第14章 Matlab非线性优化问题
matlab解决非线性规划问题(凸优化问题)

matlab解决⾮线性规划问题(凸优化问题)当⽬标函数含有⾮线性函数或者含有⾮线性约束的时候该规划问题变为⾮线性规划问题,⾮线性规划问题的最优解不⼀定在定义域的边界,可能在定义域内部,这点与线性规划不同;例如:编写⽬标函数,定义放在⼀个m⽂件中;编写⾮线性约束条件函数矩阵,放在另⼀个m⽂件中;function f = optf(x);f = sum(x.^2)+8;function [g, h] = limf(x);g = [-x(1)^2+x(2)-x(3)^2x(1)+x(2)^2+x(3)^3-20]; %⾮线性不等式约束h = [-x(1)-x(2)^2+2x(2)+2*x(3)^2-3]; %⾮线性等式约束options = optimset('largescale','off');[x y] = fmincon('optf',rand(3,1),[],[],[],[],zeros(3,1),[],...'limf',options)输出为:最速下降法(求最⼩值):代码如下:function [f df] = detaf(x);f = x(1)^2+25*x(2)^2;df = [2*x(1)50*x(2)];clc,clear;x = [2;2];[f0 g] = detaf(x);while norm(g)>1e-6 %收敛条件为⼀阶导数趋近于0p = -g/norm(g);t = 1.0; %设置初始步长为1个单位f = detaf(x+t*p);while f>f0t = t/2;f = detaf(x+t*p);end %这⼀步很重要,为了保证最后收敛,保持f序列为⼀个单调递减的序列,否则很有可能在极值点两端来回震荡,最后⽆法收敛到最优值。
x = x+t*p;[f0,g] = detaf(x);endx,f0所得到的最优值为近似解。
MATLAB优化应用非线性规划

MATLAB优化应用非线性规划非线性规划是一类数学优化问题,其中目标函数和约束条件都是非线性的。
MATLAB作为一种强大的数值计算软件,提供了丰富的工具和函数,可以用于解决非线性规划问题。
本文将介绍如何使用MATLAB进行非线性规划的优化应用,并提供一个具体的案例来演示。
一、MATLAB中的非线性规划函数MATLAB提供了几个用于解决非线性规划问题的函数,其中最常用的是fmincon函数。
fmincon函数可以用于求解具有等式约束和不等式约束的非线性规划问题。
其基本语法如下:x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)其中,fun是目标函数,x0是变量的初始值,A和b是不等式约束的系数矩阵和右端向量,Aeq和beq是等式约束的系数矩阵和右端向量,lb和ub是变量的上下界,nonlcon是非线性约束函数,options是优化选项。
二、非线性规划的优化应用案例假设我们有一个工厂,需要生产两种产品A和B,目标是最大化利润。
产品A 和B的生产成本分别为c1和c2,售价分别为p1和p2。
同时,我们需要考虑两种资源的限制,分别是资源1和资源2。
资源1在生产产品A和B时的消耗分别为a11和a12,资源2的消耗分别为a21和a22。
此外,产品A和B的生产量有上下限限制。
我们可以建立以下数学模型来描述这个问题:目标函数:maximize profit = p1 * x1 + p2 * x2约束条件:c1 * x1 + c2 * x2 <= budgeta11 * x1 + a12 * x2 <= resource1a21 * x1 + a22 * x2 <= resource2x1 >= min_production_Ax2 >= min_production_Bx1 <= max_production_Ax2 <= max_production_B其中,x1和x2分别表示产品A和B的生产量,budget是预算,min_production_A和min_production_B是产品A和B的最小生产量,max_production_A和max_production_B是产品A和B的最大生产量。
MATLAB优化工具箱线性规划非线性规划

程序运行结果
输出: Optimization terminated successfully. optx =
25.0000 10.0000 funvalue = -190.0000 exitflag =
1
10
解释得出实际问题的解 当分别种植A、B两种作物为25亩、10亩时,预计共获得利润190(百元)。
< 0 该线性规划问题不可行或者linprog计算失败
8
例题的求解程序
模型: max 6x1+4x2 s.t. 2x1+5x2 ≤100
4x1+2x2 ≤120
Matlab求解程序:
A=[2 5;4 2]; b=[100 120]; f=-[6 4]; [optx ,funvalue,exitflag]=linprog(f,A,b,[],[],[0 0],[inf,inf])
14
fmincon示例
min
2 x12
3
x
2 2
4
x
2 3
x1 x2 x3 1000
s.t. x12
x
2 2
2x3
900
x
i
0i
1,2,3
求解步骤: ▪ (1)编写目标函数文件(这里文件名用myobjfun2.m) ▪ (2)编写约束条件函数文件(mymodelcons.m) ▪ (3)编写调用fmincon主程序(mymain2.m)
3
100
2
120
4
2
例题建模
典型的优化问题 三大要素:
▪ 目标:种植A,B两种作物获得最大利润 ▪ 决策:安排种植A,B两种作物各所少亩 ▪ 约束:肥料限制;种植土地面积限制 建立模型
Matlab中的非线性优化算法技巧

Matlab中的非线性优化算法技巧在数学和工程领域中,非线性优化是一个非常重要的问题。
它涉及到求解一个具有非线性约束条件的最优化问题。
Matlab作为一种强大的数值计算工具,为我们提供了多种非线性优化算法。
本文将探讨一些在Matlab中使用非线性优化算法时的一些技巧和经验。
首先,我们来了解一下什么是非线性优化。
简单来说,非线性优化是指在给定一组约束条件下,寻找使得目标函数达到最小或最大值的变量取值。
与线性优化问题不同,非线性优化问题中的目标函数和约束条件可以是非线性的。
这使得问题的求解变得更加复杂和困难。
在Matlab中,有多种非线性优化算法可供选择。
其中最常用的算法是Levenberg-Marquardt算法和拟牛顿算法。
Levenberg-Marquardt算法是一种迭代算法,通过不断近似目标函数的线性化形式来求解。
它在处理高度非线性的问题时表现出色。
拟牛顿算法则是一种基于梯度的优化算法,通过估计Hessian矩阵的逆来进行迭代优化。
它在处理大规模问题时效果比较好。
在使用这些算法时,我们需要注意一些技巧和经验。
首先,选择合适的初始点非常重要。
初始点的选取直接影响了算法的收敛性和求解效率。
通常情况下,我们可以通过采用随机化初始点的方法来增加算法的稳定性和鲁棒性。
其次,我们需要注意选择合适的迭代终止条件。
防止算法陷入无限循环是非常重要的。
通常我们可以根据目标函数值的变化幅度或者梯度的大小来判断算法是否收敛。
此外,合理设置迭代步长和学习率也是非常重要的。
过大的学习率可能导致算法发散,而过小的学习率可能导致收敛速度过慢。
此外,Matlab中还提供了一些辅助函数来帮助我们使用非线性优化算法。
其中最常用的是fmincon函数,它可以求解带约束条件的非线性优化问题。
我们可以通过设置输入参数来指定目标函数、约束条件、算法类型等。
此外,Matlab还提供了一些可视化函数,如plot函数和contour函数,可以方便我们观察目标函数的形状和初始点的选择。
最新matlab求解非线性优化问题

X = 0.5000 0.5000 fval =0.5000
非线性无约束优化问题
fminunc
使用格式与fminsearch类似: [x,fval]= fminunc(@f,x0)
其中f为待求最值的向量函数,x0为搜索过程开始时自 变量的初始值。
例:fminunc(@f,[1,2])含义为:从点[1,2]开始搜寻函 数f的最小值。
二次规划问题
Matlab默认的二次规划
min
f (x)
1 xT Hx cT x, 2
s.t. A x b,
Aeq x beq, lb x ub.
用MATLAB软件求解,其输入格式如下:
[x,fval]=quadprog(H,c,A,b);
[x,fval]=quadprog(H,c,A,b,Aeq,beq);
[x,fval]=quadprog(H,c,A,b,Aeq,beq,LB,UB); [x,fval]=quadprog(H,c,A,b,Aeq,beq,LB,UB,X0);
3. 运算结果为: x = -1.2247 1.2247 fval = 1.8951
11
此课件下载可自行编辑修改,仅供参考! 感谢您的支持,我们努力做得更好!谢谢
二次规划问题
例 minf(x1,x2)2x1 6x2 x12 2x1x2 2x22 s.t x1 x2 2 x1 2x2 2 x1 0,x2 0
① 写成标准形式:
m z i1 2 n (x 1 ,x 2 ) 2 2 4 2 x x 1 2 6 2 T x x 1 2
function [c,ceq]=mycon(x) c=[ 1.5+x(1)*x(2)-x(1)-x(2);-x(1)*x(2)-10]; ceq=[];
MATLAB中的非线性优化算法详解

MATLAB中的非线性优化算法详解在计算机科学和工程领域,非线性优化是一个非常重要的问题。
它涉及到在给定一些约束条件下,寻找使得目标函数取得最优值的变量取值。
MATLAB作为一种强大的数值计算工具,提供了多种非线性优化算法来解决这个问题。
本文将详细介绍一些常用的非线性优化算法,并探讨它们的特点和适用场景。
1. 数学背景在介绍非线性优化算法之前,我们先来了解一下非线性优化的基本数学背景。
一个非线性优化问题可以表示为以下形式:minimize f(x)subject to g(x) ≤ 0h(x) = 0其中,f(x)是目标函数,g(x)是不等式约束条件,h(x)是等式约束条件。
x是优化变量。
目标是找到x使得f(x)取得最小值,并且满足约束条件。
2. 黄金分割法黄金分割法是一种经典的非线性优化算法。
它基于一个简单的原则:将搜索区间按照黄金分割比例分为两段,并选择一个更优的区间进行下一次迭代。
该算法的思想简单明了,但是它的收敛速度比较慢,特别是对于高维问题。
因此,该算法在实际应用中较少使用。
3. 拟牛顿法拟牛顿法是一类比较常用的非线性优化算法。
它通过近似目标函数的梯度信息来进行迭代优化。
拟牛顿法的核心思想是构造一个Hessian矩阵的近似矩阵,来更新搜索方向和步长。
其中,DFP算法和BFGS算法是拟牛顿法的两种典型实现。
DFP算法是由Davidon、Fletcher和Powell于1959年提出的,它通过不断迭代来逼近最优解。
该算法的优点是收敛性比较好,但是它需要存储中间结果,占用了较多的内存。
BFGS算法是由Broyden、Fletcher、Goldfarb和Shanno于1970年提出的。
它是一种变种的拟牛顿法,通过逼近Hessian矩阵的逆矩阵来求解最优解。
BFGS算法在存储方面比DFP算法更加高效,但是它的计算复杂度相对较高。
4. 信赖域法信赖域法是一种迭代优化算法,用于解决非线性优化问题。
它将非线性优化问题转化为一个二次规划问题,并通过求解这个二次规划问题来逼近最优解。
Matlab中的非线性优化和非线性方程求解技巧

Matlab中的非线性优化和非线性方程求解技巧在科学和工程领域中,我们经常会遇到一些复杂的非线性问题,例如最优化问题和方程求解问题。
解决这些问题的方法主要分为线性和非线性等,其中非线性问题是相对复杂的。
作为一种强大的数值计算工具,Matlab提供了许多专门用于解决非线性优化和非线性方程求解的函数和方法。
本文将介绍一些常用的Matlab中的非线性优化和非线性方程求解技巧。
非线性优化是指在给定一些约束条件下,寻找目标函数的最优解的问题。
在实际应用中,往往需要根据实际情况给出一些约束条件,如等式约束和不等式约束。
Matlab中的fmincon函数可以用于求解具有约束条件的非线性优化问题。
其基本语法如下:[x,fval] = fmincon(fun,x0,A,b,Aeq,beq,lb,ub)其中,fun是目标函数,x0是初始值,A、b是不等式约束矩阵和向量,Aeq、beq是等式约束矩阵和向量,lb、ub是变量的上下边界。
x表示最优解,而fval表示最优解对应的目标函数值。
另外,非线性方程求解是指寻找使得方程等式成立的变量值的问题。
Matlab中提供的fsolve函数可以用于求解非线性方程。
其基本语法如下:x = fsolve(fun,x0)其中,fun是方程函数,x0是初始值,x表示方程的解。
除了fmincon和fsolve函数之外,Matlab还提供了一些其他的非线性优化和非线性方程求解函数,例如lsqnonlin、fminunc等,这些函数分别适用于无约束非线性优化问题和带约束非线性方程求解问题。
除了直接调用这些函数外,Matlab还提供了一些可视化工具和辅助函数来帮助我们更好地理解和解决非线性问题。
例如,使用Matlab的优化工具箱可以实现对非线性优化问题的求解过程可视化,从而更直观地观察到优化算法的收敛过程。
此外,Matlab还提供了一些用于计算梯度、雅可比矩阵和海塞矩阵的函数,这些函数在求解非线性问题时非常有用。
Matlab中的非线性优化与全局优化

Matlab中的非线性优化与全局优化引言在科学与工程领域中,我们经常需要寻找某个问题的最优解。
其中,非线性优化和全局优化是两个常见的优化问题。
Matlab作为一种强大的数值计算工具,提供了丰富的优化函数,能够帮助我们有效地解决这些问题。
本文将介绍Matlab中的非线性优化和全局优化的基本概念、常用方法以及应用实例。
一、非线性优化非线性优化是指优化问题中目标函数和约束条件存在非线性关系的情况。
在Matlab中,可以使用fmincon函数来求解非线性优化问题。
此函数采用基于梯度的优化算法,如信赖域方法、内点方法等。
1.1 目标函数和约束条件在非线性优化中,我们需要定义一个目标函数和一组约束条件。
目标函数是我们要最小化(或最大化)的函数,通常是一个关于自变量的非线性函数。
约束条件是一组等式或不等式,限制了自变量的取值范围。
1.2 优化方法在使用fmincon函数时,我们需要提供目标函数、初始点、约束条件等参数。
其中,目标函数可以是Matlab中已有的函数,也可以是用户自定义的函数。
初始点表示优化算法的起始点,通常可以通过试探法来选择。
约束条件可以是等式约束或不等式约束。
根据约束条件的类型,我们可以选择使用不同的优化算法。
1.3 实例分析为了更好地理解非线性优化的应用,我们以经典的罗森布洛克函数为例。
罗森布洛克函数是一个多峰函数,在全局优化中经常被用来检验算法的性能。
我们可以使用Matlab中的fmincon函数对该函数进行最小化。
首先,我们定义罗森布洛克函数的目标函数和约束条件:```matlabfunction [f, c] = rosenbrock(x)f = 100 * (x(2) - x(1)^2)^2 + (1 - x(1))^2;c = x(1) + x(2) - 3;end```然后,我们使用fmincon函数来计算罗森布洛克函数的最小值:```matlabx0 = [0; 0]; % 初始点A = []; b = []; % 不等式约束Aeq = []; beq = []; % 等式约束lb = []; ub = []; % 变量上下界nonlcon = @rosenbrock; % 目标函数和约束条件options = optimoptions('fmincon', 'Algorithm', 'sqp');[x, fval] = fmincon(@(x) x(1)*x(2), x0, A, b, Aeq, beq, lb, ub, nonlcon, options);disp(['最小值:', num2str(fval)]);disp(['解:', num2str(x)]);```以上代码中,我们定义了初始点x0和约束条件,然后使用fmincon函数计算最小值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017/9/16
fmincon调用格式主要如下: x = fmincon(fun,x0,A,b) x = fmincon(fun,x0,A,b,Aeq,beq) x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub) x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon) x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options) [x,fval] = fmincon(...) [x,fval,exitflag] = fmincon(...) [x,fval,exitflag,output] = fmincon(...) [x,fval,exitflag,output,lambda] = fmincon(...) [x,fval,exitflag,output,lambda,grad] = fmincon(...) [x,fval,exitflag,output,lambda,grad,hessian] = fmincon(...)
2017/9/16
二、 fminsearch函数
fminsearch是MATLAB中求解无约束的函数之一,其使用的算法为可变 多面体算法(Nelder-Mead Simplex),其调用格式主要如下: x = fminsearch(fun,x0) x = fminsearch(fun,x0,options) [x,fval] = fminsearch(...) [x,fval,exitflag] = fminsearch(...) [x,fval,exitflag,output] = fminsearch(...)
2017/9/16
三、 fmincon函数
fmincon是MATLAB最主要的求解约束最优化的函数,该函数要求的 约束优化问题的标准形式为:
min f ( x) c ( x ) 0 ceq ( x) 0 s.t Ax b Aeq x beq lb x ub
2017/9/16
第二节 理论模型
2017/9/16
一、无约束非线性优化
不失一般性,无约束优化的一般形式:
min f ( x)
x Rn
f ( x) 为非线性函数。 其中, 对于无约束非线性最大化可以通过如下转换将其转化为标 准的无约束非线性优化的一般形式:
max f ( x) min f ( x)
i
2017/9/16
max f ( x) g i ( x) 0 i 1, 2, , m s.t h j ( x) 0 j 1, 2, , l min f ( x) g i ( x) 0 i 1, 2, , m s.t h j ( x) 0 j 1, 2, , l
2017/9/16
其中输入参数: Fun: 目标函数 X0: 迭代初始点 Options:函数参数设置 函数输出: X: 最优点(算法停止点) Fval: 最优点对应的函数值 Exitflag: 函数停止信息 1: 函数收敛正常停止 0: 迭代次数,目标函数计算次数达到最大数 -1:算法被output函数停止 Output:函数运算信息 例题参考书中 【例14.3-2】
非线性优化问题
2017/9/16
主要内容
理论背景 理论模型 MATLAB实现 案例扩展
2017/9/16
第一节 理论背景
2017/9/16
1951年Kuhn-Tucker最优条件(简称KT条件) Davidon(1959), Fletcher和Powell(1963)提出DFP方法 1970年由Broyden,Fletcher,Goldfarb 和Shanno从不 同的角度共同提出的BFGS方法 约束变尺度(SQP)方法(Han和Powell为代表)和 Lagrange乘子法(代表人物是Powell 和Hestenes) 80年代开始研究信赖域法、稀疏拟牛顿法、大规模 问题的方法和并行计算 90年代研究解非线性优化问题的内点法和有限储存 法
2017/9/16
第三节 MATLAB实现
2017/9/16
一、fminunc函数(无约束优化)
fminunc函数是MATLAB求解无约束优化问题的主要函数,函数主要 使用BFGS拟牛顿算法(BFGS Quasi-Newton method)、DFP拟牛顿 算法(DFP Quasi-Newton method)、最速下降法等。其调用格式主 要如下: x = fminunc(fun,x0) x = fminunc(fun,x0,options) [x,fval] = fminunc(...) [x,fval,exitflag] = fminunc(...) [x,fval,exitflag,output] = fminunc(...) [x,fval,exitflag,output,grad] = fminunc(...) [x,fval,exitflag,output,grad,hessian] = fminunc(...)
2017/9/16
其中输入参数: Fun: 目标函数 一般用句柄形式给出 X0: 优化算法初始迭代点 Options: 参数设置 函数输出: X: 最优点输出(或最后迭代点) Fval: 最优点(或最后迭代点)对应的函数值 Exitflag: 函数结束信息 (具体参见matlab help ) Output: 函数基本信息 包括迭代次数,目标函数最大计算次数,使 用的算法名称,计算规模等。 Grad: 最优点(或最后迭代点)的导数 Hessian:最优点(或最后迭代点)的二阶导数 例题参考书中 【例14.3-1】
x Rn x Rn
2017/9/16
二、约束非线性优化
不失一般性,约束优化的一般形式:
min f ( x) g i ( x) 0 i 1, 2, , m s.t h j ( x) 0 j 1, 2, , l
h j ( x) 0 其中, f x : Rn R 为非线性函数。g ( x) 为不等式约束, 为等式约束。 与无约束非线性最大化类似,对于约束非线性最大化可以通过 转换,将其转化为标准的约束非线性优化的一般形式: