用MATLAB求解优化问题

合集下载

如何在Matlab中进行多目标优化问题求解

如何在Matlab中进行多目标优化问题求解

如何在Matlab中进行多目标优化问题求解如何在Matlab中进行多目标优化问题求解?多目标优化问题是指存在多个目标函数,且这些目标函数之间相互矛盾或者无法完全同时满足的问题。

在实际应用中,多目标优化问题非常常见,例如在工程设计中寻求最佳平衡点、在金融投资中追求高收益低风险等。

而Matlab作为一种强大的数值计算工具,提供了丰富的优化算法和工具箱,可以帮助我们解决多目标优化问题。

一、多目标优化问题数学建模在解决多目标优化问题之前,首先需要将实际问题转化为数学模型。

假设我们需要优化一个n维的向量x,使得目标函数f(x)同时最小化或最大化。

其中,n为自变量的个数,f(x)可以表示为多个目标函数f1(x)、f2(x)、...、fm(x)的向量形式:f(x) = [f1(x), f2(x), ..., fm(x)]其中,fi(x)(i=1,2,...,m)即为待优化的目标函数。

在多目标优化问题中,一般没有单一的最优解,而是存在一个解集,称为"帕累托前沿(Pareto Frontier)"。

该解集中的每个解被称为"非支配解(Non-Dominated Solution)",即不能被其他解所优化。

因此,多目标优化问题的目标就是找到帕累托前沿中的最佳解。

二、Matlab中的多目标优化算法Matlab提供了多种多目标优化算法和工具箱,包括paretosearch、gamultiobj、NSGA-II等等。

这些算法基于不同的思想和原理,可以根据问题的特点选择合适的算法进行求解。

1. paretosearch算法paretosearch算法采用遗传算法的思想,通过迭代更新种群来寻找非支配解。

该算法适用于求解中小规模的多目标优化问题。

使用paretosearch算法求解多目标优化问题可以按照以下步骤进行:(1)定义目标函数编写目标函数fi(x)(i=1,2,...,m)的代码。

matlab调用cplex求解优化问题编程简单例子

matlab调用cplex求解优化问题编程简单例子

Matlab是一种强大的科学计算软件,它不仅可以进行数据分析和可视化,还可以进行数值计算和优化问题求解。

而Cplex是一种著名的数学优化软件包,可以用来解决线性规划、整数规划、混合整数规划等问题。

在本文中,我们将介绍如何在Matlab中调用Cplex来求解优化问题,并给出一个简单的例子,帮助读者更好地理解这个过程。

【步骤】1. 安装Matlab和Cplex我们需要在电脑上安装Matlab和Cplex软件。

Matlab全球信息湾上有学术版可以免费下载,而Cplex是商业软件,需要购买授权。

安装完成后,我们需要将Cplex的路径添加到Matlab的搜索路径中,以便Matlab可以找到Cplex的相关函数。

2. 编写Matlab脚本接下来,我们需要编写一个Matlab脚本来调用Cplex求解优化问题。

我们需要定义优化问题的目标函数、约束条件和变量范围。

我们可以使用Cplex的函数来创建优化问题,并设置相应的参数。

我们调用Cplex的求解函数来求解这个优化问题。

以下是一个简单的例子:定义优化问题f = [3; 5; 2]; 目标函数系数A = [1 -1 1; 3 2 4]; 不等式约束系数b = [20; 42]; 不等式约束右端项lb = [0; 0; 0]; 变量下界ub = []; 变量上界创建优化问题problem = cplexoptimset();problem.Display = 'on'; 显示求解过程[x, fval, exitflag, output] = cplexmilp(f, A, b, [], [], [], [], lb, ub, [], problem);显示结果disp(['最优解为:', num2str(x)]);disp(['目标函数值为:', num2str(fval)]);disp(['退出信息为:', output.cplexstatusstring]);```在这个例子中,我们定义了一个线性整数规划问题,目标函数为3x1 + 5x2 + 2x3,约束条件为x1 - x2 + x3 <= 20和3x1 + 2x2 + 4x3 <= 42。

MATLAB多目标优化计算

MATLAB多目标优化计算

MATLAB多目标优化计算多目标优化是指在一个优化问题中同时优化多个目标函数,这些目标函数往往存在冲突,不能同时达到最优。

MATLAB提供了许多工具和函数,可以帮助解决多目标优化问题。

在MATLAB中,多目标优化问题可以用以下形式表示:min f(x)s.t.g(x)≤0h(x)=0lb ≤ x ≤ ub其中,f(x)表示待优化的多个目标函数,g(x)和h(x)分别表示不等式约束和等式约束条件,lb和ub分别表示x的下界和上界。

1. paretofront函数:可以用来判断一组给定解的非支配解集合。

```index = paretofront(F)```其中,F是一个m×n矩阵,每一行表示一个解的m个目标函数值。

index是一个逻辑向量,长度为n,表明对应位置的解是否为非支配解。

2. paretofun函数:可以用来对非支配解集进行排序。

```rank = paretofun(F)```其中,F同样是一个m×n矩阵,每一行表示一个解的m个目标函数值。

rank表示对应位置的解在非支配解集中的排序。

3. gamultiobj函数:使用遗传算法进行多目标优化。

```[x, fval, exitflag, output, population] = gamultiobj(fun, nvars, A, b, Aeq, beq, lb, ub)```其中,fun是一个函数句柄,表示待优化的目标函数。

nvars表示决策变量的个数。

A、b、Aeq、beq、lb和ub分别表示不等式约束、等式约束、下界和上界。

x是优化后的决策变量值,fval是优化后的目标函数值。

exitflag是优化器的退出标志,output包含了优化算法的输出结果,population包含了所有迭代过程中的解集。

4.NSGA-II函数:使用非支配排序遗传算法进行多目标优化。

```[x, fval, exitflag, output, population] = nsga2(fun, nvars, A, b, Aeq, beq, lb, ub)```参数和返回结果的含义同gamultiobj函数相似。

Matlab中的最优化问题求解方法

Matlab中的最优化问题求解方法

Matlab中的最优化问题求解方法近年来,最优化问题在各个领域中都扮演着重要的角色。

无论是在工程、经济学还是科学研究中,我们都需要找到最优解来满足特定的需求。

而Matlab作为一种强大的数值计算软件,在解决最优化问题方面有着广泛的应用。

本文将介绍一些Matlab中常用的最优化问题求解方法,并探讨其优缺点以及适用范围。

一. 无约束问题求解方法1. 最速下降法最速下降法是最简单且直观的无约束问题求解方法之一。

其基本思想是沿着梯度的反方向迭代求解,直到达到所需的精度要求。

然而,最速下降法的收敛速度通常很慢,特别是在局部极小值点附近。

2. 共轭梯度法共轭梯度法是一种改进的最速下降法。

它利用了无约束问题的二次函数特性,通过选择一组相互共轭的搜索方向来提高收敛速度。

相比于最速下降法,共轭梯度法的收敛速度更快,尤其适用于大规模优化问题。

3. 牛顿法牛顿法是一种基于二阶导数信息的优化方法。

它通过构建并求解特定的二次逼近模型来求解无约束问题。

然而,牛顿法在高维问题中的计算复杂度较高,并且需要矩阵求逆运算,可能导致数值不稳定。

二. 线性规划问题求解方法1. 单纯形法单纯形法是一种经典的线性规划问题求解方法。

它通过在可行域内进行边界移动来寻找最优解。

然而,当问题规模较大时,单纯形法的计算复杂度会大幅增加,导致求解效率低下。

2. 内点法内点法是一种改进的线性规划问题求解方法。

与单纯形法不同,内点法通过将问题转化为一系列等价的非线性问题来求解。

内点法的优势在于其计算复杂度相对较低,尤其适用于大规模线性规划问题。

三. 非线性规划问题求解方法1. 信赖域算法信赖域算法是一种常用的非线性规划问题求解方法。

它通过构建局部模型,并通过逐步调整信赖域半径来寻找最优解。

信赖域算法既考虑了收敛速度,又保持了数值稳定性。

2. 遗传算法遗传算法是一种基于自然进化过程的优化算法。

它模拟遗传操作,并通过选择、交叉和变异等操作来搜索最优解。

遗传算法的优势在于其适用于复杂的非线性规划问题,但可能需要较长的计算时间。

Matlab中的优化问题求解方法与示例分析

Matlab中的优化问题求解方法与示例分析

Matlab中的优化问题求解方法与示例分析介绍在科学与工程领域,优化问题是一个常见且重要的研究方向。

优化问题的目标是在给定的约束条件下,找到使得目标函数取得最优值的变量取值。

Matlab作为一个著名的科学计算软件,提供了丰富的优化问题求解方法。

本文将介绍Matlab中常用的优化问题求解方法,并通过实例分析来展示其应用。

一、线性规划问题的求解方法线性规划问题(Linear Programming)是一类目标函数与约束条件均为线性关系的优化问题。

Matlab中提供了线性规划问题求解的函数“linprog”和“intlinprog”。

1. linprog函数linprog函数用于求解线性规划问题,其使用方法如下:```[x, fval, exitflag, output] = linprog(f, A, b, Aeq, beq, lb, ub)```其中,f为目标函数的系数向量,A和b为不等式约束的系数矩阵和常数向量,Aeq和beq为等式约束的系数矩阵和常数向量,lb和ub为变量的下界和上界。

2. intlinprog函数intlinprog函数用于求解整数线性规划问题,即变量取值为整数的线性规划问题。

其使用方法与linprog类似,但需要添加一个参数“options”,用于设置求解器的选项。

二、非线性规划问题的求解方法非线性规划问题(Nonlinear Programming)是一类目标函数或约束条件存在非线性关系的优化问题。

Matlab中提供了多种非线性规划问题求解的函数,包括“fminunc”、“fmincon”和“lsqnonlin”。

1. fminunc函数fminunc函数用于求解没有约束条件的非线性规划问题,其使用方法如下:```[x, fval, exitflag, output] = fminunc(fun, x0)```其中,fun为目标函数的句柄,x0为变量的初始猜测值。

2. fmincon函数fmincon函数用于求解带约束条件的非线性规划问题,其使用方法如下:```[x, fval, exitflag, output, lambda] = fmincon(fun, x0, A, b, Aeq, beq, lb, ub)```参数的含义与linprog函数中的相对应参数相似,但需要注意的是,A、b、Aeq 和beq都是针对不等式约束和等式约束的系数矩阵和常数向量;lb和ub为变量的下界和上界。

Matlab中的优化问题求解方法

Matlab中的优化问题求解方法

Matlab中的优化问题求解方法在数学和工程领域,优化问题是一个重要的研究方向。

通过寻找最优解,可以提高系统的效率和性能。

Matlab提供了丰富的工具箱和函数,可以用于解决各种不同类型的优化问题。

本文将介绍一些常见的优化问题求解方法,并针对它们在Matlab中的应用进行分析和讨论。

第一种常见的优化问题求解方法是线性规划(Linear Programming,LP)。

在线性规划中,目标函数和约束条件都是线性的。

通过寻找使得目标函数达到最大或最小的变量取值,可以获得问题的最优解。

Matlab中的优化工具箱提供了linprog函数,可以用于求解线性规划问题。

该函数采用单纯形算法或内点算法进行求解,并且可以处理带有等式和不等式约束的问题。

用户只需提供目标函数系数、约束矩阵和约束向量,即可得到问题的最优解和最优值。

除了线性规划,二次规划(Quadratic Programming,QP)也是常见的优化问题求解方法。

在二次规划中,目标函数是一个二次函数,约束条件可以是线性的或二次的。

Matlab中的优化工具箱提供了quadprog函数,可以用于求解二次规划问题。

该函数基于内点算法或者信赖域反射算法进行求解。

用户只需提供目标函数的二次项系数、一次项系数以及约束矩阵和约束向量,即可得到问题的最优解和最优值。

除了线性规划和二次规划,非线性规划(Nonlinear Optimization)也是常见的优化问题求解方法。

与线性规划和二次规划不同,非线性规划中的目标函数和约束条件可以是非线性的。

Matlab中的优化工具箱提供了fmincon函数,可以用于求解约束非线性优化问题。

该函数采用内点法、SQP法或者信赖域反射法进行求解。

用户需要提供目标函数、约束函数以及约束类型,并设定初始解,即可得到问题的最优解和最优值。

除了上述三种基本的优化问题求解方法,约束最小二乘(Constrained Least Squares)问题也是一个重要的优化问题。

利用Matlab进行运筹学与优化问题求解的技巧

利用Matlab进行运筹学与优化问题求解的技巧

利用Matlab进行运筹学与优化问题求解的技巧运筹学与优化是一门应用数学的学科,旨在寻找最优解来解决实际问题。

随着计算科学的迅速发展,利用计算机进行运筹学与优化问题求解变得越来越常见。

Matlab作为一种功能强大的数值计算和编程工具,为求解这类问题提供了便捷和高效的方式。

本文将介绍一些利用Matlab进行运筹学与优化问题求解的技巧。

一、线性规划问题求解线性规划是一类常见的优化问题,约束条件和目标函数都是线性的。

Matlab提供了linprog函数来解决线性规划问题。

这个函数的基本用法如下:[x, fval, exitflag] = linprog(f, A, b, Aeq, beq, lb, ub)其中,f是目标函数的系数向量,A和b是不等式约束的矩阵和向量,Aeq和beq是等式约束的矩阵和向量,lb和ub是变量的上下界。

函数的输出包括最优解x,最优目标值fval和退出标志exitflag。

二、非线性规划问题求解非线性规划是一类更为复杂的优化问题,约束条件和目标函数可以是非线性的。

Matlab提供了fmincon函数来解决非线性规划问题。

这个函数的基本用法如下:[x, fval, exitflag] = fmincon(fun, x0, A, b, Aeq, beq, lb, ub, nonlcon)其中,fun是目标函数的句柄,x0是初始解向量,A和b是不等式约束的矩阵和向量,Aeq和beq是等式约束的矩阵和向量,lb和ub是变量的上下界,nonlcon是非线性约束函数的句柄。

函数的输出包括最优解x,最优目标值fval和退出标志exitflag。

三、整数规划问题求解在某些情况下,决策变量需要取整数值,这时可以通过整数规划来求解。

Matlab提供了intlinprog函数来解决整数规划问题。

这个函数的基本用法如下:[x, fval, exitflag] = intlinprog(f, intcon, A, b, Aeq, beq, lb, ub)其中,f是目标函数的系数向量,intcon是决策变量的整数索引向量,A和b是不等式约束的矩阵和向量,Aeq和beq是等式约束的矩阵和向量,lb和ub是变量的上下界。

matlab用共轭梯度法求解优化问题

matlab用共轭梯度法求解优化问题

标题:利用MATLAB中的共轭梯度法求解优化问题正文:一、概述在数学和工程领域中,优化问题是一个重要的研究领域。

优化问题的目标是寻找一个能够最大化或最小化某个函数的变量的数值,使得该函数达到最优值。

而共轭梯度法是一种常用的优化算法,能够有效地解决大规模的线性和非线性优化问题。

本文将介绍如何利用MATLAB中的共轭梯度法来求解优化问题。

二、共轭梯度法简介共轭梯度法是一种迭代算法,用于求解无约束优化问题。

它是一种在局部搜索过程中利用历史信息的优化方法,通常用于求解大规模的线性和非线性优化问题。

共轭梯度法基于数学中的共轭梯度概念,通过迭代寻找下降最快的路径,从而逐步逼近最优解。

三、MATLAB中的共轭梯度法函数MATLAB提供了丰富的优化算法和函数,其中包括了共轭梯度法函数。

在MATLAB中,可以使用“fmincg”函数来调用共轭梯度法来求解无约束优化问题。

该函数可以接收目标函数、初始变量值和其他参数作为输入,并计算出最优解。

四、使用共轭梯度法求解优化问题的步骤1. 确定目标函数在使用共轭梯度法求解优化问题之前,首先需要确定目标函数。

目标函数可以是线性函数、非线性函数或者带有约束条件的函数。

在MATLAB中,需要将目标函数定义为一个函数句柄,并且确保该函数具有输入参数和输出数值。

2. 确定初始变量值在使用共轭梯度法求解优化问题时,需要提供初始的变量值。

这些初始变量值可以是任意的数值,但通常需要根据实际问题进行合理选择。

3. 调用共轭梯度法函数在确定了目标函数和初始变量值之后,可以调用MATLAB中的“fmincg”函数来求解优化问题。

该函数会根据目标函数、初始变量值和其他参数进行迭代计算,直到找到最优解为止。

4. 获取最优解可以通过“fmincg”函数的输出结果来获取最优解。

该结果通常包括最优变量值和最优目标函数值。

五、优化问题的案例分析下面以一个简单的优化问题为例,说明如何利用MATLAB中的共轭梯度法来求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


先编写 M 文件 fun0.m 如下: function f=fun0(x) f=-(3-2*x).^2*x; 主程序为 wliti2.m: [x,fval]=fminbnd('fun0',0,1.5); xmax=x fmax=-fval 运算结果为: xmax = 0.5000,fmax =2.0000.即剪掉的正方形的边长为 0.5 米时水槽的容积最大, 最大容积为 2 立方米. 2、多元函数无约束优化问题 标准型为:min F(X) 命令格式为: (1)x= fminunc(fun,X0 ) ;或 x=fminsearch(fun,X0 ) (2)x= fminunc(fun,X0 ,options) ; 或 x=fminsearch(fun,X0 ,options) (3)[x,fval]= fminunc(...) ; 或[x,fval]= fminsearch(...) (4)[x,fval,exitflag]= fminunc(...) ; 或[x,fval,exitflag]= fminsearch (5)[x,fval,exitflag,output]= fminunc(...) ; 或[x,fval,exitflag,output]= fminsearch(...) 说明: • fminsearch 是用单纯形法寻优. fminunc 的算法见以下几点说明: [1] fminunc 为无约束优化提供了大型优化和中型优化算法。由 options 中的参数 LargeScale 控制: LargeScale=’on’(默认值),使用大型算法
LargeScale=’off’(默认值),使用中型算法 [2] fminunc 为中型优化算法的搜索方向提供了 4 种算法,由 options 中的参数 HessUpdate 控制: HessUpdate=’bfgs’(默认值) ,拟牛顿法的 BFGS 公式; HessUpdate=’dfp’,拟牛顿法的 DFP 公式; HessUpdate=’steepdesc’,最速下降法 [3] fminunc 为中型优化算法的步长一维搜索提供了两种算法, 由 options 中参数 LineSearchType 控制: LineSearchType=’quadcubic’(缺省值),混合的二次和三 次多项式插值; LineSearchType=’cubicpoly’,三次多项式插 • 使用 fminunc 和 fminsearch 可能会得到局部最优解. 例 3 min f(x)=(4x12+2x22+4x1x2+2x2+1)*exp(x1) 1、编写 M-文件 fun1.m: function f = fun1 (x) f = exp(x(1))*(4*x(1)^2+2*x(2)^2+4*x(1)*x(2)+2*x(2)+1); 2、输入 M 文件 wliti3.m 如下: x0 = [-1, 1]; x=fminunc(‘fun1’,x0); y=fun1(x) 3、运行结果: x= 0.5000 -1.0000 y= 1.3029e-10 例4 Rosenbrock 函数 f(x1,x2)=100(x2-x12)2+(1-x1)2 的最优解(极小)为 x*=(1,1) ,极小值为 f*=0.试用 不同算法(搜索方向和步长搜索)求数值最优解. 初值选为 x0=(-1.2 , 2).
编写 M 文件 xxgh4.m 如下: c = [40;36]; A=[-5 -3]; b=[-45]; Aeq=[]; beq=[];
vlb = zeros(2,1); vub=[9;15]; %调用 linprog 函数: [x,fval] = linprog(c,A,b,Aeq,beq,vlb,vub) 结果为: x= 9.0000 0.0000 fval =360 即只需聘用 9 个一级检验员。
min z cX
s.t.
AX b AeqX beq B X VUB
命令:[1] x=linprog(c,A,b,Aeq,beq, VLB,VUB) [2] x=linprog(c,A,b,Aeq,beq, VLB,VUB, X0) 注意:[1] 若没有等式约束, 则令 Aeq=[ ], beq=[ ]. [2]其中 X0 表示初始点 4、命令:[x,fval]=linprog(…) 返回最优解x及x处的目标函数值 fval. 例1 max
用 MATLAB 优化工具箱解线性规划
1、模型: min z=cX s.t. AX b
命令:x=linprog(c,A,b) 2、模型:
min z cX
s.t.
AX b AeqX beq
命令:x=linprog(c,A,b,Aeq,beq) 注意:若没有不等式: AX b 存在,则令 A=[ ] , b=[ ]. 若没有等式约束 , 则令 Aeq=[ ], beq=[ ]. 3、模型:
Matlab 优化工具箱简介 1.MATLAB 求解优化问题的主要函数
2.优化函数的输入变量 使用优化函数或优化工具箱中其它优化函数时, 输入变量见下表:
3. 优化函数的输出变量下表:
4.控制参数 options 的设置 Options 中常用的几个参数的名称、含义、取值如下: (1) Display: 显示水平 .取值为’off’时 ,不显示输出 ; 取值为’iter’ 时 ,显示每次迭代的信息; 取 值为’final’时,显示最终结果.默认值为’final’. (2) MaxFunEvals: 允许进行函数评价的最大次数,取值为正整数. (3) MaxIter: 允许进行迭代的最大次数,取值为正整数 控制参数 options 可以通过函数 optimset 创建或修改。命令的格式如下: (1) options=optimset(‘optimfun’) 创建一个含有所有参数名,并与优化函数 optimfun 相关的默认值的选项结构 options. (2)options=optimset(‘param1’,value1,’param2’,value2,...) 创建一个名称为 options 的优化选项参数,其中指定的参数具有指定值,所有未指定的参数 取默认值. (3)options=optimset(oldops,‘param1’,value1,’param2’, value2,...) 创建名称为 oldops 的参数的拷贝,用指定的参数值修改 oldops 中相应的参数. 例:opts=optimset(‘Display’,’iter’,’TolFun’,1e-8) 该语句创建一个称为 opts 的优化选项结构,其中显示参数设为’iter’, TolFun 参数设为 1e-8. 用 Matlab 解无约束优化问题 一元函数无约束优化问题 min f ( x ), x1 x x 2 常用格式如下: (1)x= fminbnd (fun,x1,x2) (2)x= fminbnd (fun,x1,x2 ,options) (3)[x,fval]= fminbnd(...) (4)[x,fval,exitflag]= fminbnd(...) (5)[x,fval,exitflag,output]= fminbnd(...) 其中(3) 、 (4) 、 (5)的等式右边可选用(1)或(2)的等式右边。
解 设在甲车床上加工工件 1、2、3 的数量分别为 x1、x2、x3,在乙车床上 加工工件 1、2、3 的数量分别为 x4、x5、x6。可建立以下线性规划模型:
min z 13 x1 9 x 2 10 x3 11x 4 12 x5 8 x 6 x 1 x 4 400 x x 600 5 2 x x 6 500 s.t. 3 0.4 x1 1.1x 2 x3 800 0.5 x 4 1.2 x5 1.3 x 6 900 xi 0, i 1,2, ,6
函数 fminbnd 的算法基于黄金分割法和二次插值法,它要求目标函数必须是连续函数, 并可能只给出局部最优解。 例 1 求 f 2e
x
sin x 在 0<x<8 中的最小值与最大值
主程序为 wliti1.m: f='2*exp(-x).*sin(x)'; fplot(f,[0,8]); %作图语句 [xmin,ymin]=fminbnd (f, 0,8) f1='-2*exp(-x).*sin(x)'; [xmax,ymax]=fminbnd (f1, 0,8) 运行结果: xmin = 3.9270 ymin = -0.0279 xmax = 0.7854 ymax = 0.6448 例 2 对边长为 3 米的正方形铁板,在四个角剪去相等的正方形以制成方形无盖水槽,问如 何剪法使水槽的容积最大?
约束条件为:
8 25 x1 8 15 x2 1800 8 25 x 1800 1 8 15 x 2 1800 x1 0, x2 0
线性规划模型:
min z 40 x1 36 x2 5 x1 3 x2 45 x 9 s.t. 1 x2 15 x1 0, x2 0
例2
min z 6 x1 3 x2 4 x3 s.t. x1 x 2 x3 120 x1 30 0 x 2 50 x3 20
解:
编写 M 文件 xxgh2.m 如下: c=[6 3 4]; A=[0 1 0]; b=[50]; Aeq=[1 1 1]; beq=[120]; vlb=[30,0,20]; vub=[]; [x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub 例3 (任务分配问题)某车间有甲、乙两台机床,可用于加工三种工件。 假定这两台车床的可用台时数分别为 800 和 900,三种工件的数量分别为 400、 600 和 500,且已知用三种不同车床加工单位数量不同工件所需的台时数和加工 费用如下表。问怎样分配车床的加工任务,才能既满足加工工件的要求,又使 加工费用最低?
相关文档
最新文档