)(B )(0,3)(C )(3,0)(D )(1,1)(3)设函数()f x 可导,且()()0f x f x '>,则( ) (A )(1)(1)f f >- (B )(1)(1)f f <-(C )(1)(1)f f >- (D )(1)(1)f f <-(4)设级数211sin ln 1n k nn ∞=⎡⎤⎛⎫-- ⎪⎢⎥⎝⎭⎣⎦∑收敛,则k =( ) (A )1(B )2(C )1-(D )2-(5)设α是n 维单位列向量,E 为n 阶单位矩阵,则 (A )TE αα-不可逆 (B )TE αα+不可逆(C )2T E αα+不可逆(D )2TE αα-不可逆(6)设矩阵200021001A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,210020001B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,100020002C ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则 (A )A 与C 相似,B 与C 相似(B )A 与C 相似,B 与C 不相似 (C )A 与C 不相似,B 与C 相似(D )A 与C 不相似,B 与C 不相似(7)设,,A B C 为三个随机事件,且A 与C 相互独立,B 与C 相互独立,则A B ⋃与C 相互独立的充要条件是(A )A 与B 相互独立(B )A 与B 互不相容(C )AB 与C 相互独立(D )AB 与C 互不相容(8)设12,(2)n X X X n ≥为来自总体(,1)N μ的简单随机样本,记11ni i X X n ==∑,则下列结论中不正确的是 (A )21()nii Xμ=-∑服从2χ分布(B )212()n X X -服从2χ分布(C )21()nii XX =-∑服从2χ分布(D )2()n X μ-服从2χ分布二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上.(9)3(sin x dx ππ-=⎰_______。
2017考研数学三真题及答案

2017考研数学三真题及答案一、选择题 1—8小题.每小题4分,共32分.1.若函数0(),0x f x b x >=⎪≤⎩在0x =处连续,则 (A )12ab =(B )12ab =-(C )0ab =(D )2ab =【详解】0001112lim ()lim lim 2x x x xf x ax ax a +++→→→-===,0lim ()(0)x f x b f -→==,要使函数在0x =处连续,必须满足1122b ab a =⇒=.所以应该选(A ) 2.二元函数(3)z xy x y =--的极值点是( )(A )(0,0) (B )03(,) (C )30(,) (D )11(,)【详解】2(3)32zy x y xy y xy y x∂=---=--∂,232z x x xy y ∂=--∂,2222222,2,32z z z zy x x x y x y y x∂∂∂∂=-=-==-∂∂∂∂∂∂ 解方程组22320320z y xy y x z x x xy y∂⎧=--=⎪∂⎪⎨∂⎪=--=∂⎪⎩,得四个驻点.对每个驻点验证2AC B -,发现只有在点11(,)处满足230AC B -=>,且20A C ==-<,所以11(,)为函数的极大值点,所以应该选(D )3.设函数()f x 是可导函数,且满足()()0f x f x '>,则(A )(1)(1)f f >- (B )11()()f f <- (C )11()()f f >- (D )11()()f f <- 【详解】设2()(())g x f x =,则()2()()0g x f x f x ''=>,也就是()2()f x 是单调增加函数.也就得到()()22(1)(1)(1)(1)f f f f >-⇒>-,所以应该选(C ) 4. 若级数211sin ln(1)n k n n ∞=⎡⎤--⎢⎥⎣⎦∑收敛,则k =( )(A )1 (B )2 (C )1- (D )2-【详解】iv n →∞时22221111111111sin ln(1)(1)22k k k o k o n n n n n n n n n ⎛⎫⎛⎫⎛⎫⎛⎫--=---+=++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 显然当且仅当(1)0k +=,也就是1k =-时,级数的一般项是关于1n的二阶无穷小,级数收敛,从而选择(C ).5.设α为n 单位列向量,E 为n 阶单位矩阵,则(A )T E αα-不可逆 (B )TE αα+不可逆 (C )2T E αα+不可逆 (D )2TE αα-不可逆【详解】矩阵Tαα的特征值为1和1n -个0,从而,,2,2TTTTE E E E αααααααα-+-+的特征值分别为0,1,1,1L ;2,1,1,,1L ;1,1,1,,1-L ;3,1,1,,1L .显然只有TE αα-存在零特征值,所以不可逆,应该选(A ).6.已知矩阵200021001A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,210020001B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,100020002C ⎛⎫⎪= ⎪ ⎪⎝⎭,则(A ),A C 相似,,B C 相似 (B ),A C 相似,,B C 不相似 (C ),A C 不相似,,B C 相似 (D ),A C 不相似,,B C 不相似【详解】矩阵,A B 的特征值都是1232,1λλλ===.是否可对解化,只需要关心2λ=的情况.对于矩阵A ,0002001001E A ⎛⎫⎪-=- ⎪ ⎪⎝⎭,秩等于1 ,也就是矩阵A 属于特征值2λ=存在两个线性无关的特征向量,也就是可以对角化,也就是~A C .对于矩阵B ,010*******E B -⎛⎫ ⎪-= ⎪ ⎪⎝⎭,秩等于2 ,也就是矩阵A 属于特征值2λ=只有一个线性无关的特征向量,也就是不可以对角化,当然,B C 不相似故选择(B ).7.设,A B ,C 是三个随机事件,且,A C 相互独立,,B C 相互独立,则A B U 与C 相互独立的充分必要条件是( )(A ),A B 相互独立 (B ),A B 互不相容(C ),AB C 相互独立 (D ),AB C 互不相容 【详解】(())()()()()()()()()()P A B C P AC AB P AC P BC P ABC P A P C P B P C P ABC =+=+-=+-U()()(()()())()()()()()()()P A B P C P A P B P AB P C P A P C P B P C P AB P C =+-=+-U显然,A B U 与C 相互独立的充分必要条件是()()()P ABC P AB P C =,所以选择(C ).8.设12,,,(2)n X X X n ≥L 为来自正态总体(,1)N μ的简单随机样本,若11ni i X X n ==∑,则下列结论中不正确的是( )(A )21()nii Xμ=-∑服从2χ分布 (B )()212n X X -服从2χ分布(C )21()nii XX =-∑服从2χ分布 (D )2()n X μ-服从2χ分布解:(1)显然22()~(0,1)()~(1),1,2,i i X N X i n μμχ-⇒-=L 且相互独立,所以21()nii Xμ=-∑服从2()n χ分布,也就是(A )结论是正确的;(2)222221(1)()(1)~(1)nii n S XX n S n χσ=--=-=-∑,所以(C )结论也是正确的;(3)注意221~(,)()~(0,1)()~(1)X N X N n X nμμμχ-⇒-,所以(D )结论也是正确的;(4)对于选项(B ):22111()~(0,2)~(0,1)()~(1)2n n X X N N X X χ-⇒⇒-,所以(B )结论是错误的,应该选择(B )二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) 9.3(sin x dx ππ-=⎰ .解:由对称性知33(sin22x dx ππππ-+==⎰⎰.10.差分方程122tt t y y +-=的通解为 .【详解】齐次差分方程120t t y y +-=的通解为2xy C =;设122t t t y y +-=的特解为2tt y at =,代入方程,得12a =; 所以差分方程122t t t y y +-=的通解为12 2.2tt y C t =+11.设生产某产品的平均成本()1QC Q e -=+,其中产量为Q ,则边际成本为 .【详解】答案为1(1)QQ e -+-.平均成本()1QC Q e-=+,则总成本为()()QC Q QC Q Q Qe-==+,从而边际成本为()1(1).Q C Q Q e -'=+-12.设函数(,)f x y 具有一阶连续的偏导数,且已知(,)(1)yydf x y ye dx x y e dy =++,(0,0)0f =,则(,)f x y =【详解】(,)(1)()yyydf x y ye dx x y e dy d xye =++=,所以(,)yf x y xye C =+,由(0,0)0f =,得0C =,所以(,)y f x y xye =.13.设矩阵101112011A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,123,,ααα为线性无关的三维列向量,则向量组123,,A A A ααα的秩为 .【详解】对矩阵进行初等变换101101101112011011011011000A ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,知矩阵A 的秩为2,由于123,,ααα为线性无关,所以向量组123,,A A A ααα的秩为2.14.设随机变量X 的概率分布为{}122P X =-=,{}1P X a ==,{}3P X b ==,若0EX =,则DX = .【详解】显然由概率分布的性质,知112a b ++= 12133102EX a b a b =-⨯+⨯+⨯=+-=,解得11,44a b ==29292EX a b =++=,229()2DX EX E X =-=.三、解答题15.(本题满分10分)求极限0limt x dt +→【详解】令x t u -=,则,t x u dt du =-=-,xt x u dt du -=⎰⎰00002limlim limlim 33t x u u x x x x x dt e du du ++++---→→→→==== 16.(本题满分10分)计算积分3242(1)Dy dxdy x y ++⎰⎰,其中D是第一象限中以曲线y =x 轴为边界的无界区域.【详解】33242242002424200220(1)(1)1(1)4(1)1111411282Dy y dxdy dx dy x y x y d x y dx x y dx x x π+∞+∞+∞=++++++=++⎛⎛⎫=-=- ⎪ ++⎝⎭⎝⎭⎰⎰⎰⎰⎰17.(本题满分10分) 求21limln 1nn k k k n n →∞=⎛⎫+ ⎪⎝⎭∑ 【详解】由定积分的定义120111201lim ln 1lim ln 1ln(1)11ln(1)24nn n n k k k k k k x x dx n n n n n x dx →∞→∞==⎛⎫⎛⎫+=+=+ ⎪ ⎪⎝⎭⎝⎭=+=∑∑⎰⎰18.(本题满分10分) 已知方程11ln(1)k x x-=+在区间(0,1)内有实根,确定常数k 的取值范围.【详解】设11(),(0,1)ln(1)f x x x x=-∈+,则22222211(1)ln (1)()(1)ln (1)(1)ln (1)x x x f x x x x x x x ++-'=-+=++++令22()(1)ln (1)g x x x x =++-,则2(0)0,(1)2ln 21g g ==-2()ln (1)2ln(1)2,(0)0g x x x x g ''=+-+-=2(ln(1))()0,(0,1)1x x g x x x+-''=<∈+,所以()g x '在(0,1)上单调减少,由于(0)0g '=,所以当(0,1)x ∈时,()0)0g x g ''<=,也就是()g x ()g x '在(0,1)上单调减少,当(0,1)x ∈时,()(0)0g x g <=,进一步得到当(0,1)x ∈时,()0f x '<,也就是()f x 在(0,1)上单调减少.00011ln(1)1lim ()lim lim ln(1)ln(1)2x x x x x f x x x x x +++→→→⎛⎫-+=-== ⎪++⎝⎭,1(1)1ln 2f =-,也就是得到111ln 22k -<<. 19.(本题满分10分)设011111,0,()(1,2,3),1n n n a a a na a n n +-===+=+L ,()S x 为幂级数0n n n a x ∞=∑的和函数(1)证明nn n a x∞=∑的收敛半径不小于1.(2)证明(1)()()0((1,1))x S x xS x x '--=∈-,并求出和函数的表达式. 【详解】(1)由条件11111()(1)1n n n n n n a na a n a na a n +-+-=+⇒+=++ 也就得到11(1)()()n n n n n a a a a +-+-=--,也就得到111,1,2,1n n n n a a n a a n +--=-=-+L1112110112101(1)(1)!n n n n n n n n n n n a a a a a a a a a a a a a a a a n ++--------=⨯⨯⨯=-----+L也就得到111(1),1,2,(1)!n n n a a n n ++-=-=+L111121121()()()(1)!nk n n n n n k a a a a a a a a k +++-==-+-++-+=-∑Llim1n n n ρ=≤≤=,所以收敛半径1R ≥ (2)所以对于幂级数nn n a x∞=∑, 由和函数的性质,可得11()n nn S x na x∞-='=∑,所以11111101111111(1)()(1)(1)((1))()n n nn n n n n n nnn n n n nn n n nn n n n n n n n x S x x na xna xna x n a x na x a n a na x a x a xx a x xS x ∞∞∞--===∞∞+==∞+=∞∞∞+-==='-=-=-=+-=++-====∑∑∑∑∑∑∑∑∑也就是有(1)()()0((1,1))x S x xS x x '--=∈-.解微分方程(1)()()0x S x xS x '--=,得()1xCe S x x -=-,由于0(0)1S a ==,得1C =所以()1xe S x x-=-.20.(本题满分11分)设三阶矩阵()123,,A ααα=有三个不同的特征值,且3122.ααα=+ (1)证明:()2r A =;(2)若123,βααα=+,求方程组Ax β=的通解.【详解】(1)证明:因为矩阵有三个不同的特征值,所以A 是非零矩阵,也就是()1r A ≥. 假若()1r A =时,则0r =是矩阵的二重特征值,与条件不符合,所以有()2r A ≥,又因为31220ααα-+=,也就是123,,ααα线性相关,()3r A <,也就只有()2r A =.(2)因为()2r A =,所以0Ax =的基础解系中只有一个线性无关的解向量.由于31220ααα-+=,所以基础解系为121x ⎛⎫⎪= ⎪ ⎪-⎝⎭;又由123,βααα=+,得非齐次方程组Ax β=的特解可取为111⎛⎫ ⎪⎪ ⎪⎝⎭;方程组Ax β=的通解为112111x k ⎛⎫⎛⎫ ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,其中k 为任意常数.21.(本题满分11分)设二次型222123123121323(,,)2282f x x x x x ax x x x x x x =-++-+在正交变换x Qy =下的标准形为221122y y λλ+,求a 的值及一个正交矩阵Q .【详解】二次型矩阵21411141A a -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭因为二次型的标准形为221122y y λλ+.也就说明矩阵A 有零特征值,所以0A =,故 2.a =114111(3)(6)412E A λλλλλλλ---=+=+---令0E A λ-=得矩阵的特征值为1233,6,0λλλ=-==.通过分别解方程组()0i E A x λ-=得矩阵的属于特征值13λ=-的特征向量1111ξ⎛⎫⎪=-⎪⎪⎭,属于特征值特征值26λ=的特征向量2101ξ-⎛⎫⎪=⎪⎪⎭,30λ=的特征向量3121ξ⎛⎫⎪=⎪⎪⎭, 所以()123,,0Q ξξξ⎛ == ⎝为所求正交矩阵. 22.(本题满分11分)设随机变量,X Y 相互独立,且X 的概率分布为{}10{2}2P X P X ====,Y 的概率密度为2,01()0,y y f y <<⎧=⎨⎩其他.(1)求概率P Y EY ≤();(2)求Z X Y =+的概率密度. 【详解】(1)1202()2.3Y EY yf y dy y dy +∞-∞===⎰⎰所以{}230242.39P Y EY P Y ydy ⎧⎫≤=≤==⎨⎬⎩⎭⎰(2)Z X Y =+的分布函数为{}{}{}{}{}{}{}[](),0,20,2,211{}2221()(2)2Z Y Y F z P Z z P X Y z P X Y z X P X Y z X P X Y z P X Y z P Y z P Y z F z F z =≤=+≤=+≤=++≤===≤+=≤-=≤+≤-=+-故Z X Y =+的概率密度为[]1()()()(2)2,012,230,Z Z f z F z f z f z z z z z '==+-≤≤⎧⎪=-≤<⎨⎪⎩其他 23.(本题满分11分)某工程师为了解一台天平的精度,用该天平对一物体的质量做了n 次测量,该物体的质量μ是已知的,设n 次测量结果12,,,n X X X L 相互独立且均服从正态分布2(,).N μσ该工程师记录的是n 次测量的绝对误差,(1,2,,)i i Z X i n μ=-=L ,利用12,,,n Z Z Z L 估计参数σ.(1)求i Z 的概率密度;(2)利用一阶矩求σ的矩估计量; (3)求参数σ最大似然估计量. 【详解】(1)先求i Z 的分布函数为{}{}()i Z i i X z F z P Z z P X z P μμσσ⎧-⎫=≤=-≤=≤⎨⎬⎩⎭当0z <时,显然()0Z F z =;当0z ≥时,{}{}()21i Z i i X z zF z P Z z P X z P μμσσσ⎧-⎫⎛⎫=≤=-≤=≤=Φ-⎨⎬ ⎪⎝⎭⎩⎭; 所以i Z的概率密度为222,0()()0,0z Z Z z f z F z z σ-⎧≥'==<⎩.(2)数学期望2220()z i EZ z f z dz ze dz σ-+∞+∞===⎰⎰令11n i i EZ Z Z n ===∑,解得σ的矩估计量122ni i Z nσ===∑.(3)设12,,,n Z Z Z L 的观测值为12,,,n z z z L .当0,1,2,i z i n >=L 时似然函数为221121()(,)ni i n nz i i L f z σσσ=-=∑==∏,取对数得:2211ln ()ln 2ln(2)ln 22nii n L n n zσπσσ==---∑令231ln ()10n i i d L n z d σσσσ==-+=∑,得参数σ最大似然估计量为σ=。
2017年考研数学三真题与解析

1 2017年考研数学三真题一、选择题1—8小题.每小题4分,共32分.1.若函数1cos ,0(),0xx f x ax b x ì->ï=íï£î在0x =处连续,则(A )12ab =(B )12ab =-(C )0ab =(D )2ab =【详解】00011cos 12lim ()lim lim 2x x x x x f x ax ax a+++®®®-===,0lim ()(0)x f x b f -®==,要使函数在0x =处连续,必须满足1122b ab a =Þ=.所以应该选(A )2.二元函数(3)z xy x y =--的极值点是()(A )(0,0)(B )03(,)(C )30(,)(D )11(,)【详解】2(3)32z y x y xy y xy y x ¶=---=--¶,232z x x xy y¶=--¶,2222222,2,32z z z z y x xxyx yy x¶¶¶¶=-=-==-¶¶¶¶¶¶解方程组22320320z y xy y xz x x xy y¶ì=--=ï¶ïí¶ï=--=¶ïî,得四个驻点.对每个驻点验证2AC B -,发现只有在点11(,)处满足230AC B -=>,且20A C ==-<,所以11(,)为函数的极大值点,所以应该选(D )3.设函数()f x 是可导函数,且满足()()0f x f x ¢>,则(A )(1)(1)f f >-(B )11()()f f <-(C )11()()f f >-(D )11()()f f <-【详解】设2()(())g x f x =,则()2()()0g x f x f x ¢¢=>,也就是()2()f x 是单调增加函数.也就得到()()22(1)(1)(1)(1)f f f f >-Þ>-,所以应该选(C )4.若级数211sin ln(1)n k nn ¥=éù--êúëûå收敛,则k =()(A )1(B )2(C )1-(D )2-【详解】iv n ®¥时22221111111111sin ln(1)(1)22k k k o k o n n n n n n n n n æöæöæöæö--=---+=++ç÷ç÷ç÷ç÷ç÷èøèøèøèø显然当且仅当(1)0k +=,也就是1k =-时,级数的一般项是关于1n的二阶无穷小,级数收敛,从而选择(C ).5.设a 为n 单位列向量,E 为n 阶单位矩阵,则阶单位矩阵,则(A )T E aa -不可逆不可逆 (B )TE aa +不可逆不可逆(C )2TE aa +不可逆不可逆 (D )2TE aa -不可逆不可逆【详解】矩阵Taa 的特征值为1和1n -个0,从而,,2,2T T T TE E E E aa aa aa aa -+-+的特征值分别为0,1,1,1 ;2,1,1,,1 ;1,1,1,1,1,1,,,1- ;3,1,1,,1 .显然只有TE aa -存在零特征值,所以不可逆,应该选(A ).6.已知矩阵200021001A æöç÷=ç÷ç÷èø,210020001B æöç÷=ç÷ç÷èø,100020002C æöç÷=ç÷ç÷èø,则,则 (A ),A C 相似,,B C 相似相似 (B ),A C 相似,,B C 不相似不相似 (C ),A C 不相似,,B C 相似相似 (D ),A C 不相似,,B C不相似不相似【详解】矩阵,A B 的特征值都是1232,1l l l ===.是否可对解化,只需要关心2l =的情况.的情况.对于矩阵A ,0002001001E A æöç÷-=-ç÷ç÷èø,秩等于1 ,也就是矩阵A 属于特征值2l =存在两个线性无关的特征向量,也就是可以对角化,也就是~A C .对于矩阵B ,010*******E B -æöç÷-=ç÷ç÷èø,秩等于2 ,也就是矩阵A 属于特征值2l =只有一个线性无关的特征向量,也就是不可以对角化,当然,B C 不相似故选择(B ).7.设,A B ,C 是三个随机事件,且,A C 相互独立,,B C 相互独立,则A B 与C 相互独立的充分必要条件是(条件是( )(A ),A B 相互独立相互独立 (B ),A B 互不相容互不相容 (C ),AB C 相互独立相互独立 (D ),AB C 互不相容互不相容 【详解】【详解】(())()()()()()()()()()P A B C P AC AB P AC P BC P ABC P A P C P B P C P ABC =+=+-=+-()()(()()())()()()()()()()P A B P C P A P B P AB P C P A P C P B P C P AB P C =+-=+-显然,A B 与C 相互独立的充分必要条件是()()()P ABC P AB P C =,所以选择(C ). 8.设12,,,(2)n X X X n ³ 为来自正态总体(,1)N m 的简单随机样本,若11n i i X X n ==å,则下列结论中不正确的是(正确的是( )(A )21()ni i X m =-å服从2c 分布分布 (B )()212nX X -服从2c 分布分布 (C )21()ni i X X =-å服从2c 分布分布(D )2()n X m -服从2c 分布分布 解:(1)显然22()~(0,1(0,1))()~(1(1),),1,2,iiX N X i n m m c -Þ-= 且相互独立,所以21()nii X m =-å服从2()n c 分布,也就是(A )结论是正确的;)结论是正确的;(2)222221(1)()(1)~(1)ni i n S X X n S n c s=--=-=-å,所以(C )结论也是正确的;)结论也是正确的;(3)注意221~(,)()~(0,1)()~(1)X N n X N n X nm m m c Þ-Þ-,所以(D )结论也是正确的;)结论也是正确的;(4)对于选项(B ):221111()~(0,2)~(0,1)()~(1)22n n n X X X X N N X X c --ÞÞ-,所以(B )结论是错误的,应该选择(B )二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)把答案填在题中横线上) 9.322(sin )x x dx ppp -+-=ò.解:由对称性知332222(sin )22xx dxx dx ppppp p -+-=-=òò. 10.差分方程122tt t y y +-=的通解为的通解为 . 【详解】齐次差分方程120t t y y +-=的通解为2xy C =;设122t t tyy +-=的特解为2tty at =,代入方程,得12a =;所以差分方程122tt t y y +-=的通解为12 2.2t t y C t =+11.设生产某产品的平均成本()1QC Q e-=+,其中产量为Q ,则边际成本为,则边际成本为 . 【详解】答案为1(1)QQ e -+-.平均成本()1QC Q e-=+,则总成本为()()QC Q QC Q Q Qe-==+,从而边际成本为,从而边际成本为()1(1).QC Q Q e -¢=+-12.设函数(,)f x y 具有一阶连续的偏导数,且已知(,)(1)y y df x y ye dx x y e dy =++,(0,0)0f =,则(,)f x y =【详解】(,)(1)()yyydf x y ye dx x y e dy d xye =++=,所以(,)yf x y xye C =+,由(0,0)0f =,得0C =,所以(,)yf x y xye =.13.设矩阵101112011A æöç÷=ç÷ç÷èø,123,,a a a 为线性无关的三维列向量,则向量组123,,A A A a a a 的秩为 .【详解】对矩阵进行初等变换101101101112011011011011000A æöæöæöç÷ç÷ç÷=®®ç÷ç÷ç÷ç÷ç÷ç÷èøèøèø,知矩阵A 的秩为2,由于123,,a a a 为线性无关,所以向量组123,,A A A a a a 的秩为2.14.设随机变量X 的概率分布为{}122P X =-=,{}1P X a ==,{}3P X b ==,若0EX =,则DX = .【详解】显然由概率分布的性质,知112a b ++= 12133102EX a b a b =-´+´+´=+-=,解得11,44a b ==29292EX a b =++=,229()2DX EX E X =-=.三、解答题三、解答题15.(本题满分10分)分)求极限03lim xtx x te dtx+®-ò【详解】令x t u -=,则,t x u dt du =-=-,xxtx ux te dtuedu --=òò3332limlim lim lim 332xxxtxuuxx x x x x te dt eue du ue du xexxxx ++++---®®®®-====òòò计算积分3242(1)Dydxdy xy ++òò,其中D 是第一象限中以曲线y x =与x 轴为边界的无界区域.轴为边界的无界区域.【详解】【详解】33242242002424200220(1)(1)1(1)4(1)11121411282xDxyydxdy dx dy x y x y d x y dx x y dx x x p +¥+¥+¥=++++++=++æöæö=-=-ç÷ç÷ç÷++èøèøòòòòòòò 17.(本题满分10分)分)求21lim ln 1nn k k k n n ®¥=æö+ç÷èøå 【详解】由定积分的定义【详解】由定积分的定义 120111201lim ln 1lim ln 1ln(1)11ln(1)24nn n n k k k k k k x x dx n n n n n x dx ®¥®¥==æöæö+=+=+ç÷ç÷èøèø=+=ååòò18.(本题满分10分)分) 已知方程11ln(1)k x x -=+在区间(0,1)内有实根,确定常数k 的取值范围.的取值范围.【详解】设11(),(0,1)ln(1)f x x x x =-Î+,则,则22222211(1)ln (1)()(1)ln (1)(1)ln (1)x x x f x x x x x x x ++-¢=-+=++++ 令22()(1)ln (1)g x x x x =++-,则2(0)0,(1)2ln 21g g ==-2()ln (1)2ln(1)2,(0)0g x x x x g ¢¢=+-+-= 2(ln(1))()0,(0,1)1x x g x x x+-¢¢=<Î+,所以()g x ¢在(0,1)上单调减少,上单调减少,由于(0)0g ¢=,所以当(0,1)x Î时,()0)0g x g ¢¢<=,也就是()g x ()g x ¢在(0,1)上单调减少,当(0,1)x Î时,()(0)0g x g <=,进一步得到当(0,1)x Î时,()0f x ¢<,也就是()f x 在(0,1)上单调减少.上单调减少.0011ln(1)1lim()lim lim ln(1)ln(1)2x x xx x f x x x x x +++®®®æö-+=-==ç÷++èø,1(1)1ln 2f =-,也就是得到111ln 22k -<<.设011111,0,()(1,2,3),1n n n a a a na a n n +-===+=+ ,()S x 为幂级数nnn a x ¥=å的和函数的和函数(1)证明nn n a x ¥=å的收敛半径不小于1.(2)证明(1)()()0((1,1))x S x xS x x ¢--=Î-,并求出和函数的表达式.,并求出和函数的表达式. 【详解】(1)由条件11111()(1)1n n n n n n a na a n a na a n +-+-=+Þ+=++也就得到11(1)()()n n n n n a a a a +-+-=--,也就得到111,1,2,1n nn n aa n a a n +--=-=-+1112110112101(1)(1)!n n n n n n n n n n n a a a a a a a a a a a a a a a a n ++--------=´´´=-----+ 也就得到111(1),1,2,(1)!nn n aa n n ++-=-=+111121121()()()(1)!nk n n nnn k aaa aa aa ak +++-==-+-++-+=-å111lim lim lim 12!3!!nnnn n n n a e n r ®¥®¥®¥=£+++£= ,所以收敛半径1R ³(2)所以对于幂级数nnn a x ¥=å, 由和函数的性质,可得11()n n n S x na x¥-=¢=å,所以,所以111111011111110(1)()(1)(1)((1))()n n nn n nn n n n n n nn n nn n n nn nn nnn n n x S x x na xna xna xn a x na x a n a na xa x a xx a x xS x ¥¥¥--===¥¥+====¥+=¥¥¥+-===¢-=-=-=+-=++-====ååååååååå也就是有(1)()()0((1,1))x S x xS x x ¢--=Î-.解微分方程(1)()()0x S x xS x ¢--=,得()1xCeS x x-=-,由于0(0)1S a ==,得1C = 所以()1xeS x x-=-.设三阶矩阵()123,,A a a a =有三个不同的特征值,且3122.a a a =+(1)证明:()2r A =;(2)若123,b a a a =+,求方程组Ax b =的通解.的通解.【详解】(1)证明:因为矩阵有三个不同的特征值,所以A 是非零矩阵,也就是()1r A ³.假若()1r A =时,则0r =是矩阵的二重特征值,与条件不符合,所以有()2r A ³,又因为31220a a a -+=,也就是123,,a a a 线性相关,()3r A <,也就只有()2r A =.(2)因为()2r A =,所以0Ax =的基础解系中只有一个线性无关的解向量.由于31220a a a -+=,所以基础解系为121x æöç÷=ç÷ç÷-èø;又由123,b a a a =+,得非齐次方程组Ax b =的特解可取为111æöç÷ç÷ç÷èø;方程组Ax b =的通解为112111x k æöæöç÷ç÷=+ç÷ç÷ç÷ç÷-èøèø,其中k 为任意常数.为任意常数.21.(本题满分11分)分) 设二次型222123123121323(,,)2282f x x x x x a x x x x x x x =-++-+在正交变换x Qy =下的标准形为221122y y l l +,求a 的值及一个正交矩阵Q .【详解】二次型矩阵21411141Aa -æöç÷=-ç÷-èø因为二次型的标准形为221122y y l l +.也就说明矩阵A 有零特征值,所以0A =,故 2.a =114111(3)(6)412E A l l l l l l l ---=+=+--- 令0E A l -=得矩阵的特征值为1233,6,0l l l =-==.通过分别解方程组()0i E A x l -=得矩阵的属于特征值13l =-的特征向量111131x æöç÷=-ç÷ç÷èø,属于特征值特征值26l =的特征向量211021x -æöç÷=ç÷èø,30l =的特征向量311261x æöç÷=÷çèø, 所以()12311132612,,036111326Q x x x æö-ç÷ç÷ç÷==-ç÷ç÷ç÷ç÷èø为所求正交矩阵.为所求正交矩阵. 22.(本题满分11分)分)设随机变量,X Y 相互独立,且X 的概率分布为{}10{2}2P X P X ====,Y 的概率密度为2,01()0,y y f y <<ì=íî其他.(1)求概率P Y EY £(); (2)求Z X Y =+的概率密度.的概率密度.【详解】(1)1202()2.3Y EY yf y dy y dy+¥-¥===òò所以{}230242.39P Y EYP Y ydy ìü£=£==íýîþò(2)Z X Y =+的分布函数为的分布函数为{}{}{}{}{}{}{}[](),0,20,2,211{}2221()(2)2Z YY F z P Z z P X Y z P X Y z X P X Y z X P X Y z P X Y z P Y z P Y z F z F z =£=+£=+£=++£===£+=£-=£+£-=+-故Z X Y =+的概率密度为的概率密度为[]1()()()(2)2,012,230,ZZf z F z f z f z z z z z ¢==+-££ìï=-£<íïî其他23.(本题满分11分)分)某工程师为了解一台天平的精度,用该天平对一物体的质量做了n 次测量,该物体的质量m 是已知的,设n 次测量结果12,,,n X X X 相互独立且均服从正态分布2(,).N m s 该工程师记录的是n 次测量的绝对误差,(1,2,,)i i Z X i n m =-= ,利用12,,,n Z Z Z 估计参数s . (1)求i Z 的概率密度;的概率密度;(2)利用一阶矩求s 的矩估计量;的矩估计量; (3)求参数s 最大似然估计量.最大似然估计量. 【详解】(1)先求i Z 的分布函数为的分布函数为{}{}()i Z i i X z F z P Z z P X z P m m ss ì-ü=£=-£=£íýîþ当0z <时,显然()0Z F z =;当0z ³时,{}{}()21i Z i i X z z F z P Z z P X z P m m s s sì-üæö=£=-£=£=F -íýç÷èøîþ; 所以i Z 的概率密度为2222,0()()20,0z Z Z e z f z F z z s ps-ì³ï¢==íï<î.(2)数学期望22222()22z iEZ z f z dzze dzss psp-+¥+¥===òò, 令11ni i EZ Z Z n ===å,解得s 的矩估计量12222ni i Z Z np ps ===å.(3)设12,,,n Z Z Z 的观测值为12,,,n z z z .当0,1,2,i z i n >= 时 似然函数为2211212()(,)(2)n ii nnz i n i L f z ess s ps =-=å==Õ,取对数得:2211ln ()ln 2ln(2)ln 22ni i n L n n z s p s s ==---å令231ln ()10ni i d L n z d s s s s ==-+=å,得参数s 最大似然估计量为211ni i z n s ==å.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年全国硕士研究生入学统一考试数学三真题及答案解析一、选择题(本题共8小题,每小题4分,满分32分)(1)若函数⎪⎩⎪⎨⎧≤>-=0,,0,cos 1)(x b x axxx f 在0=x 处连续,则( ) )(A 21=ab 。
)(B 21-=ab 。
)(C 0=ab 。
D (2=ab 。
【答案】)(A【解】aax x f x 21cos 1lim)00(0=-=++→,b f f =-=)00()0(,因为)(x f 在0=x 处连续,所以)00()0()00(-==+f f f ,从而21=ab ,应选)(A 。
(2)二原函数)3(y x xy z--=的极值点为( ))(A )0,0(。
)(B )3,0(。
)(C )0,3(。
)(D )1,1(。
【答案】)(D【解】由⎪⎩⎪⎨⎧=--='=--='023,02322x xy x z y xy y z yx 得⎩⎨⎧==0,0y x ⎩⎨⎧==1,1y x ⎩⎨⎧==3,0y x ⎩⎨⎧==0,3y x y z xx 2-='',y x z xy 223--='',x z yy 2-='',当)0,0(),(=y x 时,092<-=-B AC ,则)0,0(不是极值点;当)1,1(),(=y x 时,032>=-B AC 且02<-=A ,则)1,1(为极大点,应选)(D 。
(3)设函数)(x f 可导,且0)()(>'⋅x f x f ,则( ))(A )1()1(->f f 。
)(B )1()1(-<f f 。
)(C |)1(||)1(|->f f 。
)(D |)1(||)1(|-<f f 。
【答案】)(C 【解】若0)(>x f ,则0)(>'x f ,从而0)1()1(>->f f ;若0)(<x f ,则0)(<'x f ,从而0)1()1(<-<f f ,故|)1(||)1(|->f f ,应选)(C 。
(4)若级数∑∞=--2)]11ln(1[sin n n k n 收敛,则=k ( ))(A 1。
)(B 2。
)(C 1-。
)(D 2-。
【答案】)(C 【解】)1(6111sin33no n n n +-=, 由)(2)1ln(22x o x x x +-=+得)1(211)11ln(22no n n n +--=-, 于是)1(21)1()11ln(1sin22no n k n k n k n +++=--, 由∑∞=--2)]11ln(1[sinn nk n 收敛得1-=k ,应选)(C 。
(5)设α为n 维单位列向量,E 为n 阶单位矩阵,则( ))(A T E αα-不可逆。
)(B T E αα+不可逆。
)(C T E αα2+不可逆。
)(D T E αα2-不可逆。
【答案】)(A【解】令T A αα=,A A =2,令X AX λ=,由0)()(22=-=-X X A A λλ得02=-λλ,0=λ或1=λ,因为n T A tr λλαα++===Λ11)(得A 的特征值为1,011====-n n λλλΛ,T E αα-的特征值为0,111====-n n λλλΛ,从而0||=-T E αα,即T Eαα-不可逆,应选)(A 。
(6)已知矩阵⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=200020001,100020012,100120002C B A ,则 ( ))(A A 与C 相似,B 与C 相似。
)(B A 与C 相似,B 与C 不相似。
)(C A 与C 不相似,B 与C 相似。
)(D A 与C 不相似,B 与C 不相似。
【答案】)(B【解】C B A ,,的特征值为1,2321===λλλ,由⎪⎪⎪⎭⎫ ⎝⎛-=-1001000002A E 得1)2(=-A E r ,则A 可相似对角化,从而C A ~;由⎪⎪⎪⎭⎫ ⎝⎛-=-1000000102B E 得2)2(=-B E r ,则B 不可相似对角化,从而B 与C A ,不相似,应选)(B 。
(7)设C B A ,,为三个随机事件,且A 与C 相互独立,B 与C 相互独立,则B A ⋃与C 相互独立的充分必要条件是( ))(A A 与B 相互独立。
)(B A 与B 互不相容。
)(C AB 与C 相互独立。
)(D AB 与C 互不相容。
【答案】)(C【解】)()()()(])[(ABC P BC P AC P BC AC P C B A P -+=+=+)()()()()(ABC P C P B P C P A P -+=, )()]()()([)()(C P AB P B P A P C P B A P -+=+)()()()()()(C P AB P C P B P B P A P -+=,B A ⋃与C 独立即)()(])[(C P B A P C B A P +=+的充分必要条件为)()()()()()()()()()()(C P AB P C P B P B P A P ABC P C P B P C P A P -+=-+,或)()()(C P AB P ABC P =,即AB 与C 独立,应选)(C 。
(8)设n X X X ,,,21Λ(2≥n )为来自总体)1,(μN 的简单随机样本,记∑==ni iX n X 11,则下列结论正确的是( ))(A ∑=-ni i X 12)(μ服从2χ分布。
)(B 21)(2X X n -服从2χ分布。
)(C ∑=-ni i X X 12)(服从2χ分布。
)(D 2)(μ-X n 服从2χ分布。
【答案】)(B【解】若总体),(~2σμN X ,则)(~)(12122n Xni iχμσ∑=-,)1(~)(12122--∑=n X Xni iχσ,因为总体)1,(~μN X ,所以)(~)(212n X ni i χμ∑=-,)1(~)(212--∑=n X X ni i χ,再由)1,(~nN X μ得)1,0(~)(1N X n nX μμ-=-,从而)1(~)(22χμ-X n ,不正确的是)(B ,应选)(B 。
二、填空题(本题共6小题,每小题4分,满分24分) (9)__________)(sin 223=-+⎰-dx x x πππ。
【答案】23π【解】dx x dx x dx x x ⎰⎰⎰-=-=-+--ππππππππ022222232)(sin2cos 2cos 2320222022sin ππππππ===⎰⎰=dt t dt t tx 。
(10)差分方程t t t y y 221=-+的通解为__________。
【答案】t tt C 2212+ 【解】021=-+t t y y 的通解为t t C y 2=;设t t t y y 221=-+的特解为t at y 2=*,代入得21=a , 故t t t y y 221=-+的通解为t t t t C y 2212+=。
(11)设生产某种产品的平均成本为Q e Q C -+=1)(,其中Q 为产量,则边际成本为____。
【答案】QeQ --+)1(1【解】平均成本为Q e QQ C Q C -+==1)()(,总成本为Q Qe Q Q C -+=)(,边际成本为 Q e Q Q C --+=')1(1)(。
(12)设函数),(y x f 具有一阶连续的偏导数,且dy e y x dx ye y x df y y )1(),(++=,0)0,0(=f ,则_______),(=y x f 。
【答案】yxye 【解】由)()1(),(y y y xye d dy e y x dx ye y x df =++=得C xye y x f y +=),(,再由0)0,0(=f 得0=C ,故y xye y x f =),(。
(13)矩阵⎪⎪⎪⎭⎫ ⎝⎛=110211101A ,321,,ααα为线性无关的三维列向量组,则向量组321,,αααA A A 的秩为________。
【答案】2【解】()321321,,),,(ααααααA A A A =,因为321,,ααα线性无关,所以()321,,ααα可逆,从而)()],,[(321A r A A A r =ααα,由⎪⎪⎪⎭⎫ ⎝⎛→000110101A 得2)(=A r ,故向量组321,,αααA A A 的秩为2。
(14)设随机变量X 的概率分布为b X P a X P X P =====-=}3{,}1{,21}2{,若0=EX ,则_________=DX。
【答案】29 【解】031=++-=b a EX,再由121=++b a 得41==b a ,2941341121)2(2222=⨯+⨯+⨯-=EX 。
三、解答题(15)(本题满分10分)求30limxdt e t x xt x ⎰-+→。
【解】⎰⎰⎰--=-==-xu xxux ut x xtdu e u edu eu dt e t x 0,则303030limlim limxdu e u xdu e u e xdt e t x xu x xux x xtx ⎰⎰⎰-+→-+→+→=⋅=-3223lim 0==-+→x e x x x 。
(16)(本题满分10分)计算积分dxdy y x y D ⎰⎰++2423)1(,其中D 是第一象限中曲线x y =与x 轴边界围成的无界区域。
【解】dy y x y dx dxdy y x y x D ⎰⎰⎰⎰++=++∞+024*******)1()1( dy y x y dx y d y x y dx x x ⎰⎰⎰⎰++=++=∞+∞+022202024220)1(21)()1(21 )21111(41)21111(410202022⎰⎰⎰+∞+∞+∞+-+=+-+=dx xdx x dx x x )211(8)2212(41])2()2(1121|[arctan 41020-=⋅-=+-=⎰+∞∞+πππx d x x 。
(17)(本题满分10分)求∑=∞→+nk n nknk12)1ln(lim。
【解】⎰∑∑+=+=+=∞→=∞→10112)1ln()1ln(1lim )1ln(lim dx x x n knk n n k n k n k n nk ndx x x x x x d x ⎰⎰++--+=+=10210210211)1(21|)1ln(21)()1ln(21 412ln 2121412ln 21)111(212ln 2110=-+-=++--=⎰dx x x 。