中考数学二模试题含答案
2024年云南省丽江市九年级中考二模数学试题(含解析)

丽江市2024年春季学期九年级模拟监测(二)数学注意事项:1.满分100分,答题时间为120分钟.2.请将各题答案填写在答题卡上.一、选择题(本大题共15小题,每小题2分,共30分.每小题只有一个正确的选项)1.我国古代《九章算术》中注有“今两算得失相反,要令正负以名之”.意思是今有两数若其意义相反,则分别叫做正数与负数.如果向北走5步记作步,那么向南走7步记作( )A .步B .步C .步D .步2.2023年11月26日,云南省丽江至香格里拉铁路开通运营,迪庆藏族自治州结束了不通铁路的日子.据中国铁路昆明局集团消息,截至12月26日,累计发送旅客超180000人次,数据“180000”用科学记数法表示应为( )A .B .C .D .3.下列常用手机的图标中,是中心对称图形的是( )A .B .C .D .4.在双曲线的任意一支上,都随的增大而减小,则的值可以是( )A .B .0C .2D .5.下列计算正确的是( )A .B .C .D .6.如图,在△ABC 中,∠ABC =90°,直线l 1,l 2,l 3分别经过△ABC 的顶点A ,B ,C ,且l 1∥l 2∥l 3,若∠1=40°,则∠2的度数为( )5+7+7-12+2-418010⨯41810⨯51.810⨯60.1810⨯APP k y x =y x k 2-1-236a a a ⨯=22330a b ab -=623a a ÷=33(2)6-=-a aA .30°B .40°C .50°D .60°7.函数的自变量x 的取值范围是( )A .B .C .D .8.在如图所示的几何体中,主视图和俯视图相同的是( )A .B .C .D .9.不等式组的解集表示在数轴上,正确的是( )A . B .C .D .10.按一定顺序排列的单项式:,,,,,,……,第n 个单项式是( )A .B .C .D .11.如图,中,,.则的度数为( )21x y x =-1x ≠1x <0x ≠1x ≤5231x x +>⎧⎨-≥⎩2x -34x 58x -716x 932x -1164x 12n n x +12n n x -()212n n x --()212nn x +-O »»AB AC =70ABC ∠=︒BOC ∠A .100°B .90°C .80°D .70°12.下面是2024年丽江市某周发布的最高温度:16℃,,,,,,.关于这组数据,下列说法正确的是( )A .中位数是24B .众数是24C .平均数是20D .方差是913.关于x 的一元二次方程的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根14.某景点的参观人数逐年增加,据统计,2015年为10.8万人次,2017年为16.8万人次.设参观人次的平均年增长率为x ,则( )A .10.8(1+x )=16.8B .16.8(1﹣x )=10.8C .10.8(1+x )2=16.8D .10.8[(1+x )+(1+x )2]=16.815.如图,在中,是斜边上的高.若,则的值为( )A.B .C .D .二、填空题(本大题共4个小题,每小题2分,共8分)16.已知点与关于原点对称,则.17.因式分解: .18.已知多边形每个内角都等于150°,则这个多边形的内角和为.19.如果圆锥的底面周长是20π,侧面展开后所得的扇形的圆心角为120°,则圆锥的母线长是 .19℃22℃24℃26℃24℃23℃2310x x -+=Rt ABC △CD AB 4tan 3A =cos BCD ∠34354543()2,A b -(),3B a a b +=24ax a -=三、解答题(本大题共8个小题,共62分)20.21.如图,点B ,F ,E ,C 在同一条直线上,,,,求证:.22.《中华人民共和国道路交通安全法实施条例》中规定:超速行驶属于违法行为.为确保行安全,丽江到攀枝花270千米的高速公路全程限速120千米/小时(即行驶过程中任意时刻的车速都不能超过120千米/小时).以下是王师傅和李师傅在全程行驶完这段高速公路后的对话片断.王师傅:“李师傅,你的平均车速是我的1.2倍,行驶完全程比我少用了半个小时.”李师傅:“虽然我的平均车速比你的快,但是我在行驶过程中的最快车速只比我的平均车速快10%,并没有超速啊!”根据以上对话,你认为李师傅在行驶过程中是否有超速?请说明理由.23.为了推进“优秀传统文化进校园”活动.宁蒗县某校准备在七年级成立四个课外活动小组,分别是:A .民族舞蹈组;B .经典诵读组;C .民族乐器组;D .民族歌曲组.为了解学生最喜欢哪一个活动小组,学校从九年级全体学生中随机抽取部分学生进行问卷调查,每人必须选择且只能选择一个小组,并将调查结果绘制成如图所示的两幅不完整的统计图.请根据图中提供的信息,解答下列问题.(1)本次调查的学生共有______人.()11π322sin 602-⎛⎫--+︒-- ⎪⎝⎭AB CD ∥AB DC =BE CF =ABE DCF △△≌(2)在重阳节来临之际,学校计划组织学生到敬老院为老人表演节目,准备从这4个小组中随机抽取2个小组汇报演出,请你用列表法或画树状图法,求选中的2个小组恰好是C ,D 小组的概率.24.如图,点O 是菱形ABCD 的对角线的交点,DE ∥AC ,CE ∥BD ,连接OE .求证:(1)四边形OCED 是矩形;(2)如果AB =AC =4,连接AE ,求线段AE 的长.25.丽江华坪芒果是华坪特产,中国国家地理标志产品.其皮色新鲜,着色良好有光泽,外观亮丽,肉色橙黄嫩滑,核小肉厚,纤维少,口感清甜爽口,深受大家的喜爱.某华坪芒果生产基地生产的礼品盒包装的芒果每箱的成本为30元,按定价50元出售,每天可销售200箱.为了增加销量,该生产基地决定采取降价措施,经市场调研,每降价1元,日销售量可增加20箱.(1)求出每天销售量y (箱)与销售单价x (元)之间的函数关系式,并写出x 的取值范围.(2)若该生产基地每天要实现最大销售利润,则每箱礼品盒包装的芒果应定价多少元?每天可实现的最大利润是多少?26.如图,在中,,以为直径作与交于点D ,过点D 作,交延长线于点F ,垂足为点E .(1)求证:为的切线;(2)若,,求的长.27.如图,抛物线经过,两点,于轴交于点,为第一ABC AB BC =BC O AC DE AB ⊥CB DF O 3BE =4cos 5C =BF 2y x bx c =-++()4,0A ()1,0C -y B P象限抛物线上的动点,连接,,,,与相交于点.(1)求抛物线的解析式;(2)设的面积为,的面积为,当时,求点的坐标;(3)是否存在点,使,若存在,请求出点的坐标;若不存在,说明理由.参考答案与解析1.B 【分析】根据具有相反意义的量求解即可 .【详解】根据南北方向是具有相反意义的,则如果向北走5步记作步,那么向南走7步记作步.故选B .【点睛】本题考查了具有相反意义的量,理解具有相反意义的量是解题的关键.2.C【分析】本题考查科学记数法表示较大的数,熟练掌握其定义是解题的关键.将一个数表示成的形式,其中,为整数,这种记数方法叫做科学记数法,据此即可AB BC PA PC PC AB Q APQ △1S BCQ △2S 215S S -=P P 45PAB CBO ∠+∠=︒P 5+7-10n a ⨯110a ≤<n求得答案.【详解】解:,故选:C .3.C【分析】此题主要考查了中心对称图形的概念,注意中心对称是要寻找对称中心,旋转180度后与原图重合.根据中心对称图形的概念逐一判断即可.【详解】解:A 、不是中心对称图形,故此选项不合题意;B 、不是中心对称图形,故此选项不合题意;C 、是中心对称图形,故此选项符合题意;D 、不是中心对称图形,故此选项不符合题意;故选:C .4.C【分析】本题考查了反比例函数的性质,熟知反比例函数中,当时,在每个象限内y 随x 的增大而减小;当时,在每个象限内y 随x 的增大而增大是解题的关键.根据反比例函数的性质,若在每个象限内y 都随x 的增大而减小,则可推出k 的值为正数,再从选项中找到正数即可.【详解】解:∵双曲线的任意一支上,y 都随x 的增大而减小,∴,选项中为正数的只有,故选:C .5.C【分析】根据单项式乘单项式的法则、合并同类项法则、整式除法运算法则、积的乘方运算法则逐项判断即得答案【详解】解:∵,∴选项A 不正确;∵和不是同类项,不能合并,∴选项B 不正确;∵,∴选项C 正确;∵,∴选项D 不正确.故选C .【点睛】本题考查了整式的运算,属于基础题型,熟练掌握相关运算法则是解题的关键.5180000 1.810=⨯0k y k x=≠()0k >0k <k y x=0k >2k =2236a a a ⨯=23a b 23ab 623a a ÷=33(2)8a a -=-6.C【分析】由平行线的性质得∠3=40°,再根据∠ABC =90°得∠4=50°,最后再由平行线的性质得∠2=50°.【详解】解:如下图∵直线l 1∥l 2∥l 3,∠1=40°,∴∠1=∠3=40°.∵∠ABC =90°,∴∠4=90°﹣40°=50°,∴∠2=∠4=50°.故选C .【点睛】本题考查了平行线的性质,两直线平行,内错角相等,掌握平行线的性质是解题的关键.7.A【分析】本题考查了函数自变量的取值范围,掌握分式的分母不等于0是解题的关键.【详解】解:由题意得,解得.故选:A .8.A【分析】分别分析四种几何体的主视图和俯视图,找出主视图和俯视图相同的几何体即可.【详解】解:A 、主视图与俯视图都是正方形,故本选项符合题意;B 、主视图是两个拼在一起的矩形,俯视图是三角形,故本选项不符合题意;C 、主视图是矩形,俯视图是圆,故本选项不符合题意;D 、主视图是等腰三角形,俯视图是带圆心的圆,故本选项不符合题意,故选:A .【点睛】本题考查了简单几何体的三视图,解题的关键是掌握主视图、左视图、俯视图是分10x -≠1x ≠别从物体正面、左面和上面看,所得到的图形.9.A【分析】先求出不等式组的解集,然后将解集在数轴上表示即可.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.也考查了不等式组解集在数轴上的表示方法.【详解】解:解不等式组;∴不等式组的解集为.即故选:A .10.C【分析】分别找到系数,符号以及字母的次数的规律,可解出本题.【详解】解:第1个单项式是,第2个单项式是,第3个单项式是,第4个单项式是,…,第n 个单项式是.故选:C .【点睛】本题考查了单项式的有关概念.确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键.11.C【分析】首先根据弧、弦、圆心角的关系得到AB=AC ,再根据等腰三角形的性质可得∠A 的度数,然后根据圆周角定理可得∠BOC=2∠A ,进而可得答案.【详解】解:∵,5231x x +>⎧⎨-≥⎩32x x >-⎧⎨≤⎩32x -<≤()121122x x ⨯--=-()2322142x x ⨯-=-()3523182x x ⨯--=-()47241162x x ⨯-=-()212n n x --»»AB AC =∴AB=AC ,∴∠ABC=∠ACB=70°,∴∠A=180°-70°×2=40°,∵圆O 是△ABC 的外接圆,∴∠BOC=2∠A=40°×2=80°,故选C .【点睛】此题主要考查了弧、弦、圆心角的关系、圆周角定理、等腰三角形的性质,熟练掌握等腰三角形的性质,由圆周角定理得出结果是解决问题的关键.12.B【分析】本题考查了中位数、众数、平均数、方差,根据中位数、众数、平均数、方差的求法逐项判断即可.【详解】解:将数据按从小到大排列为:、、、、、、,故中位数为:,故A 选项错误,不符合题意;众数是,故B 选项正确,符合题意;平均数为,故C 错误,不符合题意;方差是:,故D 选项错误,不符合题意;故选:B .13.A【分析】本题考查了一元二次方程跟的判别式,根据,即可判断根的情况.【详解】由题意得,∴,∴方程有两个不相等的实数根,故选:A .14.C【详解】试题分析:设参观人次的平均年增长率为x ,根据题意可得等量关系:10.8万人次×(1+增长率)2=16.8万人次,根据等量关系列出方程10.8(1+x )2=16.8,故选C .161922232424292324()116192223242426227⨯++++++=()()()()()()()222222211622192222222322242224222622107⎡⎤⨯-+-+-+-+-+-+-=⎣⎦0∆>1,3,1a b c ==-=()2341150∆=--⨯⨯=>考点:由实际问题抽象出一元二次方程15.B【分析】根据直角三角形中正切的定义及余弦函数求解即可.【详解】解:∵是斜边上的高,∴是直角三角形,.∵在中,,∴设,,则,,∴,∵,∴,∴.故选B .【点睛】题目主要考查解直角三角形,理解三角函数的定义是解题关键.16.【分析】根据平面直角坐标系中,关于原点对称的点横、纵坐标都互为相反数,求出a ,b 的值即可.【详解】解:∵点与关于原点对称,∴,,∴.故答案为:.【点睛】本题主要考查平面直角坐标系中,关于原点对称的点的坐标的特点,掌握特殊位置关系的点的坐标变化是解答本题的关键.17.【分析】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解方法是解题的关键.先提出公因式,再利用平方差公式进行因式分解,即可求解.【详解】解:,CD Rt ABC △AB ACD 90ADC ∠=︒Rt ACD △4tan 3A =4CD k =3AD k =5AC k =0k >33cos 55k A k ==90A ACD BCD ACD ∠+∠=∠+∠=︒A BCD ∠=∠3cos cos 5BCD A ∠==1-()2,A b -(),3B a 2a =3b =-()231a b +=+-=-1-()()22a x x +-()()()224422ax a a x a x x -=-=+-故答案为:.18.1800°【分析】由题意,这个多边形的各内角都等于 150° ,则其每个外角都是30° ,再由多边形外角和是 360° 求出边数,从而计算出内角和即可.【详解】∵这个多边形的各内角都等于 150° ,∴该多边形每个外角都是 30° ,∴多边形的边数为 ,∴内角和为:,故答案为:1800°.【点睛】本题考查了多边形的外角和,准确掌握多边形的有关概念及多边形外角和是 360° 是解题的关键.19.30【分析】圆锥的底面周长即为侧面展开后扇形的弧长,已知扇形的圆心角,所求圆锥的母线即为扇形的半径,利用扇形的弧长公式求解.【详解】解:∵圆锥的底面周长是20π∴侧面展开后所得的扇形的弧长是20π∵侧面展开后所得的扇形的圆心角为120°∴侧面展开后所得的扇形的半径为:∵圆锥的母线就是侧面展开后所得的扇形的半径∴圆锥的母线长度为30.故答案为30.【点睛】本题考查了圆锥的计算.关键是体现两个转化,圆锥的侧面展开图为扇形,扇形的弧长为圆锥的底面周长,扇形的半径为圆锥的母线长.20.1【分析】本题考查了实数的混合运算,先计算立方根,零指数幂,绝对值,特殊角的三角函数值和负整数指数幂,再进行加减计算即可,熟练掌握各个运算法则是解题的关键.【详解】解:原式()()22ax x +-3601230=()1221801800-⨯︒=︒1802030120ππ⋅=21222=--++322=-+.21.见解析【分析】本题考查了全等三角形的判定.利用平行线的性质求得,利用即可证明.【详解】证明:∵,∴,在和中,,∴.22.没有超速,理由见解析【详解】解:李师傅在行驶过程中没有超速.理由:设王师傅的平均车速为x 千米/小时,则李师傅的平均车速为千米/小时.根据题意,得,解方程,得.经检验:是分式方程的解,且符合题意.∴李师傅的平均车速为(千米/小时),∴李师傅在行驶过程中的最快车速为(千米/时).∵,∴李师傅在行驶过程中没有超速.23.(1)100(2)【分析】本题考查了列表法求概率以及扇形与条形统计图的综合,正确掌握相关性质内容是解题的关键.(1)运用C 小组的人数除以C 小数的占比,即可作答.(2)先列出所有的结果,再用概率公式代入数值化简,即可作答.【详解】(1)解:(人)本次调查的总人数为100人;(2)解:依题意用列表法表示所有可能出现的结果如下:1=B C ∠=∠SAS ABE DCF △△≌AB CD ∥B C ∠=∠ABE DCF AB DC B C BE CF =⎧⎪∠=∠⎨⎪=⎩()SAS ABE DCF ≌△△ 1.2x 27027011.22x x -=90x =90x = 1.2108x =()108110%118.8⨯+=120118.8>163535%100÷=第一次第二次A B C DA B C D 由以上,可得共有12种等可能的结果,其中选中C ,D 小组的结果有,2种,∴.24.(1)详见解析;(2)【分析】(1)由菱形ABCD 可得,再根据DE ∥AC ,CE ∥BD 可证四边形是平行四边形,故四边形OCED 是矩形;(2)由(1)可得四边形OCED 是矩形,所以,再由AB =AC =4计算出的边长后,利用勾股定理求出的长即可.【详解】(1)证明:∵菱形ABCD ,∴,又∵DE ∥AC ,CE ∥BD ,∴四边形是平行四边形,∴是矩形;(2)如下图所示,(),B A (),C A (),D A (),A B (),C B (),D B (),A C (),B C (),D C (),A D (),B D (),C D (),D C (),C D (),21126C D P ==选中小组=AE 90AC BD DOC ⊥∠=︒,OCED 90ACE ∠=︒OC OD CE 、、AE 90AC BD DOC ⊥∠=︒,OCED OCED∵四边形OCED 是矩形,∴,∵菱形ABCD ,AB =AC =4,∴∴;【点睛】本题考查了菱形的基本性质,矩形的判定定理及性质,勾股定理,是一题比较基础的证明题,熟记矩形的判定方法及其性质是解决本题的关键.25.(1)(2)每箱礼品盒包装的芒果应定价45元,每天可实现的最大利润是4500元【分析】本题主要考查了列函数关系式,二次函数的实际应用:(1)根据定价50元出售,每天可销售200箱,每降价1元,日销售量可增加20箱列出y与x 的函数关系式并求出自变量的取值范围即可;(2)根据利润(售价进价)销售量列出w 关于x 的二次函数关系式,利用二次函数的性质求解即可.【详解】(1)解:根据题意,得,∴y 与x 之间的函数关系式为.(2)解:设每天的利润为w ,根据题意,得,整理,得,即,∵,90ACE OD CE ∠=︒=,=2AO OD =,AE ===()2012003050y x x =-+≤≤=-⨯()()20020502012003050y x x x =+-=-+≤≤()2012003050y x x =-+≤≤()()()3030201200w x y x x =-⨯=-⨯-+220180036000w x x =-+-()220454500w x =--+200a =-<∴当时,w 有最大值,最大值是4500.答:每箱礼品盒包装的芒果应定价45元,每天可实现的最大利润是4500元.26.(1)见详解(2)【分析】(1)连接,,根据圆周角定理证明,再根据“三线合一”证明平分,即有,进而可得,根据,可得,问题得证;(2)先证明,,即有,在中结合勾股定理,可求出,即同理在中,可得,进而有, ,即,证明,即有,即,问题即可得解.【详解】(1)连接,,∵为的直径,∴,∴,∵在中,,∴平分,∴,∵,∴,∴,45x =757BF =DO DB BD AC ⊥BD BAC ∠12ABD DBC BAC ∠=∠=∠BDO DBA ∠=∠DE AB ⊥90EDB ODB ∠+∠=︒A ACB ∠=∠EDB ACB ∠=∠4cos cos cos 5EDB A ACB ∠=∠=∠=Rt DBE 5BD =Rt DBE 253AB =253BC AB ==12526BO CB ==256DO BO ==DOF EBF ∽BE BF DO FO =BE BF DO BF BO=+DO DB BC O =90BDC ∠︒BD AC ⊥ABC AB BC =BD BAC ∠12ABD DBC BAC ∠=∠=∠BO OD =BDO DBC ∠=∠BDO DBA ∠=∠∵,∴,∴,∴半径,∴为的切线;(2)∵在中,,∴,在(1)中,,,∴,∵,∴,∵在中,,,∴,∴,解得:(负值舍去),即同理在中,可得,∴,∴,即,∵,,∴,∴,∴,即,∴,解得:(经检验,符合题意),即.DE AB ⊥90EDB DBA ∠+∠=︒90EDB ODB ∠+∠=︒OD DF ⊥DF O ABC AB BC =A ACB ∠=∠90EDB DBA ACB DBC ∠+∠=︒=∠+∠ABD DBC ∠=∠EDB ACB ∠=∠4cos 5C =4cos cos cos 5EDB A ACB ∠=∠=∠=Rt DBE 3BE =4cos 5EDB ∠=45DE BD =222435BD BD ⎛⎫=+ ⎪⎝⎭5BD =Rt DBE 253AB =253BC AB ==12526BO CB ==256DO BO ==AB DF ⊥DO DF ⊥DO AB ∥DOF EBF ∽BE BF DO FO =BE BF DO BF BO=+3252566BF BF =+757BF =757BF =【点睛】本题主要考查了圆周角定理,切线的判定,解直角三角形,相似三角形的判定与性质,勾股定理等知识,掌握切线的判定以及三角函数,是解答本题的关键.27.(1)(2)或(3)【分析】(1)将,代入,利用待定系数法确定函数解析式;(2)根据图形得到:,即.运用三角形的面积公式求得点的纵坐标,然后由二次函数图象上点的坐标特征求得点的横坐标即可;(3)过点作轴于点,根据得到,可推出,进入即可求解.【详解】(1)解:∵抛物线经过,两点,∴,解得:,∴抛物线的解析式为;(2)解:∵,∴.令,则,∴.∵,,∴,,∴,234y x x =-++()1,6P ()2,6P ()3,4P ()40A ,()10C -,2y x bx c =-++125AQC AQC S S S S +=++ 5APC ABC S S =+ P 6y =P P PD x ⊥D 4OB OA ==45ABO OAB ∠=∠=︒BOC PDA ∽2y x bx c =-++()4,0A ()1,0C -164010b c b c -++=⎧⎨--+=⎩34b c =⎧⎨=⎩234y x x =-++215S S -=5ACP ABC S S -= 0x =4y =()04B ,()4,0A ()1,0C -4OB OA ==5AC =11541022ABC S AC OB =⨯⨯=⨯⨯=∴.设,∴,∴或,∴或(3)解:存在,点的坐标是. 理由:过点作轴于点,∵∴.∵,∴.∵,∴.∵,∴,∴.设点,∴,,∴,整理得,15ACP S = ()234P t t t -++,()2115341522ACP P S AC y t t =⨯⨯=⨯⨯-++= 1t =2t =()1,6P ()2,6P P ()34,P PD x ⊥D 4OB OA ==45ABO OAB ∠=∠=︒45PAB CBO ∠+∠=︒90CBO PAB BAO ∠+∠+∠=︒90CBO BCO ∠+∠=︒BCO OAB PAB PAD ∠=∠+∠=∠90BOC PDA ∠=∠=︒BOC PDA ∽BO CO PD AD=()2,34P a a a -++234PD a a =-++4AD a =-241344a a a=-++-27120a a -+=解得或(不符合题意),∴ .【点睛】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、二次函数的性质,勾股定理的应用以及三角形面积公式,相似三角形的性质等知识点.13a =24a =()3,4P。
陕西省西安市名校2024届中考二模数学试题含解析

陕西省西安市名校2024届中考二模数学试题请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,正比例函数11y k x =的图像与反比例函数22k y x=的图象相交于A 、B 两点,其中点A 的横坐标为2,当12y y >时,x 的取值范围是( )A .x <-2或x >2B .x <-2或0<x <2C .-2<x <0或0<x <2D .-2<x <0或x >22.如图,Rt △ABC 中,∠C=90°,∠A=35°,点D 在边BC 上,BD=2CD .把△ABC 绕着点D 逆时针旋转m (0<m <180)度后,如果点B 恰好落在初始Rt △ABC 的边上,那么m=( )A .35°B .60°C .70°D .70°或120°3.一元二次方程(x+2017)2=1的解为( )A .﹣2016,﹣2018B .﹣2016C .﹣2018D .﹣20174.不解方程,判别方程2x 2﹣2x =3的根的情况( )A .有两个相等的实数根B .有两个不相等的实数根C .有一个实数根D .无实数根5.如图钓鱼竿AC 长6m ,露在水面上的鱼线BC 长2m ,钓者想看看鱼钓上的情况,把鱼竿AC 逆时针转动15°到AC ′的位置,此时露在水面上的鱼线B 'C '长度是( )A .3mB .33 mC .23 mD .4m6.如图,平面直角坐标系xOy 中,四边形OABC 的边OA 在x 轴正半轴上,BC ∥x 轴,∠OAB =90°,点C (3,2),连接OC .以OC 为对称轴将OA 翻折到OA ′,反比例函数y =k x的图象恰好经过点A ′、B ,则k 的值是( )A .9B .133C .16915D .337.当ab >0时,y =ax 2与y =ax +b 的图象大致是( )A .B .C .D .8.已知关于x 的方程2222x x a x x x x x +-+=--恰有一个实根,则满足条件的实数a 的值的个数为( ) A .1 B .2 C .3 D .49.估算9153+÷的运算结果应在( )A .2到3之间B .3到4之间C .4到5之间D .5到6之间10.下面的图形是轴对称图形,又是中心对称图形的有( )A .1个B .2个C .3个D .4个二、填空题(共7小题,每小题3分,满分21分)11.如图,在3×3的方格中,A 、B 、C 、D 、E 、F 分别位于格点上,从C 、D 、E 、F 四点中任取一点,与点A 、B 为顶点作三角形,则所作三角形为等腰三角形的概率是__.12.当x=_________时,分式323x x -+的值为零. 13.若关于x 的函数2y kx 2x 1=+-与x 轴仅有一个公共点,则实数k 的值为 .14.若实数a 、b 在数轴上的位置如图所示,则代数式|b ﹣a|+2a 化简为_____.15.分解因式:8a 3﹣8a 2+2a=_____.16.如图,在边长为6的菱形ABCD 中,分别以各顶点为圆心,以边长的一半为半径,在菱形内作四条圆弧,则图中阴影部分的周长是___.(结果保留π)17.计算:2﹣1()22-=_____.三、解答题(共7小题,满分69分)18.(10分)在“一带一路”战略的影响下,某茶叶经销商准备把“茶路”融入“丝路”,经计算,他销售10kgA 级别和20kgB 级别茶叶的利润为4000元,销售20kgA 级别和10kgB 级别茶叶的利润为3500元.(1)求每千克A 级别茶叶和B 级别茶叶的销售利润;(2)若该经销商一次购进两种级别的茶叶共200kg 用于出口,其中B 级别茶叶的进货量不超过A 级别茶叶的2倍,请你帮该经销商设计一种进货方案使销售总利润最大,并求出总利润的最大值.19.(5分)近几年“雾霾”成为全社会关注的话题某校环保志愿者小组对该市2018年空气质量进行调查,从全年365天中随机抽查了50天的空气质量指数(AQI ),得到以下数据:43、62、80、78、46、78、23、59、32、78、86、125、98、116、86、69、28、43、58、87、75、116、178、146、57、26、43、59、77、103、126、159、201、289、315、253、196、102、93、72、56、43、39、44、47、34、31、29、43、1.(1)请你完成如下的统计表;AQI 0~50 51~100 101~150 151~200 201~250 300以上 质量等级A (优)B (良)C (轻度污染)D (中度污染)E (重度污染)F (严重污染) 天数(2)请你根据题中所给信息绘制该市2018年空气质量等级条形统计图;(3)请你估计该市全年空气质量等级为“重度污染”和“严重污染”的天数.20.(8分)某校九年级数学测试后,为了解学生学习情况,随机抽取了九年级部分学生的数学成绩进行统计,得到相关的统计图表如下.成绩/分 120﹣111 110﹣101 100﹣91 90以下成绩等级 A B C D请根据以上信息解答下列问题:(1)这次统计共抽取了 名学生的数学成绩,补全频数分布直方图;(2)若该校九年级有1000名学生,请据此估计该校九年级此次数学成绩在B 等级以上(含B 等级)的学生有多少人? (3)根据学习中存在的问题,通过一段时间的针对性复习与训练,若A 等级学生数可提高40%,B 等级学生数可提高10%,请估计经过训练后九年级数学成绩在B 等级以上(含B 等级)的学生可达多少人?21.(10分)观察与思考:阅读下列材料,并解决后面的问题在锐角△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,过A 作AD ⊥BC 于D (如图(1)),则sinB=AD c ,sinC=AD b,即AD =c sin B ,AD =b sin C ,于是c sin B =b sin C ,即sin sin b c B C =,同理有:sin sin c a C A =,sin sin a b A B=,所以sin sin sin a b c A B C ==. 即:在一个三角形中,各边和它所对角的正弦的比相等在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论和有关定理就可以求出其余三个未知元素.根据上述材料,完成下列各题.(1)如图(2),△ABC中,∠B=45°,∠C=75°,BC=60,则∠A=;AC=;(2)自从去年日本政府自主自导“钓鱼岛国有化”闹剧以来,我国政府灵活应对,现如今已对钓鱼岛执行常态化巡逻.某次巡逻中,如图(3),我渔政204船在C处测得A在我渔政船的北偏西30°的方向上,随后以40海里/时的速度按北偏东30°的方向航行,半小时后到达B处,此时又测得钓鱼岛A在的北偏西75°的方向上,求此时渔政204船距钓鱼岛A的距离AB.(结果精确到0.01,6≈2.449)22.(10分)某汽车厂计划半年内每月生产汽车20辆,由于另有任务,每月上班人数不一定相等,实每月生产量与计划量相比情况如下表(增加为正,减少为负)生产量最多的一天比生产量最少的一天多生产多少辆?半年内总生产量是多少?比计划多了还是少了,增加或减少多少?23.(12分)济南某中学在参加“创文明城,点赞泉城”书画比赛中,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作鼎的数量进行了分析统计,制作了两幅不完整的统计图.请根据以上信息,回答下列问题:(l)杨老师采用的调查方式是______(填“普查”或“抽样调查”);(2)请补充完整条形统计图,并计算扇形统计图中C班作品数量所对应的圆心角度数______.(3)请估计全校共征集作品的件数.(4)如果全枝征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一样等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.24.(14分)在同一副扑克牌中取出6张扑克牌,分别是黑桃2、4、6,红心6、7、8.将扑克牌背面朝上分别放在甲、乙两张桌面上,先从甲桌面上任意摸出一张黑桃,再从乙桌面上任意摸出一张红心.表示出所有可能出现的结果;小黄和小石做游戏,制定了两个游戏规则:规则1:若两次摸出的扑克牌中,至少有一张是“6”,小黄赢;否则,小石赢.规则2:若摸出的红心牌点数是黑桃牌点数的整数倍时,小黄赢;否则,小石赢.小黄想要在游戏中获胜,会选择哪一条规则,并说明理由.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解题分析】先根据反比例函数与正比例函数的性质求出B 点坐标,再由函数图象即可得出结论.【题目详解】解:∵反比例函数与正比例函数的图象均关于原点对称,∴A 、B 两点关于原点对称,∵点A 的横坐标为1,∴点B 的横坐标为-1,∵由函数图象可知,当-1<x <0或x >1时函数y 1=k 1x 的图象在22k y x的上方, ∴当y 1>y 1时,x 的取值范围是-1<x <0或x >1.故选:D .【题目点拨】本题考查的是反比例函数与一次函数的交点问题,能根据数形结合求出y 1>y 1时x 的取值范围是解答此题的关键. 2、D【解题分析】①当点B 落在AB 边上时,根据DB=DB 1,即可解决问题,②当点B 落在AC 上时,在RT △DCB 2中,根据∠C=90°,DB 2=DB=2CD 可以判定∠CB 2D=30°,由此即可解决问题.【题目详解】①当点B落在AB边上时,∵,∴,∴,②当点B落在AC上时,在中,∵∠C=90°, ,∴,∴,故选D.【题目点拨】本题考查的知识点是旋转的性质,解题关键是考虑多种情况,进行分类讨论.3、A【解题分析】利用直接开平方法解方程.【题目详解】(x+2017)2=1x+2017=±1,所以x1=-2018,x2=-1.故选A.【题目点拨】本题考查了解一元二次方程-直接开平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.4、B【解题分析】一元二次方程的根的情况与根的判别式∆有关,24b ac ∆=-2(32)42(3)=--⨯⨯-420=>,方程有两个不相等的实数根,故选B5、B【解题分析】因为三角形ABC 和三角形AB ′C ′均为直角三角形,且BC 、B ′C ′都是我们所要求角的对边,所以根据正弦来解题,求出∠CAB ,进而得出∠C ′AB ′的度数,然后可以求出鱼线B 'C '长度.【题目详解】解:∵sin ∠CAB =32262BC AC == ∴∠CAB =45°.∵∠C ′AC =15°,∴∠C ′AB ′=60°.∴sin60°=''362B C =, 解得:B ′C ′=33.故选:B .【题目点拨】此题主要考查了解直角三角形的应用,解本题的关键是把实际问题转化为数学问题.6、C【解题分析】设B (2k ,2),由翻折知OC 垂直平分AA′,A′G =2EF ,AG =2AF ,由勾股定理得OC =13,根据相似三角形或锐角三角函数可求得A′(526,613),根据反比例函数性质k =xy 建立方程求k . 【题目详解】如图,过点C 作CD ⊥x 轴于D ,过点A′作A′G ⊥x 轴于G ,连接AA′交射线OC 于E ,过E 作EF ⊥x 轴于F ,设B (2k ,2), 在Rt △OCD 中,OD =3,CD =2,∠ODC =90°,∴OC=由翻折得,AA′⊥OC ,A′E =AE ,∴sin ∠COD =AE CD OA OC=, ∴AE=2k CD OA OC ⨯⋅==,∵∠OAE+∠AOE =90°,∠OCD+∠AOE =90°,∴∠OAE =∠OCD ,∴sin ∠OAE =EF OD AE OC==sin ∠OCD , ∴EF=313OD AE k OC ⋅==, ∵cos ∠OAE =AF CD AE OC==cos ∠OCD ,∴213CD AF AE k OC =⋅=, ∵EF ⊥x 轴,A′G ⊥x 轴,∴EF ∥A′G , ∴12EF AF AE A G AG AA ==='', ∴6213A G EF k '==,4213AG AF k ==, ∴14521326OG OA AG k k k =-=-=, ∴A′(526k ,613k ), ∴562613k k k ⋅=, ∵k≠0, ∴169=15k , 故选C .【题目点拨】本题是反比例函数综合题,常作为考试题中选择题压轴题,考查了反比例函数点的坐标特征、相似三角形、翻折等,解题关键是通过设点B的坐标,表示出点A′的坐标.7、D【解题分析】∵ab>0,∴a、b同号.当a>0,b>0时,抛物线开口向上,顶点在原点,一次函数过一、二、三象限,没有图象符合要求;当a<0,b<0时,抛物线开口向下,顶点在原点,一次函数过二、三、四象限,B图象符合要求.故选B.8、C【解题分析】先将原方程变形,转化为整式方程后得2x2-3x+(3-a)=1①.由于原方程只有一个实数根,因此,方程①的根有两种情况:(1)方程①有两个相等的实数根,此二等根使x(x-2)≠1;(2)方程①有两个不等的实数根,而其中一根使x (x-2)=1,另外一根使x(x-2)≠1.针对每一种情况,分别求出a的值及对应的原方程的根.【题目详解】去分母,将原方程两边同乘x(x﹣2),整理得2x2﹣3x+(3﹣a)=1.①方程①的根的情况有两种:(1)方程①有两个相等的实数根,即△=9﹣3×2(3﹣a)=1.解得a=238.当a=238时,解方程2x2﹣3x+(﹣72+3)=1,得x1=x2=34.(2)方程①有两个不等的实数根,而其中一根使原方程分母为零,即方程①有一个根为1或2.(i)当x=1时,代入①式得3﹣a=1,即a=3.当a=3时,解方程2x2﹣3x=1,x(2x﹣3)=1,x1=1或x2=1.4.而x1=1是增根,即这时方程①的另一个根是x=1.4.它不使分母为零,确是原方程的唯一根.(ii)当x=2时,代入①式,得2×3﹣2×3+(3﹣a)=1,即a=5.当a=5时,解方程2x2﹣3x﹣2=1,x1=2,x2=﹣12.x1是增根,故x=﹣12为方程的唯一实根;因此,若原分式方程只有一个实数根时,所求的a的值分别是238,3,5共3个.故选C.【题目点拨】考查了分式方程的解法及增根问题.由于原分式方程去分母后,得到一个含有字母的一元二次方程,所以要分情况进行讨论.理解分式方程产生增根的原因及一元二次方程解的情况从而正确进行分类是解题的关键.9、D【解题分析】3,∵2<3,∴35到6之间.故选D.【题目点拨】此题主要考查了估算无理数的大小,正确进行计算是解题关键.10、B【解题分析】根据轴对称图形和中心对称图形的定义对各个图形进行逐一分析即可.【题目详解】解:第一个图形是轴对称图形,但不是中心对称图形;第二个图形是中心对称图形,但不是轴对称图形;第三个图形既是轴对称图形,又是中心对称图形;第四个图形即是轴对称图形,又是中心对称图形;∴既是轴对称图形,又是中心对称图形的有两个,故选:B.【题目点拨】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180°后两部分重合.二、填空题(共7小题,每小题3分,满分21分)11、34.【解题分析】解:根据从C、D、E、F四个点中任意取一点,一共有4种可能,选取D、C、F时,所作三角形是等腰三角形,故P(所作三角形是等腰三角形)=34;故答案为34.【题目点拨】本题考查概率的计算及等腰三角形的判定,熟记等要三角形的性质及判定方法和概率的计算公式是本题的解题关键. 12、2 【解题分析】根据若分式的值为零,需同时具备两个条件:(1)分子为1;(2)分母不为1计算 即可. 【题目详解】解:依题意得:2﹣x=1且2x+2≠1. 解得x=2, 故答案为2. 【题目点拨】本题考查的是分式为1的条件和一元二次方程的解法,掌握若分式的值为零,需同时具备两个条件:(1)分子为1;(2)分母不为1是解题的关键. 13、0或-1。
2024年广东省深圳市34校初三二模联考数学试题含答案解析

2024年广东省深圳市34校中考二模联考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.某运动项目的比赛规定,胜一场记作“+1”分,平局记作“0”分,如果某队得到“-1”分,则该队在比赛中()A.与对手打成平局B.输给对手C.打赢了对手D.无法确定【答案】B【分析】根据正负数的概念即可得出答案.【详解】解:由题意可知:胜一场记作“+1”分,平局记作“0”分,∴某队得到“-1”分,则球队比赛输给了对手.故选:B.【点睛】本题考查了正数和负数的概念,解题的关键是理解正数和负数的意义.2.花窗是中国古代园林建筑中窗的一种装饰和美化的形式.下列花窗图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】B【分析】根据轴对称图形和中心对称图形的定义判断即可.【详解】∵不是轴对称图形,也不是中心对称图形,∴不符合题意;∵ 是轴对称图形,也是中心对称图形,∴符合题意;∵不是轴对称图形,也不是中心对称图形,∴不符合题意;∵不是中心对称图形,∴不符合题意;故选B .【点睛】本题考查了轴对称图形即沿着某条直线折叠,直线两旁的部分完全重合;中心对称图形绕某点旋转180°与原图形完全重合;熟练掌握定义是解题的关键.3.中国海关总署于2024年1月12日发布消息称:2023年我国汽车出口量为522万辆,同比增加57.4%.数据“522万”用科学记数法表示应为( )A .75.2210⨯B .65.2210⨯C .452210⨯D .70.52210⨯【答案】B【分析】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义.科学记数法的表现形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n 是正整数,当原数绝对值小于1时,n 是负整数;由此进行求解即可得到答案.【详解】解:522万65220000 5.2210==⨯.故选:B .4.下图是深圳市2024年4月7~11日的天气情况,这5天中最低气温(单位:℃)的中位数与众数分别是( )A .19,19B .19,18C .18,19D .20,19【答案】A【分析】本题考查众数和中位数,解答本题的关键是明确题意,利用众数和中位数的知识解答.根据这5天的最低气温,先按照从低到高排列,然后即可得到这组数据的中位数和众数,本题得以解决.【详解】解:这5天中最低气温从低到高排列是:18,19,19,20,23,故这组数据的中位数是19,众数是19,故选:A .5.如图是某款婴儿手推车的平面示意图,若1130335AB CD ∠=︒∠=︒∥,,,则2∠的度数为( )A .75°B .80°C .85°D .90°【答案】C【分析】本题考查了平行线的性质,关键是由平行线的性质推出335ABC ∠=∠=︒,由三角形外角的性质即可求出2∠的度数.由平行线的性质推出,由邻补角的性质得到418013050∠=︒-︒=︒,由三角形外角的性质即可求出2485ABC ∠=∠+∠=︒.【详解】解:如图,∵AB CD ,∴335ABC ∠=∠=︒,∵1130∠=︒,∴418013050∠=︒-︒=︒,∴2485ABC ∠=∠+∠=︒.故选:C .6.下列计算正确的是( )A .236a a a ⋅=B .2323a a a +=C .()22343218ab ab a b -⋅=-D .()32623ab ab b÷-=-【答案】D【分析】本题主要考查了单项式乘以单项式,单项式除以单项式,同底数幂乘法和合并同类项等计算,熟知相关计算法则是解题的关键.【详解】解:A 、235a a a ⋅=,原式计算错误,不符合题意;B 、a 与22a 不是同类项,不能合并,原式计算错误,不符合题意;C 、()2223422322198a b ab ab ab a b -⋅⋅==,原式计算错误,不符合题意;D 、()32623ab ab b ÷-=-,原式计算正确,符合题意;故选:D .7.如图是一款桌面可调整的学习桌,桌面宽度AB 为60cm ,桌面平放时高度DE 为70cm ,若书写时桌面适宜倾斜角ABC ∠的度数为α,则桌沿(点A )处到地面的高度h 为( )A .()60sin 70cm α+B .(60cos 70)cm α+C .(60tan 70)cm α+D .130cm【答案】A【分析】本题考查了解直角三角形的应用,熟练掌握锐角三角函数的定义是解题的关键.根据题意可得:AC CB ⊥,然后在Rt ACB △中,利用锐角三角函数的定义求出AC 的长,从而利用线段的和差关系进行计算,即可解答.【详解】解:由题意得:AC CB ⊥,在Rt ACB △中,60cm AB =ABC α∠=,∴sin 60sin AC AB αα=⋅=,∵70cm DE =,∴桌沿(点A )处到地面的高度()60sin 70cm h AC DE α=+=+.故选:A .8.在同一直角坐标系中,一次函数1212(0)2y x y kx b k =+=+<,的图象如图所示,则下列结论错误的是( )A .2y 随x 的增大而减小B .3b >C .当120y y <<时,12x -<<D .方程组24x y kx y b -=-⎧⎨-=-⎩的解为23x y =⎧⎨=⎩【答案】C9.下图是明代数学家程大位所著的《算法统宗》中的一个问题,其大意为:有一群人分银子,如果每人分七两,则剩余四两:如果每人分九两,则还差八两.设共有银子x 两,共有y 人,则所列方程(组)错误的是( )隔壁听得客分银,不知人数不知银,七两分之多四两,九两分之少半斤.《算法统宗》注:明代时1斤=16两,故有“半斤八两”这个成语A .7498y y +=-B .4879x x -+=C .7498y x y x =-⎧⎨=+⎩D .7498y x y x=+⎧⎨-=⎩【答案】D【分析】本题考查了由实际问题抽象出一元一次方程以及数学常识,找准等量关系,正确列出一元一次方程是解题的关键.10.如图(a ),A ,B 是⊙O 上两定点,90AOB ∠=︒,圆上一动点P 从点B 出发,沿逆时针方向匀速运动到点A ,运动时间是()s x ,线段AP 的长度是()cm y .图(b )是y 随x 变化的关系图象,其中图象与x 轴交点的横坐标记为m ,则m 的值是( )A .8B .6C .D .143【答案】B【分析】本题考查了动点问题的函数图形,合理分析动点P 的运动时间是解题关键.根据AP 最长时经过的路程所用的运动时间,求出总路程所用的时间是之前的三倍,即可解答.【详解】解:如图,当点P 运动到PA 过圆心O ,即PA 为直径时,AP 最长,由图(b )得,AP 最长时为6,此时2x =,90AOB ∠=︒Q ,90POB ∴∠=︒,∴此时点P 路程为90度的弧,点P 从点B 运动到点A 的弧度为270度,∴运动时间为236⨯=,故选:B .二、填空题11= .12.若关于x 的一元二次方程()222420a x x a a -+-+=有一个根为0,则=a .【答案】0【分析】本题考查了一元二次方程的解,以及一元二次方程的定义,熟练掌握一元二次方程解的意义是解本题的关键.把0x =代入一元二次方程()222420a x x a a -+-+=中求出a 的值,再根据一元二次方程的定义判断即可.【详解】解:把0x =代入方程()222420a x x a a -+-+=得:220a a -+=,解得0a =或2a =,∵方程()222420a x x a a -+-+=是关于x 的一元二次方程,∴20a -≠,∴2a ≠.∴a 的值为0.故答案为:0.13.老师为帮助学生正确理解物理变化与化学变化,将4种生活现象制成如图所示的4张无差别的卡片A ,B ,C ,D .将卡片背面朝上,小明同学从中随机抽取2张卡片,则所抽取的2张卡片刚好都是物理变化的概率是 .A 冰化成水B 酒精燃烧C 牛奶变质D衣服晾干共有12种等可能的结果,其中所抽取的2张卡片刚好都是物理变化的结果有:共2种,∴所抽取的2张卡片刚好都是物理变化的概率为14.如图,正比例函数()0y ax a =>的图象与反比例函数()0ky k x=>的图象交于A ,B 两点,过点A 的直线分别与x 轴、y 轴交于C ,D 两点.当2AC AD =,18BCD S =△时,则k =.15.如图,在矩形ABCD 中,E 是AB 的中点,过点E 作ED 的垂线交BC 于点F ,对角线AC 分别交DE ,DF 于点G ,H ,当DH AC ⊥时,则GH EF的值为 .三、解答题16.(1)计算:()02120248cos603π-⎛⎫--︒+- ⎪⎝⎭;(2)化简:22211121a a a a -⎛⎫-⋅ ⎪+-+17.在直角坐标系中,将ABC 进行平移变换,变换前后点的坐标的情况如下表:变换前ABC ()1,1A ()4,1B ()4,5C 变换后A B C ''' ()6,3A '()9,3B 'C '(1)平移后点C '的坐标是______,并在直角坐标系中画出A B C ''' ;(2)若(),P m n 是ABC 内一点,通过上述平移变换后,点P 的对应点P '的坐标可表示为______;(3)连接BB ',CC ',则四边形BB C C ''的形状是______,其面积为______.【答案】(1)()9,7,画图见解析(2)()5,2m n ++;(3)平行四边形,20【分析】本题主要考查了坐标与图形变化—平移,平移的性质,平行四边形的性质与判定等等:(1)根据()1,1A ,()6,3A '可得平移方式为向右平移5个单位长度,向上平移2个单位长度,据此求出C '的坐标,再描出A B C '''、、,然后顺次连接A B C '''、、即可;(2)根据(1)所求的平移方式即得到答案;(3)根据平移的性质得到BB CC BB CC ''''=,∥,则四边形BB C C ''的形状是平行四边形,则4520BB C C S ''=⨯=四边形.【详解】(1)解:∵A B C ''' 是ABC 平移得到的()1,1A ,()6,3A ',∴平移方式为向右平移5个单位长度,向上平移2个单位长度,∵()4,5C ,∴()45,52C +'+,即()9,7C ',故答案为:()9,7C '如图所示,A B C ''' 即为所求;(2)解:∵A B C ''' 是ABC 向右平移5个单位长度,向上平移2个单位长度得到的,(),P m n 是ABC 内一点,∴点P 的对应点P '的坐标可表示为()5,2m n ++,故答案为:()5,2m n ++;(3)解:由平移的性质可得BB CC BB CC ''''=,∥,∴四边形BB C C ''的形状是平行四边形,∴4520BB C C S ''=⨯=四边形.故答案为:平行四边形,20.18.某校学生的上学方式分为“A 步行、B 骑车、C 乘公共交通工具、D 乘私家车、E 其它”,该校数学兴趣小组成员在全校随机抽取了若干名学生进行抽样调查,并整理样本数据,得到如下两幅不完整的统计图:(1)本次抽样调查的人数为______人,并补全条形统计图;(2)扇形统计图中“A 步行”上学方式所对的圆心角是______度;(3)若该校共2000名学生,请估计该校“B骑车”上学的人数约是______人;(4)该校数学兴趣小组成员结合调查获取的信息,向学校提出了一些建议.如:骑车上学的学生超过全校学生总人数的30%,建议学校合理安排自行车停车场地.请你结合上述统计的全过程,再提出一条合理化建议.故答案为:150;(2)扇形统计图中“A步行”上学方式所对的圆心角是故答案为:36;(3)估计该校“B骑车”上学的人数约是故答案为:680;(4)为了节约和保护环境请同学们尽量不要乘坐私家车(答案不唯一).19.为培养学生的阅读能力,深圳市某校八年级购进《朝花夕拾》和《西游记》两种书籍,分别花费了14000元和7000元,已知《朝花夕拾》的订购单价是《西游记》的订购单价的1.4倍.并且订购的《朝花夕拾》的数量比《西游记》的数量多300本.(1)求该校八年级订购的两种书籍的单价分别是多少元;(2)该校八年级计划再订购这两种书籍共100本作为备用,其中《朝花夕拾》订购数量不低于30本,且两种书总费用不超过1200元,请求出再订购这两种书籍的最低总费用的方案及最低费用为多少元?答:《朝花夕拾》的订购单价是14元,《西游记》的订购单价是10元;(2)设再次订购m 本《朝花夕拾》,则再次订购(100)m -本《西游记》,根据题意得:301410(100)1200m m m ≥⎧⎨+-≤⎩,解得:3050m ≤≤.设该校八年级再次订购这两种书籍共花费为w 元,则1410(100)w m m =+-,即41000w m =+,40> ,w ∴随m 的增大而增大,∴当30m =时,w 取得最小值,最小值为43010001120⨯+=(元),此时1001003070m -=-=(本).答:当再次订购30本《朝花夕拾》,70本《西游记》时,总费用最低,最低费用为1120元.20.如图,以ABC 的边AB 为直径作O 分别交AC ,BC 于点D ,E ,过点E 作EF AC ⊥,垂足为F ,EF 与AB 的延长线交于点G .(1)以下条件:①E 是劣弧BD 的中点:②CF DF =;③AD DF =.请从中选择一个能证明EF 是O 的切线的条件,并写出证明过程:(2)若EF 是是O 的切线,且46AF AB ==,,求BG 的长.【答案】(1)详见解析(2)6BG =∴∠=∠,12,OA OD=,∠+∠=∠+∠A123A∴∠=∠=∠=∠,123∴∥,OE AC,EF AC⊥OE AC∴∥,∴∠=∠=︒,90OEG AFE的切线.∴是OEFDE OE,方法2:证明:连接,,=⊥,CF DF EF AC∴垂直平分线段CD,EF∴=,CE DE四边形ADEB为圆内接四边形,∴∠=∠,1CDE,OB OE=∴∠=∠,12∴∠=∠,C2∴∥,OE ACOEG AFE∴∠=∠=︒,90的切线.∴是OEF∥,(2)由(1)可知OE AC90,∴∠=∠=︒∠=∠,OEG AFE GOE GAF∴△∽△,GOE GAF21.【项目化学习】项目主题:从函数角度重新认识“阻力对物体运动的影响”.项目内容:数学兴趣小组对一个静止的小球从斜坡滚下后,在水平木板上运动的速度、距离与时间的关系进行了深入探究,兴趣小组先设计方案,再进行测量,然后根据所测量的数据进行分析,并进一步应用.实验过程:如图(a )所示,一个黑球从斜坡顶端由静止滚下沿水平木板直线运动,从黑球运动到点A 处开始,用频闪照相机、测速仪测量并记录黑球在木板上的运动时间x (单位:s )、运动速度v (单位:cm /s )、滑行距离y (单位:cm )的数据.任务一:数据收集记录的数据如下:运动时间/t x0246810L 运动速度()/cm /s v 1098765L 滑行距离/cm y 01936516475L根据表格中的数值分别在图(b )、图(c )中作出v 与x 的函数图象、y 与x 的函数图象:(1)请在图(b)中画出v与x的函数图象:任务二:观察分析(2)数学兴趣小组通过观察所作的函数图象,并结合已学习过的函数知识,发现图(b)中v与x的函数关系为一次函数关系,图(c)中y与x的函数关系为二次函数关系.请你结合表格数据,分别求出v与x的函数关系式和y与x的函数关系式:(不要求写出自变量的取值范围)任务三:问题解决(3)当黑球在水平木板停下来时,求此时黑球的滑行距离:n处有一辆电动小车,以2cm/s的速(4)若黑球到达木板点A处的同时,在点A的前方cm度匀速向右直线运动,若黑球不能撞上小车,则n的取值范围应为______.(2)由(b )中图象可知:v 与x 的函数关系为一次函数关系,∴设v kx c =+,代入(0,10),(2,9)得:1029c k c =⎧⎨+=⎩,解得:1210k c ⎧=-⎪⎨⎪=⎩,v ∴与x 的函数关系为1102v x =-+;设2y ax bx =+代入(2,19),(4,36)得:22.综合与探究.【特例感知】(1)如图(a ),E 是正方形ABCD 外一点,将线段AE 绕点A 顺时针旋转90︒得到AF ,连接DE ,BF .求证:DE BF =;【类比迁移】(2)如图(b ),在菱形ABCD 中,4AB =,=60B ∠︒,P 是AB 的中点,将线段PA ,PD 分别绕点P 顺时针旋转90︒得到PE ,PF ,PF 交BC 于点G ,连接CE ,CF ,求四边形CEGF 的面积;【拓展提升】(3)如图(c ),在平行四边形ABCD 中,12AB =,10AD =,B ∠为锐角且满足4sin 5B =.P 是射线BA 上一动点,点C ,D 同时绕点P 顺时针旋转90︒得到点C ',D ',当BC D ''△为直角三角形时,直接写出BP 的长.线段AE 绕点A 顺时针旋转90︒得到AF ,AE AF ∴=,90EAF ∠=︒,EAF BAD ∴∠=∠,EAF DAF BAD DAF ∴∠-∠=∠-∠,DAE BAF ∴∠=∠,(SAS)ADE ABF ∴ ≌,DE BF ∴=;(2)如图1,连接AC ,作FH PC ⊥,交PC 的延长线于H ,作GQ PC ⊥于Q ,四边形ABCD 是菱形,AB BC ∴=,AB CD ,60B ∠=︒ ,ABC ∴ 是等边三角形,AC BC = ,P 是AB 的中点,CP AB ∴⊥,122AP PB AB ===,PC CD ∴⊥,4sin 60PC =⋅︒=PF PD ∴==90DPF DCP ∠=∠=︒ ,90DPC CPF DPC PDC ∴∠+∠=∠+∠=︒,CPF PDC ∴∠=∠,90H DCP ∠=∠=︒ ,(AAS)PHF DCP ∴△≌△,FH PC ∴==211622PCF S PC FH ∴=⋅=⨯=△,设QG x =,则CQ =,90PQG DCP ∠=∠=︒ ,PQG DCP ∴△∽△,∴PQ QG CD PC =,∴4PQ =PQ ∴,由PQ CQ PC +=得,=,65x ∴=,116622255PEG S PE QG ∴=⋅=⨯⨯=△,624655CEFG S ∴=-=四边形;(3)如图2,以点B 为坐标原点,BC 所在的直线为x 轴,建立坐标系,作PF AD ⊥,交DA 的延长线于点F ,作D G PF '⊥于G ,作CV x ⊥轴,过点P 作PV CV ⊥于V ,作C W PV '⊥于W ,4sin 5B =Q ,∴直线AB 的解析式为43y x =,设4(,)3P m m ,90F G ∠=∠=︒ ,90PDF DPF ∴∠+∠=︒,90DPD '∠=︒ ,90DPF GPD '∴∠+∠=︒,PDF GPD '∴∠=∠,PD D P '= ,(AAS)PDF D PC '∴△≌△,PF GD '∴=,PG DF =,12AB = ,4sin sin 5DCE B ∠==,4481255DE ∴=⨯=,3361255CE =⨯=,364810,55D ⎛⎫∴+ ⎪⎝⎭,即:8648,55D ⎛⎫⎪⎝⎭,865PG DF m ∴==-,48453GD PF m '==-,484486,()5335D m m m m ⎛⎫'∴+--- ⎪⎝⎭,即481786,5335m m ⎛⎫-- ⎪⎝⎭,222248178650260()(388533593BD m m m m '∴=-+-=-+,同理可得:43PW CV m ==,10C W PV m '==-,44,(10)33C m m m m ⎛⎫'∴--- ⎪⎝⎭,即:17,1033m m ⎛⎫-- ⎪⎝⎭,22221750140()(10)1003393BC m m m m '∴=+-=-+,当90BC D ''∠=︒时,12C D CD ''== ,2225014050260121003889393m m m m ∴+-+=-+,185m ∴=,563BP m ∴==,当90BD C ''∠=︒时,2225014050260100388129393m m m m -+=-++,545m ∴=,5183BP m ∴==,当90C BD ''∠=︒时,2225014050260100388129393m m m m -++-+=,m ∴5103BP m ∴==。
2023年江苏省扬州市邗江区中考数学二模试卷【答案版】

2023年江苏省扬州市邗江区中考数学二模试卷一、选择题(本大题共有8小题,每小题3分,共24分.下面各题均有四个选项,其中只有一个是符合题意的,请将正确选项前的字母填涂在答题卡中相应的位置上.)1.下列比﹣2小的数是()A.0B.﹣1C.−√3D.−√52.下列运算正确的是()A.(a+b)2=a2+b2B.2a+3b=5abC.a6÷a3=a2D.a3•a2=a53.如图是某几何体的主视图、左视图、俯视图,该几何体是()A.长方体B.球C.三棱柱D.圆柱4.扬州是著名的长毛绒玩具之都.生产的长毛绒玩具深受国内外游客青睐.今年“烟花三月”国际经贸旅游节期间,某玩具商店一个星期销售的长毛绒玩具数量如下:则这个星期该玩具商店销售长毛绒玩具的平均数和中位数分别是()A.48,48B.50,48C.48,50D.50,50̂上,则∠CME的度数为()5.如图,正六边形ABCDEF内接于⊙O,点M在ABA.30°B.36°C.45°D.60°6.如图,D、E分别是△ABC的边AB、AC上的点,且DE∥BC,BE、CD相交于点O,若△DOE的面积与△COB的面积的比为4:25,则AD:DB等于()A .2:3B .2:5C .3:5D .4:257.如图,矩形ABCD 中,AE ⊥BD ,CF ⊥BD ,垂足分别是E 、F ,当EF =AE 时,tan ∠ADB =( )A .12B .√33C .√5−12D .238.现有一列数a 1,a 2,a 3,…,a 2021,a 2022,a 2023,对于任意相邻的三个数,都有中间的数等于左右两个数的和,如果a 2022=2022,a 2023=2023,则a 1+a 2+a 3+…+a 2021+a 2022+a 2023的值为( ) A .2022B .2023C .4044D .4045二、填空题(本大题共有10小题,每小题3分,共30分,不需写出解答过程,请把答案直接填写在答题卡相应位置上.)9.据报道,今年二季度,扬州全市计划开工亿元以上厦大项目174个,总投资约1604亿元.数据1604亿元用科学记数法表示为 元. 10.在函数y =1x−2中,自变量x 的取值范围是 . 11.因式分解mx 2+2mx +m = .12.如图,直线a ∥b ,将一个直角三角尺按如图所示的位置摆放,若∠1=56°,则∠2的度数为 .13.若圆锥的底面半径为2,母线长为3,则圆锥的侧面积等于 .14.《田亩比类乘除捷法》是我国古代数学家杨辉的著作,其中有一个数学问题:“直田积八百六十四步,只云阔不及长一十二步,问长及阔各几步”.意思是:一块矩形田地的面积为864平方步,只知道它的宽比长少12步,问它的长与宽各多少步?利用方程思想,设宽为x 步,则依题意列方程为 . 15.如图,在平面直角坐标系中,四边形ABCO 是正方形,已知点C (2,1),则点B 的坐标是 .16.若代数式(x ﹣2)(x ﹣k )(x ﹣4)化简运算的结果为x 3+ax 2+bx +8,则a +b = .17.反比例函数y 1=3x、y 2=k x的部分图象如图所示,点A 为y 1=3x(x >0)的图象上一点,过点A 作y 轴的平行线交y 2=k x 的图象于点B ,C 是y 轴上任意一点,连接AC 、BC ,S △ABC =2,则k = .18.如图,在直角△ABC 中,∠ACB =90°,BC =1,AC =2,点P 是边AB 上的动点,过点P 作PH ∥BC 交AC 于点H ,则PH +PC 的最小值为 .三、解答题(共10题,满分96分.在答题卡相应的题号后答题区域内作答.必须写出运算步骤、推理过程或文字说明,作图时,必须使用黑色碳素笔在答题卡上作图.) 19.计算或化简:(1)(12)﹣1﹣3tan30°+|3−√12|;(2)a 2+aa 2−2a+1÷(2a−1−1a).20.已知关于x 的一元二次方程x 2﹣(m ﹣1)x +m ﹣2=0. (1)求证:该方程总有两个实数根;(2)若该方程两个实数根的差为3,求m 的值.21.春暖花开日,正是读书时.在第28个“世界读书日”来临之际,某校开展可主题为“遇见美好,喜‘阅’发生”的读书系列活动.为了解学生平时的阅读时情况,从全校随机抽取了100名学生进行问卷调查,获取了他们每人平均每天阅读时间的数据(t/分钟).将收集的数据分为A,B,C,D,E五个等级,绘制成如下统计图表(尚不完整):平均每天阅读时间统计表请根据图表中的信息,解答下列问题:(1)x=;y=;(2)在扇形统计图中,E组所对应的扇形的圆心角是度;(3)学校拟将平均每天阅读时间不低于50分钟的学生评为“喜‘阅’达人”.若全校学生以1600人计算,试估计被评为“喜‘阅’达人”的学生人数.22.根据党中央对“精准扶贫,科教扶贫”的要求,某校将选派2名教师去贫困山区学校支教,现有刘老师、王老师、张老师、李老师符合条件报名参加,学校决定从这4位老师中任意选派2名前往.(1)“赵老师被选派”是事件,“王老师被选派”是事件(填“不可能”或“必然”或“随机”);(2)用画树状图或列表的方法表示这次选派所有可能的结果,并求出“王老师被选派”的概率.23.(10分)如图,在菱形ABCD中,O为AC,BD的交点,P是边AD上一点,PM∥BD交AC于M点,PN⊥BD于N点.(1)求证:四边形OMPN是矩形;(2)若AD=5,AC=6,当四边形OMPN是正方形时,求AP的长.24.(10分)某国产品牌汽车企业在“五一”前夕发布了两款价格相同、续航里程相同、类别不同的汽车,两款汽车的部分参数信息如下表:(1)若两款车的续航里程均为a 千米,则燃油汽车的每千米行驶费用是 元,电动汽车的每千米行驶费用是 元(用含a 的代数式表示);(2)经测算,电动汽车的每千米行驶费用比燃油汽车便宜0.5元,请求出续航里程a 的值;(3)在(2)求得的续航里程a 值的情况下,燃油汽车和电动汽车每年还有其他费用分别为4800元和7550元,当每年行驶里程为多少千米时,买电动汽车的年费用更低?(年费用=年行驶费用+年其它费用)25.(10分)如图,已知点B 在直线MN 上,A 点是直线MN 外一点.(1)请你用无刻度的直尺和圆规作⊙O ,使⊙O 经过点A 且与直线MN 相切于点B (不写作法,保留作图痕迹);(2)连接AB ,若AB =5cm ,tan ∠ABN =34,求⊙O 的半径.26.(10分)如图,△ABC 是⊙O的内接三角形,AB 是⊙O 的直径,过C 点作⊙O 的切线CD ,且BD =BC ,直线CD 与直径AB 的反向延长线交于P 点. (1)探究∠CBD 与∠ABC 之间的数量关系,并说明理由; (2)若AB =6,sin P =13,求CD 的长.27.(12分)通过课本上对函数的学习,我们积累了研究函数性质的经验,以下是小明探究函数M:y=x2﹣4|x|+3的图象和性质的部分过程,请按要求回答问题:(1)列表,列出y与x的几组对应值如表:表格中,a=.(2)在如图所示的平面直角坐标系xOy中,画出函数M的图象.(3)观察图象,性质及其运用:①当x时,y随x的增大而增大;②求函数M:y=x2﹣4|x|+3与直线l:y=2x+3的交点坐标;③若函数M:y=x2﹣4|x|+3与直线l:y=2x+b只有两个交点,请求出b的取值范围.28.(12分)给出一个新定义:有两个等腰三角形,如果它们的顶角相等、顶角顶点互相重合且其中一个等腰三角形的一个底角顶点在另一个等腰三角形的底边上,那么这两个等腰三角形互为“友好三角形”.(1)如图①,△ABC和△ADE互为“友好三角形”,点D是BC边上一点(异于B点),AB=AC,AD =AE,∠BAC=∠DAE=m°,连接CE,则CE BD(填“<”或“=”或“>”),∠BCE=°(用含m的代数式表示);(2)如图②,△ABC和△ADE互为“友好三角形”,点D是BC边上一点,AB=AC,AD=AE,∠BAC=∠DAE=60°,M、N分别是底边BC、DE的中点,请探究MN与CE的数量关系,并说明理由;(3)如图③,△ABC和△ADE互为“友好三角形”,点D是BC边上一动点,AB=AC,AD=AE,∠BAC=∠DAE=90°,BC=6,过D点作DF⊥AD,交直线CE于F点,若点D从B点运动到C点,直接写出F点运动的路径长.2023年江苏省扬州市邗江区中考数学二模试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.下面各题均有四个选项,其中只有一个是符合题意的,请将正确选项前的字母填涂在答题卡中相应的位置上.)1.下列比﹣2小的数是()A.0B.﹣1C.−√3D.−√5解:因为|−√5|>|﹣2|>|−√3|,所以−√5<−2<−√3<−1<0,所以比﹣2小的数是−√5.故选:D.2.下列运算正确的是()A.(a+b)2=a2+b2B.2a+3b=5abC.a6÷a3=a2D.a3•a2=a5解:A、因为(a+b)2=a2+2ab+b2,故本选项错误;B、因为2a与3b不是同类项,不能合并,故本选项错误;C、根据同底数幂的除法法则,底数不变,指数相减,可知a6÷a3=a6﹣3=a3,故本选项错误;D、根据同底数幂的乘法法则,底数不变,指数相加,可知a3•a2=a3+2=a5,故本选项正确.故选:D.3.如图是某几何体的主视图、左视图、俯视图,该几何体是()A.长方体B.球C.三棱柱D.圆柱解:∵主视图与左视图是矩形,俯视图是圆,∴该几何体是圆柱.故选:D.4.扬州是著名的长毛绒玩具之都.生产的长毛绒玩具深受国内外游客青睐.今年“烟花三月”国际经贸旅游节期间,某玩具商店一个星期销售的长毛绒玩具数量如下:则这个星期该玩具商店销售长毛绒玩具的平均数和中位数分别是()A.48,48B.50,48C.48,50D.50,50解:这个星期该玩具店销售长毛绒玩具的平均数x=17×(35+47+48+50+42+60+68)=50(件);将这7天销售长毛绒玩具的数量从小到大排列:35,42,47,48,50,60,68,处在中间位置的一个数,即第4个数是48,因此中位数是48.故选:B.5.如图,正六边形ABCDEF内接于⊙O,点M在AB̂上,则∠CME的度数为()A.30°B.36°C.45°D.60°解:连接OC,OD,OE,∵多边形ABCDEF是正六边形,∴∠COD=∠DOE=60°,∴∠COE=2∠COD=120°,∴∠CME=12∠COE=60°,故选:D.6.如图,D、E分别是△ABC的边AB、AC上的点,且DE∥BC,BE、CD相交于点O,若△DOE的面积与△COB的面积的比为4:25,则AD:DB等于()A .2:3B .2:5C .3:5D .4:25解:∵DE ∥BC , ∴△DOE ∽△COB , ∴S △DOE S △BOC =(DE BC)2=425, ∴DE BC=25,∵DE ∥BC , ∴AD AB=25,∴AD :DB =2:3. 故选:A .7.如图,矩形ABCD 中,AE ⊥BD ,CF ⊥BD ,垂足分别是E 、F ,当EF =AE 时,tan ∠ADB =( )A .12B .√33C .√5−12D .23解:设EF =AE =x , ∵四边形ABCD 是矩形,∴∠ADC =90°,CD ∥AB ,CD =AB , ∴∠CDF =∠ABE , ∵AE ⊥BD ,CF ⊥BD , ∴∠CFD =∠AEB =90°, ∴△CFD ≌△AEB (AAS ), ∴CF =AE =x ,∵∠ABE +∠ADE =90°,∠ADE +∠DAE =90°, ∴∠ABE =∠DAE ,∴△ABE ∽△DAE ,∴△CFD ∽△DAE ,∴AD DC =AE DF =DE CF , ∴x DE =DF+x x ,∴DF 2+xDF ﹣x 2=0,∴DF =−x+√5x 2或DF =−x−√5x 2(舍去), ∴tan ∠ADB =AE DE =x −x+5x 2=√5−12, 故选:C . 8.现有一列数a 1,a 2,a 3,…,a 2021,a 2022,a 2023,对于任意相邻的三个数,都有中间的数等于左右两个数的和,如果a 2022=2022,a 2023=2023,则a 1+a 2+a 3+…+a 2021+a 2022+a 2023的值为( )A .2022B .2023C .4044D .4045解:∵任意相邻的三个数,都有中间的数等于左右两个数的和,如果a 2022=2022,a 2023=2023,∴这列数字为:2023,1,﹣2022,﹣2023,﹣1,2022,2023,1,﹣2022,﹣2023,﹣1,2022,2023, (2023)∴a 1+a 2+a 3+…+a 2021+a 2022+a 2023的值为:2023,故选:B .二、填空题(本大题共有10小题,每小题3分,共30分,不需写出解答过程,请把答案直接填写在答题卡相应位置上.)9.据报道,今年二季度,扬州全市计划开工亿元以上厦大项目174个,总投资约1604亿元.数据1604亿元用科学记数法表示为 1.604×1011 元.解:1604亿=1604×108=1.604×1011.故答案为:1.604×1011.10.在函数y =1√x−2中,自变量x 的取值范围是 x >2 . 解:由题意得,x ﹣2>0,解得x >2.故答案为:x >2.11.因式分解mx 2+2mx +m = m (x +1)2 .解:原式=m (x 2+2x +1)=m (x +1)2,故答案为:m (x +1)2.12.如图,直线a ∥b ,将一个直角三角尺按如图所示的位置摆放,若∠1=56°,则∠2的度数为 34° .解:如图,过点B作BC∥b,∵∠1=56°,∴∠DBC=∠1=56°,∵∠DBC+∠ABC=90°,∴∠ABC=90°﹣∠DBC=90°﹣56°=34°,∵a∥b,AB∥b,∴AB∥a,∴∠2=∠ABC=34°.故答案为:34°.13.若圆锥的底面半径为2,母线长为3,则圆锥的侧面积等于6π.解:圆锥的侧面积=πrl=2×3π=6π.故答案为:6π.14.《田亩比类乘除捷法》是我国古代数学家杨辉的著作,其中有一个数学问题:“直田积八百六十四步,只云阔不及长一十二步,问长及阔各几步”.意思是:一块矩形田地的面积为864平方步,只知道它的宽比长少12步,问它的长与宽各多少步?利用方程思想,设宽为x步,则依题意列方程为x(x+12)=864.解:∵矩形的宽为x(步),且宽比长少12(步),∴矩形的长为(x+12)(步).依题意,得:x(x+12)=864.故答案为:x(x+12)=864.15.如图,在平面直角坐标系中,四边形ABCO是正方形,已知点C(2,1),则点B的坐标是(1,3).解:如图,过点B作BD⊥y轴于D,过点C作CE⊥x轴于E,∵C点坐标为(2,1),∴OE=2,CE=1,∴OC=√12+22=√5,∵四边形ABCO是正方形,∴OA=OC=√5,∵∠CEO=∠A,∠AOD=∠COE,∴△COE∽△GOA,∴OCOG =OEOA,OG=52,∴AG=√OG2−OA2=√52,∴BG=AB﹣AG=√5−√52=√52,∵∠BDG=∠A,∠BGD=∠OGA,∴△BDG∽△OAG,BD OA =DGAG=BGOG=√55,∴DG=12,BD=1,∴OD=OG+DG=52+12=3,∴B (1,3);故答案为:(1,3).16.若代数式(x ﹣2)(x ﹣k )(x ﹣4)化简运算的结果为x 3+ax 2+bx +8,则a +b = ﹣3 .解:∵(x ﹣2)(x ﹣k )(x ﹣4)=(x 2﹣6x +8)(x ﹣k )=x 3+(﹣k ﹣6)x 2+(6k +8)x ﹣8k ,∴{−k −6=a6k +8=b −8k =8,解得{a =−5b =2k =−1,∴a +b =﹣5+2=﹣3,故答案为:﹣3.17.反比例函数y 1=3x 、y 2=k x 的部分图象如图所示,点A 为y 1=3x (x >0)的图象上一点,过点A 作y 轴的平行线交y 2=k x 的图象于点B ,C 是y 轴上任意一点,连接AC 、BC ,S △ABC =2,则k = ﹣1 .解:连接OB 、OA ,AB 与x 轴交于点D ,如图,∵OC ∥BA ,∴S △OBA =S △ABC ,∵S △AOB =S △OAD +S △OBD ,∴12|k |+12×3=2, ∴|k |=1,而k <0,∴k =﹣1.故答案为:﹣1.18.如图,在直角△ABC 中,∠ACB =90°,BC =1,AC =2,点P 是边AB 上的动点,过点P 作PH ∥BC交AC 于点H ,则PH +PC 的最小值为 85 .解:如图,作点C 关于AB 的对称点C ′,连接CC ′,交AB 与点D ,作C ′H ⊥AC 交AB 与点P ,垂足为H ,连接PC ,由对称得,PC =PC ′,∴PH +PC =PH +PC ′,∵点到直线间垂线段最短,∴C ′H 为所求,在Rt △ABC 中,BC =1,AC =2,∴AB =√12+22=√5,∵S △ABC =12BC •AC =12AB •CD∴CD =BC⋅AC AB =1×2√5=2√55, 由对称得,CC ′=2CD =4√55, ∵∠C ′=∠A ,∴△CC ′H ∽△ABC ,∴C ′H :AC =CC ′:AB ,即C ′H :2=4√55:√5,∴C ′H =85.故答案为:85. 三、解答题(共10题,满分96分.在答题卡相应的题号后答题区域内作答.必须写出运算步骤、推理过程或文字说明,作图时,必须使用黑色碳素笔在答题卡上作图.)19.计算或化简:(1)(12)﹣1﹣3tan30°+|3−√12|; (2)a 2+aa 2−2a+1÷(2a−1−1a ). 解:(1)原式=2﹣3×√33+√12−3=2−√3+2√3−3=√3−1;(2)原式=a(a+1)(a−1)2÷2a−a+1a(a−1)=a(a+1)(a−1)2•a(a−1)a+1 =a 2a−1. 20.已知关于x 的一元二次方程x 2﹣(m ﹣1)x +m ﹣2=0.(1)求证:该方程总有两个实数根;(2)若该方程两个实数根的差为3,求m 的值.(1)证明:∵一元二次方程x 2﹣(m ﹣1)x +m ﹣2=0,∴Δ=(1﹣m )2﹣4(m ﹣2)=m 2﹣2m +1﹣4m +8=(m ﹣3)2.∵(m ﹣3)2≥0,∴Δ≥0.∴该方程总有两个实数根.(2)解:∵一元二次方程x 2﹣(m ﹣1)x +m ﹣2=0,解方程,得x 1=1,x 2=m ﹣2.∵该方程的两个实数根的差为3,∴|1﹣(m ﹣2)|=3.∴m =0或m =6.综上所述,m 的值是0或6.21.春暖花开日,正是读书时.在第28个“世界读书日”来临之际,某校开展可主题为“遇见美好,喜‘阅’发生”的读书系列活动.为了解学生平时的阅读时情况,从全校随机抽取了100名学生进行问卷调查,获取了他们每人平均每天阅读时间的数据(t /分钟).将收集的数据分为A ,B ,C ,D ,E 五个等级,绘制成如下统计图表(尚不完整):平均每天阅读时间统计表请根据图表中的信息,解答下列问题:(1)x=20;y=32;(2)在扇形统计图中,E组所对应的扇形的圆心角是115.2度;(3)学校拟将平均每天阅读时间不低于50分钟的学生评为“喜‘阅’达人”.若全校学生以1600人计算,试估计被评为“喜‘阅’达人”的学生人数.解:(1)由题意得,x=100×20%=20,y=100﹣2﹣5﹣20﹣41=32;故答案为:20;32;(2)在扇形统计图中,E组所对应的扇形的圆心角是360°×32100=115.2°;故答案为:115.2;(3)1600×32100=512(人),答:估计被评为“喜‘阅’达人”的学生人数大约为512人.22.根据党中央对“精准扶贫,科教扶贫”的要求,某校将选派2名教师去贫困山区学校支教,现有刘老师、王老师、张老师、李老师符合条件报名参加,学校决定从这4位老师中任意选派2名前往.(1)“赵老师被选派”是不可能事件,“王老师被选派”是随机事件(填“不可能”或“必然”或“随机”);(2)用画树状图或列表的方法表示这次选派所有可能的结果,并求出“王老师被选派”的概率.解:(1)“赵老师被选派”是不可能事件,“王老师被选派”是随机事件,故答案为:不可能,随机;(2)把刘老师、王老师、张老师、李老师分别记为A、B、C、D,画树状图如下:共有12种等可能的结果,其中“王老师被选派”的结果有6种,∴“王老师被选派”的概率为612=12. 23.(10分)如图,在菱形ABCD 中,O 为AC ,BD 的交点,P 是边AD 上一点,PM ∥BD 交AC 于M 点,PN ⊥BD 于N 点.(1)求证:四边形OMPN 是矩形;(2)若AD =5,AC =6,当四边形OMPN 是正方形时,求AP 的长.(1)证明:∵四边形ABCD 为菱形,∴AC ⊥BD ,∵PM ∥BD ,∴PM ⊥AC .∵PN ⊥BD ,∴∠AOD =∠PMO =∠PNO =90°,∴四边形OMPN 是矩形;(2)解:∵四边形OMPN 是正方形,∴PM =MO =ON =PN .∵四边形ABCD 为菱形,∴AC ⊥BD ,AO =12AC =3,∴OD =√AD 2−AO 2=4.设PM =MO =ON =PN =x ,则AM =3﹣x .∵PM ∥BD ,∴△AMP ∽△AOD ,∴AM AO =MP OD ,∴3−x 3=x 4, ∴x =127.∵△AMP ∽△AOD ,∴AP AD =MP OD ,∴AP 5=1274,∴AP =157. 24.(10分)某国产品牌汽车企业在“五一”前夕发布了两款价格相同、续航里程相同、类别不同的汽车,两款汽车的部分参数信息如下表:(1)若两款车的续航里程均为a 千米,则燃油汽车的每千米行驶费用是340a 元,电动汽车的每千米行驶费用是 33a 元(用含a 的代数式表示); (2)经测算,电动汽车的每千米行驶费用比燃油汽车便宜0.5元,请求出续航里程a 的值;(3)在(2)求得的续航里程a 值的情况下,燃油汽车和电动汽车每年还有其他费用分别为4800元和7550元,当每年行驶里程为多少千米时,买电动汽车的年费用更低?(年费用=年行驶费用+年其它费用)解:(1)根据题意得:燃油汽车的每千米行驶费用是8.5×40a =340a 元, 电动汽车的每千米行驶费用是0.55×60a =33a 元. 故答案为:340a ,33a ;(2)根据题意得:340a −33a =0.5,解得:a =614, 经检验,a =614是所列方程的解,且符合题意.答:续航里程a 的值为614;(3)设每年行驶里程为x 千米,根据题意得:340614x +4800>33614a +7550,解得:x >5500.答:当每年行驶里程超过5500千米时,买电动汽车的年费用更低.25.(10分)如图,已知点B 在直线MN 上,A 点是直线MN 外一点.(1)请你用无刻度的直尺和圆规作⊙O ,使⊙O 经过点A 且与直线MN 相切于点B (不写作法,保留作图痕迹);(2)连接AB ,若AB =5cm ,tan ∠ABN =34,求⊙O 的半径.解:(1)如图:⊙O 即为所求;(2)∵OB ⊥MN ,∴∠ABO +∠ABN =90°,∵OC ⊥AB ,∴∠OCB =90°,BC =12AB =2.5cm ,∴∠BOC +∠ABO =90°,∴∠BOC =∠ABN ,∴tan ∠ABN =tan ∠BOC =34=BC OC =2.5OC ,解得:OC =103, ∴OB =√OC 2+BC 2=256.26.(10分)如图,△ABC 是⊙O 的内接三角形,AB 是⊙O 的直径,过C 点作⊙O 的切线CD ,且BD =BC ,直线CD 与直径AB 的反向延长线交于P 点.(1)探究∠CBD 与∠ABC 之间的数量关系,并说明理由;(2)若AB=6,sin P=13,求CD的长.解:(1)∠CBD=2∠ABC,理由如下:作BH⊥DC于H,连接OC,∵PD切⊙O于C,∴OC⊥PD,∴OC∥BH,∴∠OCB=∠CBH,∵OC=OB,∴∠OCB=∠OBC,∴∠CBH=∠OBC,∵BC=BD,BH⊥CD于H,∴∠CBD=2∠CBH,CD=2CH,∴∠CBD=2∠ABC;(2)∵∠OCP=90°,∴sin P=OCOP=13,∵AB=6,∴OC=12AB=12×6=3,∴OP=9,∴PC=√PO2−OC2=6√2,∵OC∥BH,∴PC:CH=PO:OB,∴6√2:CH=9:3,∴CH=2√2,∴CD=2CH=4√2.27.(12分)通过课本上对函数的学习,我们积累了研究函数性质的经验,以下是小明探究函数M:y=x2﹣4|x|+3的图象和性质的部分过程,请按要求回答问题:(1)列表,列出y与x的几组对应值如表:表格中,a=﹣1.(2)在如图所示的平面直角坐标系xOy中,画出函数M的图象.(3)观察图象,性质及其运用:①当x>2或﹣2<x<0时,y随x的增大而增大;②求函数M:y=x2﹣4|x|+3与直线l:y=2x+3的交点坐标;③若函数M:y=x2﹣4|x|+3与直线l:y=2x+b只有两个交点,请求出b的取值范围.解:(1)当x=2时,y=22﹣4×|2|+3=﹣1,故答案为:﹣1;(2)如图所示:(3)由图象可得:①x >2或﹣2<x <0,y 随x 的增大而增大,故答案为:>2或﹣2<x <0;②y =x 2﹣4|x |+3={x 2−4x +3(x ≥0)x 2+4x +3(x <0), 当x ≥0时,联立方程组{y =2x +3y =x 2−4x +3, 解得{x =0y =3或{x =6y =15, ∴y =x 2﹣4x +3与y =2x +3的交点坐标为(0,3)和(6,15);当x <0时,{y =2x +3y =x 2+4x +3, 解得{x =−2y =−1或{x =0y =3(舍去). 综上,y =x 2﹣4|x |+3与直线l :y =2x +3的交点坐标为(0,3),(6,15),(﹣2,﹣1);③如图,当直线l :y =2x +b 经过点(3.0)时,即0=2×3+b ,解得b =﹣6,此时函数M :y =x 2﹣4|x |+3与直线l :y =2x +b 只有1个交点,当x <0时,且函数M :y =x 2+4x +3与直线l :y =2x +b 相切时,此时函数M :y =x 2﹣4|x |+3与直线l :y =2x +b 恰有3个交点,由2x +b =x 2+4x +3,即x 2+2x +3﹣b =0有两个相等的实数根,得到Δ=22﹣4(3﹣b )=0,解得b =2,∴当﹣6<b <2时,函数M :y =x 2﹣4|x |+3与直线l :y =2x +b 只有两个交点,当直线l :y =2x +b 经过点(﹣2.﹣1)时,即﹣1=2×(﹣2)+b ,解得b =3,此时函缕M :y =x 2﹣4|x |+3与直线l :y =2x +b 恰有三个交点,∴由图象可知,当b >3时,函数M :y =x 2﹣4|x |+3与直线l :y =2x +b 只有两个交点,综上可知,若函数M :y =x 2﹣4|x |+3与直线l :y =2x +b 只有两个交点,b 的取值范围是b >3或﹣6<b <2.28.(12分)给出一个新定义:有两个等腰三角形,如果它们的顶角相等、顶角顶点互相重合且其中一个等腰三角形的一个底角顶点在另一个等腰三角形的底边上,那么这两个等腰三角形互为“友好三角形”.(1)如图①,△ABC和△ADE互为“友好三角形”,点D是BC边上一点(异于B点),AB=AC,AD =AE,∠BAC=∠DAE=m°,连接CE,则CE=BD(填“<”或“=”或“>”),∠BCE=(180﹣m)°(用含m的代数式表示);(2)如图②,△ABC和△ADE互为“友好三角形”,点D是BC边上一点,AB=AC,AD=AE,∠BAC =∠DAE=60°,M、N分别是底边BC、DE的中点,请探究MN与CE的数量关系,并说明理由;(3)如图③,△ABC和△ADE互为“友好三角形”,点D是BC边上一动点,AB=AC,AD=AE,∠BAC=∠DAE=90°,BC=6,过D点作DF⊥AD,交直线CE于F点,若点D从B点运动到C点,直接写出F点运动的路径长.解:(1)∵∠BAC=∠DAE=m°,∴∠BAD+∠CAD=∠CAE+∠CAD,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴BD=CE,∠ABD=∠ACE,∵∠BAC=m°,∴∠BCE=∠ACB+∠ACE=∠ACB+∠ABC=180°﹣∠BAC=180°﹣m°=(180﹣m)°;故答案为:=;(180﹣m);(2)MN=√32CE;理由如下:如图②,在CM上截取CH,使CH=BD,连接EH交AC于K,∵点M是BC的中点,∴BM=CM,∴DM=HM,∵点N是DE的中点,∴DN=EN,∴MN是△DEH的中位线,∴MN=12 HN,∴CH=CE,由(1)知,∠ABD=∠ACE,∵AB=AC,∴∠ABD=∠ACB,∴∠ACE=∠ACB,由(1)知,BD=CE,∵CH=BD,∴∠CKE=90°,EK=12EH,MN=12HE,∴MN=EK,∴AB=AC,∠BAC=60°,∴△ABC是等边三角形,∴∠ACE=∠ABD=60°,在Rt△CKE中,sin∠ACE=EKCE=sin60°=√32,∴MN =√32CE ;(3)如图③,过点A 作AG ⊥BC 于G ,则AG =BG =CG =12BC =3,当点D 在AG 上时,点F 在EC 的延长线上,过点B 作AB 的垂线交EC 于F ',当点D 从点B 运动到点G 时,点F 从F '运动到C ,∵AB =AC ,∠BAC =90°,∴∠ACB =∠ABC =45°,∴∠CBF '=45°,同(1)的方法得,∠ACE =45°,∴∠BCE =90°,∴CF '=BC =6,当点D 在CG 上时,过点D '作AD '的垂线交CE 于L ,∴∠AD 'G +∠LD 'C =90°,∵∠D 'AG +∠AD 'G =90°,∴∠D 'AG =∠LD 'C ,∵∠AGD '=∠D 'CL ,∴△AD 'G ∽△D 'LC ,∴D′G CL =AG CD′,设D 'G =x ,CL =y ,则CD '=3﹣x ,∴x y=33−x , ∴y =13(x −32)2+34,当x=32时,即点D'在CG的中点时,y最大=34,当x=3时,即点D'在CG的中点时,y=0,即点D'从点G运动C,点F从点C运动到CL最大,再从最大运动到点C,∴F点运动的路径长为CF'+2×34=152.。
2024年云南省曲靖市九年级中考二模数学试题(含解析)

曲靖市 2023-2024学年春季学期教学质量监测九年级数学试题卷(全卷三个大题,共27个小题,共8页; 满分 100分,考试时间120分钟)注意事项:1.本卷满分100分,考试时间为120分钟. 答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试题卷、草稿纸和答题卡上的非答题区域无效.3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内. 写在试题卷、草稿纸和答题卡上的非答题区域无效.4. 考试结束后,请将本试题卷和答题卡一并上交.一.选择题 (本大题共 15个小题,每小题只有一个正确选项,每小题2分,共30分)1.曲靖某一天的天气预报如图所示,则这一天的温差是( )A .B .C .D .2.2024年中央对地方转移支付预算为10.2万亿元,中央对云南省转移支付为3900亿元,数字3900亿用科学记数法表示为( )A .B .C .D .3.如图, 于点B , 过点B 的直线d 交直线a 于点 A , 若, 则的度数是( )6C -︒6C ︒2C ︒2C -︒8390010⨯103910⨯113.910⨯120.3910⨯a c b c ⊥⊥,140∠=︒2∠A .B .C .D .4.函数x 的取值范围是( )A . B . C . D .5.下列计算正确的是( )A .B .C .D .6.八边形的每个外角都相等,它的一个内角的度数是( )A .45°B .75°C .105°D .135°7.如图,A ,B 为反比例函数 图象上任意两点,分别过点A ,B 作y 轴的垂线,垂足分别为C ,D ,连接,设和的面积分别为,,则( )A .B .C .D .无法确定8.下列几何体中的主(正)视图,是轴对称图形但不是中心对称图形的是( )A .B .C .D .9.观察下列式子: 则第n 个式子为( )A .B .C .D .10.如图,点D 是边上一点, 且,若,.则 ( )50︒40︒30︒20︒y =2x ≠2x ≤2x >2x ≥23652a a a a a ⋅+÷=()22346a b a b-=-()222a b a b +=+()()22a b b a a b+-=-(0)k y k x=<OA OB ,AOC BOD S ₁S ₂S S >₁₂S S =₁₂S S <₁₂23412x x x x ---- ,,,()n n x --()11n n x +-n x ()111n n n x -+--ABC AB ACB ADC ∠∠=3AD =7AB =²AC =A .9B .12C .16D .2111.某市为了解决新能源汽车充电难的问题,计划新建一批智能充电桩,第一个月新建了400个充电桩,第三个月新建了 600个充电桩,设该市新建充电桩个数的月平均增长率为x ,根据题意,可列出方程( )A .B .C .D .12.若关于x 的不等式的解集在数轴上表示如图所示,则k 的值为( )A .B .2C .3D .413.若 则代数式 的值为( )A .7B .C .D .614.某校为了解学生在校体育锻炼的时间情况,随机调查部分学生一周平均每天的锻炼时间,统计结果如图:这些学生锻炼时间的众数、中位数分别是( )A .9, 7B .9, 9C .1, 1D .1, 1.515.如图,已知的直径经过弦的中点E ,连接,且,估计的值应在()()24001600x +=()26001400x +=()24001600x -=()26001400x -=3x k -≥-1-1m =,²22m m -+7+6+O AB CD AD CO BC ,,OC BC =2cos tan BAD ADC ∠+∠A .1到2之间B .2到3之间C .3到4之间D .4到5之间二.填空题(本大题共4个小题,每小题2分,共8分)16.分解因式8a 2-2= .17.如图,已知在四边形中,对角线,交于点O ,且,要使四边形是矩形,可添加一个条件是 .18.试卷讲评对于初三复习阶段是非常重要的环节,某数学教师对试卷讲评课中学生参加的情况进行调查,评价项目为:A .独立思考B .主动改错C .专注听讲D .讲解题目四项中任选一项,随机抽取若干名初三学生进行调查,将调查结果绘制成如图所示的条形统计图和扇形统计图(均不完整).若全市有 80000名初三学生,则在试卷讲评课中, “专注听讲”的初三学生约为 人.19.圆锥在生活中随处可见,例如:陀螺、漏斗、屋顶、生日帽等.如图是一个半径为2,圆心角为的扇形,要围成一个圆锥,则这个圆锥的底面半径为.ABCD AC BD OA OC OB OD ==,ABCD 90︒AOB三.解答题 (本大题共8个小题,共62分)20.计算:21.如图,已知,.求证:.22.今年云南再遇大旱,全省人民齐心协力积极抗旱.我市某校师生也行动起来捐款打井抗旱,已知第一天捐款5000元,第二天捐款6200元,第二天捐款人数比第一天捐款人数多60人,且两天人均捐款数相等,那么两天参加捐款的人数各是多少人?23.某商场“五一”期间举办抽奖活动,规则如下:在不透明的袋中装有4个质地均匀,大小完全相同的小球,小球上分别标有,,0,1 四个数字,敏敏先从中随机摸出一球,球上的数字记为x ,不放回,再从剩下的3个球中随机摸出一球,球上的数字记为y ,若两次摸出的球上数字之积为正(即:),则 获得奖品,否则没有奖品.(1)请用列表法或画树状图法中的一种方法,求所有可能出现的结果;(2)求敏敏获得奖品的概率.24.如图,已知在中,过点C 作于点D ,点E 为上一点,连接,交于点G ,是沿折叠所得,且点C 的对应点F 恰好落在上,连接.(1)求证:四边形为菱形;(2)若,求的长.25.每年4月 23日是世界读书日,旨在推动更多的人去阅读和写作,某书店以读书日为契机,决定购进甲,乙两种图书,供消费者选择.经调查,乙种图书每本进价20元,甲种图书的总进价y 与购进甲种图书的数量x 之间的函数关系如图所示:()20211 3.1432π-⎛⎫-+--+- ⎪⎝⎭C E AC AE CAD EAB ∠=∠=∠=∠,,AB AD =2-1-0xy >(),x y ABC 90ACB ∠=︒,CD AB ⊥AC BE CD BFE △BCE BE AB FG CEFG 86AC BC ==,DG(1)请求出当和 时,y 与x 的函数关系式;(2)若该书店准备购进甲,乙两种图书共300本,且每种图书数量都不少于120本,书店计划甲种图书以每本30元出售,乙种图书以每本25元出售,如何购进两种图书,才能使书店所获利润最大,最大利润是多少?26.已知抛物线(,,为常数,)(1)若,,求此抛物线的顶点坐标;(2)在(1)的条件下,抛物线经过点,将抛物线的图象的部分向下平移(为正整数)个单位长度,平移后的图象恰好与轴有2个交点,若点与点在平移后的抛物线上(点,不重合),且点与点 关于对称轴对称,求代数式的值.27.如图①,已知是的直径,过点A 作射线,点P 为l 上一个动点,点C 为上异于点A 的一点,且,过点B 作的垂线交的延长线于点D ,连接.(1)求证:为的切线;(2)若,求的值;0120x ≤≤120x >²y ax bx c =++a b c 0a ≠20a b -=4-+=a b c ()0,2²y ax bx c =++0x <h h x 1(,)S m n y -2(,)Q m y S Q S Q 22281244m mn n n h -+-+AB O l AB ⊥O PA PC =AB PC AD PC O 4AP BD =sin BAD ∠(3)如图②,过点C 作于点E ,交于点F ,当点P在运动过程中,试探究是否为定值,如果是,请求出该定值;如果不是,请说明理由.参考答案与解析1.B 【分析】本题考查有理数的减法的应用.求出两个数的差的绝对值即可.【详解】解:故选:B .2.C【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:数字3900亿用科学记数法表示为.故选:C .3.A【分析】根据,,结合对顶角相等,直角三角形的两个锐角互余,计算即可.本题考查了垂直的定义,对等角相等,直角三角形的两个锐角互余,熟练掌握性质是解题的关键.【详解】如图,,,CE AB ⊥AD CF CE()46C--=︒210n a ⨯110a ≤<113.910⨯a c b c ⊥⊥,140∠=︒ a c b c ⊥⊥,140∠=︒,,故,故选A .4.D【分析】本题考查了函数自变量的范围.根据被开方数不小于0列式计算即可得解.【详解】解:由题意得,,解得.故选:D .5.A【分析】本题考查了整式的运算,利用积的乘方法则、同底数幂乘法、除法的法则、完全平方公式和平方差公式进行计算是解题的关键.【详解】解:A 、 ,计算正确;B 、,原计算错误;C 、,原计算错误;D 、,原计算错误;故选A .6.D【分析】本题考查的是多边形的内外角之间的关系.根据多边形的内角和公式求出八边形的内角和,计算出每个内角的度数即可.【详解】解:八边形的内角和为:,每个内角的度数为:,故选:D .7.B【分析】本题主要考查了反比例函数中的几何意义.过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积是个定值,即.【详解】解:依题意有:和的面积是个定值.所以.∴13,24∠=∠∠=∠3490∠+∠=°2150∠︒∠=︒=90-20x -≥2x ≥2365552a a a a a a a ⋅+÷=+=()22346a b a b -=()2222a b a ab b +=++()()22a b b a b a +-=-()821801080-⨯︒=︒10808135︒÷=︒k y x=k S 1||2S k =Rt AOC Rt BOD 1||2k 12S S =故选:B .8.C【分析】根据各个几何体的特点得出各自的主视图,然后根据轴对称和中心对称图形的性质分别判断即可.【详解】A.球的主视图是圆,圆既是轴对称图形,又是中心对称图形,故选项A 错误,不符合题意;B.长方体的主视图是矩形,矩形是轴对称图形,也是中心对称图形,故选项B 错误,不符合题意;C.圆锥的主视图是等腰三角形,等腰三角形是轴对称图形,但不是中心对称图形,故选项C 正确,符合题意;D.圆柱的主视图是矩形,矩形是轴对称图形,也是中心对称图形,故选项D 错误,不符合题意;故选:A .【点睛】本题主要考查了轴对称和中心对称图形的判断与简单几何体的三视图的识别,熟练掌握相关概念是解题关键.9.B【分析】本题考查数字规律问题,观察式子找到规律是解题的关键.【详解】解:观察式子,,……,第个式子为故选: B .10.D【分析】本题考查了相似三角形的判定与性质,掌握相似三角形的判定方法是解题的关键.()211x x -=-()3221x x -=-()4331x x =-()54421x x --=-n ()11n n x +-由已知条件中,为公共角,可证,得,据此可求的长.【详解】解:∵,,∴,∴,即,故选:D .11.A【分析】本题考查了由实际问题抽象出一元二次方程,利用该市第三个月新建智能充电桩个数该市第一个月新建智能充电桩个数该市新建智能充电桩个数的月平均增长率,即可列出关于x 的一元二次方程,此题得解.【详解】解:设该市新建充电桩个数的月平均增长率为x ,列出方程为,故选A .12.D【分析】题考查了根据一元一次不等式的解集求参数,熟练解一元一次不等式是解题的关键.解不等式得到,根据数轴可得不等式的解集为,故可得方程,即可解答.【详解】解:解不等式可得:,由数轴可知,∴,解得:,故选D .13.D【分析】本题考查了二次根式的混合运算,代数式求值,完全平方公式,整体代入是解题的关键.把化为后代入求值即可.【详解】解:,故选D .ACB ADC ∠∠=A ∠ADC ACB ∽2AC AB AD =⋅ACB ADC ∠∠=A A ∠∠=ADC ACB ∽AD AC AC AB=27321AC AB AD =⋅=⨯==(1⨯+2)()24001600x +=3x k ≥-1x ≥-31k -=-3x k -≥-3x k ≥-1x ≥-31k -=-4k =²22m m -+2(1)1m -+22²22(1)116m m m -+=-+=+=14.C【分析】本题主要考查众数和中位数,熟记一组数据中出现次数最多的数据叫做众数,一组数据从小到大或从大到小依次排列,最中间的一个数据或最中间两个数据和的一半叫做中位数是解题的关键.【详解】解:由折线图可知锻炼小时的人数最多,即众数为;由图可知共调查学生数为人,从小到大排列后第个与个数据的平均数是中位数,且第个与个数据为小时,∴中位数为,故答案为:C .15.C【分析】本题考查了特殊角的三角函数值,圆周角定理,无理数的估算.首先证明是等边三角形,由三线合一的性质求得,再根据圆周角定理求得,,代入特殊角的三角函数值,运用无理数的估算,即可求解.【详解】解:∵,,∴,∴是等边三角形,∴,∵点E 是弦的中点,∴,∴,,∴,∴∵,∴,∴,故选:C .16.2(2a +1)(2a -1)【详解】本题要先提取公因式2,再运用平方差公式将写成,即原式可11795324+++=1213121311112+=OBC △1302BCD OCB ∠=∠=︒60ADC ∠=︒30BAD ∠=︒OC BC =OC OB =OC OB BC ==OBC △60B OCB ∠=∠=︒CD 1302BCD OCB ∠=∠=︒60B ADC ∠=∠=︒30BAD BCD ∠=∠=︒tan tan 60ADC ∠=︒=cos cos30BAD ∠=︒=2cos tan 2BAD ADC ∠+∠===91216<<34<32cos tan 4BAD ADC <∠+∠<2(41)a -(21)(21)a a +-分解为:8a 2-217.不唯一【分析】根据对角线互相平分且相等的四边形是矩形,添加条件即可.本题考查了矩形的判定,熟练掌握判定定理是解题的关键.【详解】∵,,∴四边形是矩形,故答案为:.18.32000【分析】根据独立思考的人数和所占的百分比,可以求得一共抽查的人数;再计算出专注听讲的人数,利用样本估计总体求解即可.【详解】解:一共抽查的人数为(人),专注听讲的人数为(人),“专注听讲”的初三学生约为(人),故答案为:32000.19.##【分析】本题考查了圆锥的计算.设这个圆锥的底面圆半径为r ,利用弧长公式得到并解关于r 的方程即可.【详解】解:设这个圆锥的底面圆半径为r根据题意得解得故答案为:.20.【分析】本题考查了实数的运算.根据负整数指数幂、零次幂、二次根式等化简,再计算加减即可求解.【详解】解:22(41)2(21)(21)a a a =-=+-AC BD =OA OC OB OD ==,AC BD =ABCD AC BD =9030%300÷=300904545120---=1208000032000300⨯=120.52902180r ππ⨯=12r =124-()20211 3.1432π-⎛⎫-+--+- ⎪⎝⎭114=-+-+.21.见解析【分析】本题考查了全等三角形的判定和性质.利用证明即可证明.【详解】证明:∵,∴,∴,∵,∴,∴.22.250人,310人【分析】设第一天捐款有x 人,则第一天捐款有人,根据题意,得,解方程即可.本题考查了分式方程的应用,正确理解题意,列出方程是解题的关键.【详解】设第一天捐款有x 人,则第一天捐款有人,根据题意,得,解得,经检验,是原方程的根,故,答:第一天捐款有250人,则第一天捐款有310人.23.(1)共有12种等可能结果;(2)【分析】此题考查了列表法或树状图法求概率的知识.注意概率=所求情况数与总情况数之比.(1)列表得出所有等可能结果;(2)从表中找到符合条件的结果数,再根据概率公式求解即可.【详解】(1)解:根据题意列表如下,4=-ASA CAB EAD ≌V V AB AD =CAD EAB ∠=∠CAD BAD EAB BAD ∠-∠=∠-∠CAB EAD ∠=∠C E AC AE ∠=∠=,()ASA CAB EAD ≌△△AB AD =()60x +6200500060x x=+()60x +6200500060x x =+250x =250x =()60310x +=160101由上表可知,共有12种等可能结果;(2)解:在这12种等可能结果中,其中的结果有和共2种,所以敏敏获得奖品的概率为.24.(1)见解析(2).【分析】(1)推出,,进而推出四边形是平行四边形,并根据证得四边形是菱形;(2)首先利用勾股定理求出,设,然后用x 表示出和,再在中,利用勾股定理构建方程,求出x ,进一步计算即可求解.【详解】(1)证明:∵,是沿折叠所得,∴,,,∴,∴,∴,∴,∴,∵,∴四边形是平行四边形,∵,∴平行四边形是菱形;2-1-2-()1,2--()0,2-()1,2-1-()2,1--()0,1-()1,1-()2,0-()1,0-()1,0()2,1-()1,1-()0,10xy >()2,1--()1,2--21126=1.8GD =CG EF =CG EF ∥CEFG EC EF =CEFG AB CG x =AE EF Rt AEF CD AB ⊥BFE △BCE BE 90BFE BCE ∠=∠=︒CEG FEG ∠=∠EC EF =CD EF ∥CGE FEG ∠=∠CGE CEG ∠=∠CE CG =CG EF =CG EF ∥CEFG EC EF =CEFG(2)解:∵,,∴,设,∵四边形是菱形,∴,∴,∵是沿折叠所得,∴,∴,∵在中,,∴,解得:,即.∵,∴,∴,∴.【点睛】本题考查了平行线的性质,角平分线的性质,等腰三角形的判定,平行四边形的判定,菱形的判定和性质以及勾股定理的应用,灵活运用各性质进行推理论证是解题的关键.25.(1)(2)购买甲种图书本,乙种图书本,利润最大,最大为是元【分析】本题考查一次函数的实际应用,利用待定系数法求出一次函数的关系式是解题关键.(1)分别利用待定系数法求出关系式即可;(2)设总费用为元,求出关于的关系式,再利用一次函数的性质求出最少的费用即可.【详解】(1)解:当时,86AC BC ==,90ACB ∠=︒10AB =CG x =CEFG EF FG CE CG x ====8AE x =-BFE △BCE BE 6BF BC ==1064AF AB BF =-=-=Rt AEF 222EF AF AE +=()22248x x +=-3x =3CG =CD AB ⊥1122ABC S AC BC AB CD =⨯=⨯ 4.8CD =4.83 1.8GD =-=()25012022360(120)x x y x x ⎧≤≤=⎨+>⎩1801201680w w x 0120x ≤≤设,把代入得,∴;当时,设,把和代入得,,解得 所以与的关系式为;(2)设总费用为元,由题意得, ,当时,,∵, 随的增大而增大,∴当时, ;∴当 时,利润最大是元.此时乙种图书是本,答:应购买甲种图书本,乙种图书本,利润最大,最大为是元.26.(1);(2)17.【分析】(1)先根据题意求出对称轴为,将其代入抛物线方程即可得到顶点坐标;(2)先根据顶点坐标设抛物线的解析式,求得抛物线的解析式,由于为正整数,分成,,,,时,分别讨论部分平移后的图象与轴的交点个数,从而得到的值,再根据(1)可知抛物线平移后的对称轴为,且点S 与点 Q 关于对称轴对称,可得,即,将其代入代数式即可.【详解】(1)对称轴为,,即,y kx =()120,300025k =25y x =120x >y kx b =+()120,3000()150,366012030001503660k b k b +=⎧⎨+=⎩22,360k b =⎧⎨=⎩y x ()25012022360(120)x x y x x ⎧≤≤=⎨+>⎩w 120180x ≤≤120180x ≤≤()()()3025203002236031140x x x x ω=+---+=+03k =>w x 180x =w 最大318011401680=⨯+=180x =16801201801201680(1,4)-1x =-h 1h =2h =3h =4h =4h >0x <x h 1x =-2m n m -+=-22n m =+2b x a=-20a b -=2b a =,将代入得,,即顶点坐标为;(2)由(1)可知的顶点坐标为,设抛物线的解析式为,将代入,得,解得:,,抛物线与轴交于点,顶点坐标为,因为为正整数,那么当时,抛物线表达式为,当时,,解得此时抛物线与轴的交点有2个,其中,但是题目中要求,所以时,抛物线与轴的交点为1个;当时,抛物线的表达式为,当时,,解得,,此时抛物线与轴的交点有2个,但是题目中要求,所以需舍掉,所以当时,抛物线与轴的交点为1个;当时,抛物线的表达式为,当时,,解得,,满足的要求,此时抛物线与轴的交点有2个;当时,抛物线表达式为,此时,抛物线与轴交点为1个;12b x a∴=-=-1x =-²y ax bx c =++y a b c=-+4a b c -+= 4y =∴(1,4)-²y ax bx c =++(1,4)-2(1)4y a x =++(0,2)2(1)4y a x =++2(01)42a ++=2a =-222(1)4242y x x x ∴=-++=--+ 2242y x x =--+y (0,2)()1,4-h 1h =222421241y x x x x =--+-=--+0y =22410x x --+=1x =2x =x 1>0x 20x <0x <1x =1h =x 2h =22242224y x x x x =--+-=--0y =2240x x --=12x =-20x =x 0x <20x =2h =x 3h =222423241y x x x x =--+-=---0y =22410x x ---=1x =2x 10x <20x <0x <x 4h =222424242y x x x x =--+-=---224(4)4(2)(2)0b ac -=--⨯-⨯-=x当时,抛物线与轴交点为0个;综上所述,;由(1)可知平移之后抛物线的对称轴为:,点与点 关于对称,,将代入代数式则故代数式的值为 17.【点睛】本题考查了二次函数的对称轴,顶点坐标,二次函数的对称性,二次函数的平移,解一元二次方程,一元二次方程的判别式等知识点,熟练掌握以上知识点是解题的关键.27.(1)见解析(2)(3).【分析】(1)连接,证明,求得,据此即可证明为的切线;(2)过点作,设,求得,,利用勾股定理求得,再求得,据此求解即可;(3)连接并延长交的延长线于点,利用切线长定理求得,,由,得到,,利用相似三角形的性质即可求得.【详解】(1)证明:连接,4h >x 3h =1x =- S Q 1x =-∴2m n m -+=-∴22n m =+22n m =+22281244m mn n n h -+-+22281244m mn n n h -+-+222812(22)4(22)4(22)m m m m m h =-+++-++22228242416321688m m m m m m h =--+++--+28h =+283=+17=22281244m mn n n h -+-+sin BAD ∠=12CF CE =OP OC 、()SSS OPA OPC ≌90OAP OCP ∠=∠=︒PC O D DG AP ⊥BD a =5PD a =3PG a =4AB DG a ==AD AC BD H HD BD =2BH HD =CE BH ∥ACF AHD ∽△ACE AHB ∽△12CF CE =OP OC 、∵是的直径,过点A 作射线,∴,∵,,,∴,∴,即,∵是的半径,∴为的切线;(2)解:过点作,垂足为点,设,∴,∵,∴为的切线,∵、、为的切线,∴,,∴,∵射线,,,∴,AB O l AB ⊥90OAP ∠=︒PA PC =OA OC =OP OP =()SSS OPA OPC ≌90OAP OCP ∠=∠=︒OC PD ⊥OC O PC O D DG AP ⊥G BD a =44AP BD a ==BD AB ⊥BD O PC PA BD O PA PC =DC DB =5PD PC CD a =+=l AB ⊥DG AP ⊥BD AB ⊥90GAB AGD ABD ∠=∠=∠=︒∴四边形是矩形,∴,,∴,在中,,∴,在中,,∴(3)解:,理由如下,连接并延长交的延长线于点,∵,∴,∵,,∴,∴,∵,∴,∴,∵,∴,∴,∵,,∴,∴,,ABDG AG BD a ==AB DG =3PG PA AG a =-=Rt DPG V 4DG a ==4AB DG a ==Rt △ABD AD ==sin BD BAD AB ∠===12CF CE =AC BD H PA PC =PAC PCA ∠=∠PA AB ⊥BD AB ⊥PA BH ∥PAC H ∠=∠HCD PCA ∠=∠HCD H ∠=∠CD DH =CD BD =HD BD =2BH HD =CE AB ⊥BD AB ⊥CE BH ∥ACF AHD ∽△ACE AHB ∽△∴,,∴,∴.【点睛】本题考查了切线长定理,切线的判定和性质,相似三角形的判定和性质,勾股定理,解直角三角形,正确引出辅助线解决问题是解题的关键.AC CF AH DH =AC CE AH BH =CE CF BH DH =12CF DH CE BH ==。
2024年济南市中区九年级中考数学二模考试试题(含答案)

九年级学业水平质量检测市中区教研室编著数学试题第I卷(选择题共40分)一.选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图是某几何体的三视图,该几何体是()2.中国信通院预计未来2~3年内将实现5G的个人终端应用和数字内容的创新突破,预计2025年全球5G移动用户数将突破57亿户,数据57亿用科学记数法表示为()A.0.57x1010B.5.7x1010C.5.7x109D.57x1093.将含45°角的直角三角板按如图所示摆放,直角顶点在直线m上,其中一个锐角顶点在直线n上.若m∥n,∠1=30°,则∠2的度数为()A.45°B.60°C.75°D.90°(第3题图)(第4题图)4.如图,数轴上的点A和点B分别在原点的左侧和右侧,点A、B对应的实数分别是a、b,下列结论一定成立的是()A.a+b<0B.b-a<0C.3a>3bD.a+3<6+35.剪纸艺术是最古老的中国民间艺术之一.为弘扬优秀传统文化,某中学开展了"剪纸进校园,文化共传承"的项目式学习,下列剪纸作品的图案既是轴对称图形又是中心对称图形的是( )6.下列计算正确的是( )A.(3a³)2=9a6B.a3+a2=a5C.a3·a2=a6D.a8÷a2=a4(k≠0)的图象可能是( )7.在同一平面直角坐标系中,函数y=kx+1(k≠0)和y=kx8.五一期间,学校准备从甲、乙、丙、丁四位同学中随机选择两位同学参加假期实践活动,则选择的两位同学中恰好有甲同学的概率是()A.16B.13C.12D.239.如图,在△ ABC 中,以点B为圆心,以适当长为半径作弧,分别与AB、BC交于M和N两点;分别以M、N为圆心,以大于12MN的长为半径作弧,两弧交于点D,作射线BD,BD与AC交于点E。
2024年中考数学二模试卷(上海卷)(全解全析)

2024年中考第二次模拟考试(上海卷)数学·全解全析第Ⅰ卷一、选择题(本大题共6个小题,每小题4分,共24分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.在下列图形中,为中心对称图形的是()A .等腰梯形B .平行四边形C .正五边形D .等腰三角形【答案】B【分析】根据中心对称与轴对称的概念和各图形的特点即可求解.【详解】中心对称图形,即把一个图形绕一个点旋转180°后能和原来的图形重合,A 、C 、D 都不符合;是中心对称图形的只有B .故选B .2.下列方程有实数根的是A .4x 20+=B 2x 21-=-C .2x +2x −1=0D .x 1x 1x 1=【答案】C【详解】A .∵x 4>0,∴x 4+2=0无解,故本选项不符合题意;B .∵22x -≥0,∴22x -=−1无解,故本选项不符合题意;C .∵x 2+2x −1=0,∆=8>0,方程有实数根,故本选项符合题意;D .解分式方程1x x -=11x -,可得x =1,经检验x =1是分式方程的增根,故本选项不符合题意.故选C .3.计算:AB BA += ()A .AB ;B .BA ;C .0 ;D .0.【答案】C【分析】根据零向量的定义即可判断.【详解】AB BA += 0 .故选C .4.在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的条件是()A.AC=BD,AB∥CD,AB=CD B.AD∥BC,∠BAC=∠BCDC.AO=BO=CO=DO,AC⊥BD D.AO=CO,BO=DO,AB=BC【答案】C【分析】根据正方形的判定:对角线互相垂直平分且相等的四边形是正方形进行分析从而得到最后的答案.【详解】解:A,不能,只能判定为矩形,不符合题意;B,不能,只能判定为平行四边形,不符合题意;C,能,符合题意;D,不能,只能判定为菱形,不符合题意.故选C.5.下列命题中,假命题是()A.如果一条直线平分弦和弦所对的一条弧,那么这条直线经过圆心,并且垂直于这条弦;B.如果一条直线平分弦所对的两条弧,那么这条直线经过圆心,并且垂直于这条弦;C.如果一条直线经过圆心,并且平分弦,那么该直线平分这条弦所对的弧,并且垂直于这条弦;D.如果一条直线经过圆心,并且垂直弦,那么该直线平分这条弦和弦所对的弧.【答案】C【分析】利用垂径定理及其推论逐个判断即可求得答案.【详解】A.如果一条直线平分弦和弦所对的一条弧,那么这条直线经过圆心,并且垂直于这条弦,正确,是真命题;B.如果一条直线平分弦所对的两条弧,那么这条直线一定经过圆心,并且垂直于这条弦,正确,是真命题;C.如果一条直线经过圆心,并且平分弦,那么该直线不一定平分这条弦所对的弧,不一定垂直于这条弦,例如:任意两条直径一定互相平分且过圆心,但不一定垂直.错误,是假命题;D.如果一条直线经过圆心,并且垂直弦,那么该直线平分这条弦和弦所对的弧,正确,是真命题.故选C.【点睛】本题考查了垂径定理及其推论,对于一个圆和一条直线来说如果一条直线具备下列,①经过圆心,②垂直于弦,③平分弦(弦不是直径),④平分弦所对的优弧,⑤平分弦所对的劣弧,五个条件中的任何两个,那么也就具备其他三个.6.如图,已知∠POQ=30°,点A、B在射线OQ上(点A在点O、B之间),半径长为2的⊙A与直线OP 相切,半径长为5的⊙B与⊙A内含,那么OB的取值范围是()A .4<OB <7B .5<OB <7C .4<OB <9D .2<OB <7【答案】A 【分析】作⊙A 半径AD ,根据含30度角直角三角形的性质可得4OA =,再确认⊙B 与⊙A 相切时,OB 的长,即可得结论.【详解】解:设⊙A 与直线OP 相切时的切点为D ,∴AD OP ⊥,∵∠POQ =30°,⊙A 半径长为2,即2AD =,∴24OA AD ==,当⊙B 与⊙A 相切时,设切点为C ,如下图,∵5BC =,∴4(52)7OB OA AB =+=+-=,∴若⊙B 与⊙A 内含,则OB 的取值范围为47OB <<.故选:A .【点睛】本题主要考查了圆与圆的位置关系、切线的性质、含30度角的直角三角形的性质等知识,熟练掌握圆与圆内含和相切的关系是解题关键.二、填空题(本大题共12个小题,每小题4分,共48分)7.分解因式:2218m -=.【答案】()()233m m +-/()()233m m -+【分析】原式提取2,再利用平方差公式分解即可.【详解】解:2218m -=2(m 2-9)=2(m +3)(m -3).故答案为:2(m +3)(m -3).【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.8.2x x +=-的解是.【答案】x =﹣1.【分析】把方程两边平方后求解,注意检验.【详解】把方程两边平方得x +2=x 2,整理得(x ﹣2)(x +1)=0,解得:x =2或﹣1,经检验,x =﹣1是原方程的解.故本题答案为:x =﹣1.【点睛】本题考查无理方程的求法,注意无理方程需验根.9.函数2x y x =-中自变量x 的取值范围是.【答案】0x ≥且2x ≠【分析】根据二次根式中被开方数大于等于0及分母不为0即可求解.【详解】解:由题意可知:020x x ≥⎧⎨-≠⎩,解得:0x ≥且2x ≠,故答案为:0x ≥且2x ≠.【点睛】本题考查的是函数自变量的取值范围的确定,掌握二次根式的被开方数是非负数、分母不为0是解题的关键.10.△ABC 中,AD 是中线,G 是重心,,AB a AD b == ,那么BG =(用a b 、表示).【答案】23a b -+ .【详解】试题分析:∵在△ABC 中,点G 是重心,AD b = ,∴23AG b =,又∵BG AG AB =- ,AB a = ,∴2233BG b a a b =-=-+ ;故答案为23a b -+ .考点:1.平面向量;2.三角形的重心.11.有四张质地相同的卡片,它们的背面相同,其中两张的正面印有“粽子”的图案,另外两张的正面印有“龙舟”的图案,现将它们背面朝上,洗均匀后排列在桌面,任意翻开两张,那么两张图案一样的概率是.【答案】13【详解】解:列树状图得共有12种情况,两张图案一样的有4种情况,所以概率是13.12.在方程224404x x x x +-+=中,如果设y=x 2﹣4x ,那么原方程可化为关于y 的整式方程是.【答案】2430y y ++=【分析】先把方程整理出含有x 2-4x 的形式,然后换成y 再去分母即可得解.【详解】方程2234404x x x x +-+=-可变形为x 2-4x+214x x -+4=0,因为24y x x =-,所以340y y++=,整理得,2430y y ++=13.如果⊙O 1与⊙O 2内含,O 1O 2=4,⊙O 1的半径是3,那么⊙O 2的半径r 的取值范围是.【答案】7r >/7r<【分析】由题意,⊙O 1与⊙O 2内含,则可知两圆圆心距d r r <-小大,据此代入数值求解即可.【详解】解:根据题意,两圆内含,故34r ->,解得7r >.故答案为:7r >.【点睛】本题主要考查了两圆位置关系的知识,熟练掌握由数量关系判断两圆位置关系是解题关键.14.某单位10月份的营业额为100万元,12月份的营业额为200万元,假设该公司11、12两个月的增长率都为x ,那么可列方程是.【答案】100(1+x )2=200【分析】根据题意,设平均每月的增长率为x ,依据10月份的营业额为100万元,12月份的营业额为200万元,即可列出关于x 的一元二次方程.故答案为:100(1+x )2=200【详解】设平均每月的增长率为x ,根据题意可得:100(1+x )2=200.故答案为:100(1+x )2=200.【点睛】此题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出方程是解题关键.15.菱形ABCD 中,已知AB =4,∠B :∠C =1:2,那么BD 的长是.【答案】43【分析】根据题意画出示意图(见详解),由菱形的性质可得BO =12BD ,BD ⊥AC ,在Rt △ABO 中,由cos ∠ABO 即可求得BO ,继而得到BD 的长.【详解】解:如图,∵四边形ABCD 为菱形,∴AB CD ∥,∴∠ABC +∠BCD =180°,∵∠ABC :∠BCD =1:2,∴∠ABC =60°,∴∠ABD =12∠ABC =30°,BO =12BD ,BD ⊥AC .在Rt △ABO 中,cos ∠ABO =BO AB =32,∴BO=AB⋅cos∠ABO=4×32=23.∴BD=2BO=43.故答案为:43.【点睛】本题考查菱形的性质,熟知菱形的对角线互相垂直,利用垂直构造直角三角形,再利用三角函数求解线段长度是解题的关键.16.如图,已知在⊙O中,半径OC垂直于弦AB,垂足为点D.如果CD=4,AB=16,那么OC=.【答案】10【分析】根据垂径定理求出AD的长,设半径OC=OA=r,则OD=r-4,再根据勾股定理列出关于r的方程,解出即可得出OC的长.【详解】设半径OC=OA=r,则OD=OC-CD=r-4半径OC垂直于弦AB,垂足为点D,AB=16∴AD=12AB=8,在Rt△AOD中,OD2+AD2=OA)即(r-4)2+82=r2解得:r=10故答案为10.【点睛】本题考查了垂径定理,勾股定理,熟练掌握定理是解题的关键.17.新定义:有一组对角互余的凸四边形称为对余四边形.如图,已知在对余四边形ABCD中,10AB=,12BC=,5CD=,3tan4B=,那么边AD的长为.【答案】9【分析】连接AC,作AE BC⊥交BC于E点,由3tan4B=,10AB=,可得AE=6,BE=8,并求出AC的长,作CF AD ⊥交AD 于F 点,可证B DCF ∠=∠,最后求得AF 和DF 的长,可解出最终结果.【详解】解:如图,连接AC ,作AE BC ⊥交BC 于E 点,3tan 4B =,10AB =,∴3tan 4AE B BE ==,设AE=3x ,BE=4x ,∴222AE BE AB +=,则()()2223425100x x x +==,解得x=2,则AE=6,BE=8,又 12BC =,∴CE=BC-BE=4,∴22213AC AE CE =+=,作CF AD ⊥交AD 于F 点,+=90B D ∠∠︒,90D DCF ∠+∠=︒,∴B DCF ∠=∠,3tan 4B ==tan DCF ∠=DF CF ,又 5CD =,∴同理可得DF=3,CF=4,∴226AF AC CF =-=,∴AD=AF+DF=9.故答案为:9.【点睛】本题考查四边形综合问题,涉及解直角三角形,勾股定理,有一定难度,熟练掌握直角三角形和勾股定理知识点,根据题意做出正确的辅助线是解决本题的关键.18.如图,在Rt ∆ABC 中,∠ACB =90°,BC =4,AC =3,⊙O 是以BC 为直径的圆,如果⊙O 与⊙A 相切,那么⊙A 的半径长为.【答案】132±【分析】分两种情况:①如图,A 与O 内切,连接AO 并延长交A 于E ,根据AE AO OE =+可得结论;②如图,A 与O 外切时,连接AO 交A 于E ,同理根据AE OA OE =-可得结论.【详解】解:有两种情况,分类讨论如下:①如图1,A 与O 内切时,连接AO 并延长交O 于E ,O 与A 相内切,E ∴为切点,122OE BC ∴==,90ACB ∠=︒ ,根据勾股定理得:22222313OA OC AC =+=+=,132AE OA OE ∴=+=+;即A 的半径为132+;②如图2,A 与O 外切时,连接AO 交O 于E ,同理得132AE AO OE =-=-,即A 的半径为132-,综上,A 的半径为132+或132-.故答案为:132±.【点睛】本题考查了相切两圆的性质、勾股定理,解题的关键是通过作辅助线得出AE 是A 的半径.第Ⅱ卷三、解答题(本大题共7个小题,共78分.解答应写出文字说明,证明过程或演算步骤)19.(10()()()20220118cot 45233sin 30π--︒+-+--︒.【答案】223+【分析】先化简各式,然后再进行计算即可解答.【详解】解:20220118(cot 45)|23|(3)(sin 30)π-+-︒+-+--︒20221132(1)321()2-=+-+-+-3213212=++-+-223=+.【点睛】本题考查了实数的运算,零指数幂,负整数指数幂、绝对值,特殊角的三角函数值,解题的关键是准确熟练地化简各式.20.(10分)如图,AH 是△ABC 的高,D 是边AB 上一点,CD 与AH 交于点E .已知AB =AC =6,cos B =3,AD ∶DB =1∶2.(1)求△ABC 的面积;(2)求CE ∶DE .【答案】解:(1)85;(2)31.【详解】试题分析:(1)根据题意和锐角三角函数可以求得BH 和AH 的长,从而可以求得△ABC 的面积;(2)根据三角形的相似和题意可以求得CE :DE 的值.试题解析:解:(1)∵AB =AC =6,cos B =23,AH 是△ABC 的高,∴BH =4,∴BC =2BH =8,AH =226425-=,∴△ABC 的面积是;2BC AH ⋅=8252⨯=85;(2)作DF ⊥BC 于点F .∵DF ⊥BH ,AH ⊥BH ,∴DF ∥AH ,∴AD HF CE CH AB HB DE HF ==,.∵AD :DB =1:2,BH =CH ,∴AD :AB =1:3,∴13HF HB =,∴31CE CH BH DE HF HF ===,即CE :DE =3:1.点睛:本题考查了解直角三角形,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.21.(10分)如图,在平面直角坐标系xOy 中,点A 是反比例函数y =x的图象与正比例函数y =kx 的图象在第一象限内的交点,已知点A 的纵坐标为2.经过点A 且与正比例函数y =kx 的图象垂直的直线交反比例函数y =k x的图象于点B (点B 与点A 不是同一点).(1)求k的值;(2)求点B的坐标.【答案】(1)2 (2)(4,12)【分析】(1)根据题意得到22kk=,解方程求得k=2;(2)先求得A的坐标,根据正比例函数的解析式设直线AB的解析式为y12=-x+b,把A的坐标代入解得b52=,再与反比例函数的解析式联立成方程组,解方程组即可求得点B的坐标.【详解】(1)解:∵点A是反比例函数ykx=的图象与正比例函数y=kx的图象在第一象限内的交点,点A的纵坐标为2,∴22k k=,∴2k=4,解得k=±2,∵k>0,∴k=2;(2)∵k=2,∴反比例函数为y2x=,正比例函数为y=2x,把y=2代入y=2x得,x=1,∴A(1,2),∵AB⊥OA,∴设直线AB的解析式为y12=-x+b,把A 的坐标代入得2112=-⨯+b ,解得b 52=,解21522y x y x ⎧=⎪⎪⎨⎪=-+⎪⎩得12x y =⎧⎨=⎩或412x y =⎧⎪⎨=⎪⎩,∴点B 的坐标为(4,12).【点睛】本题是反比例函数与一次函数的交点问题,考查了一次函数、反比例函数图象上点的坐标特征,待定系数法求一次函数的解析式,解题的关键是求出直线AB 的解析式,本题属于中等题型.22.(10分)图1是某区规划建设的过街天桥的侧面示意图,等腰梯形ABCD 的上底BC 表示主跨桥,两腰AB ,CD 表示桥两侧的斜梯,A ,D 两点在地面上,已知AD =40m ,设计桥高为4m ,设计斜梯的坡度为1:2.4.点A 左侧25m 点P 处有一棵古树,有关部门划定了以P 为圆心,半径为3m 的圆形保护区.(1)求主跨桥与桥两侧斜梯的长度之和;(2)为了保证桥下大货车的安全通行,桥高要增加到5m ,同时为了方便自行车及电动车上桥,新斜梯的坡度要减小到1:4,新方案主跨桥的水平位置和长度保持不变.另外,新方案要修建一个缓坡MN 作为轮椅坡道,坡道终点N 在左侧的新斜梯上,并在点N 处安装无障碍电梯,坡道起点M 在AP 上,且不能影响到古树的圆形保护区.已知点N 距离地面的高度为0.9m ,请利用表中的数据,通过计算判断轮椅坡道的设计是否可行.表:轮椅坡道的最大高度和水平长度坡度1:201:161:121:101:8最大高度(m )1.200.900.750.600.30水平长度(m )24.0014.409.00 6.002.40【答案】(1)主跨桥与桥两侧斜梯的长度之和为26.6m(2)轮椅坡道的设计不可行,理由见解析【分析】(1)根据斜坡AB的坡度以及天桥的高度可求出AE,由勾股定理求出AB,进而求出EF=BC的长,再计算主跨桥与桥两侧斜梯的长度之和;(2)根据坡度的定义求出新方案斜坡A B''的水平距离A E'进而求出点M到点G的最大距离,再由表格中轮椅坡道的最大高度和水平长度的对应值进行判断即可.【详解】(1)解:如图,作直线AD,则AD过点A'和点D',过点B、C分别作BE⊥AD,CF⊥AD,垂足为E、F,延长EB,延长FC,则射线EB过点B',射线FC过点C',由题意得,BE=CF=4m,AP=25m,B'E=5m,∵斜坡AB的坡度为1:2.4,即BEAE=1:2.4,∴AE=4×2.4=9.6(m),又∵四边形ABCD是等腰梯形,∴AE=DF=9.6m,∴BC=AD﹣AE﹣DF=5.8(m),AB=22AE BE+=229.64+=10.4(m)=CD,∴主跨桥与桥两侧斜梯的长度之和为AB+BC+CD=10.4+5.8+10.4=26.6(m),答:主跨桥与桥两侧斜梯的长度之和为26.6m.(2)解:∵斜坡A B''的坡度为1:4,即B EA E''=1:4,∴A'E=5×4=20(m),∴A A'=20﹣9.6=11.4(m),A'G=4NG=4×0.9=3.6(m),∴AG=11.4﹣3.6=7.8(m),点M到点G的最多距离MG=25﹣7.8﹣3=14.2(m),∵14.2<14.4,∴轮椅坡道的设计不可行.【点睛】本题主要考查了解直角三角形的应用,根据坡度和坡角构造直角三角形,然后分别用解直角三角形的知识坡道的水平距离是解答本题的关键.23.(12分)已知:如图,在梯形ABCD 中,//AD BC ,90B Ð=°,E 是AC 的中点,DE 的延长线交边BC 于点F.(1)求证:四边形AFCD 是平行四边形;(2)如果22AE AD BC =⋅,求证四边形AFCD 是菱形.【答案】(1)见解析;(2)见解析【分析】(1)由平行四边形的性质可知DAE FCE =∠∠,ADE CFE ∠=∠.再由E 是AC 中点,即AE =CE .即可以利用“AAS ”证明AED CEF ≌,得出AD CF =,即证明四边形AFCD 是平行四边形.(2)由22AE AD BC =⋅和E 是AC 中点,即可推出AE AD CB AC=.又因为DAE FCE =∠∠,即证明ADE CAB ∽△△,即可推出DF AC ⊥.即四边形AFCD 是菱形.【详解】(1)∵//AD BC ,∴DAE FCE =∠∠,ADE CFE ∠=∠.又∵E 是AC 中点,∴AE =CE ,∴在AED △和CEF △中ADE CFE DAE FCE AE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AED CEF AAS ≌,∴AD CF =,∴四边形AFCD 是平行四边形.(2)∵//AD BC ,∴DAE FCE =∠∠.∵22AE AD BC =⋅,∴AE AC AD BC ⋅=⋅,∴AE AD CB AC=,∴ADE CAB ∽△△,∴90AED ABC ∠=∠=︒,即DF AC ⊥.∴四边形AFCD 是菱形.【点睛】本题考查梯形的性质,平行四边形的判定,菱形的判定,全等三角形的判定和性质以及相似三角形的判定和性质.掌握特殊四边形的判定方法是解答本题的关键.24.(12分)在平面直角坐标系中,抛物线235y x bx c =-++与y 轴交于点(0,3)A ,与x 轴的正半轴交于点(5,0)B ,点D 在线段OB 上,且1OD =,联结AD ,将线段AD 绕着点D 顺时针旋转90︒,得到线段DE ,过点E 作直线l x ⊥轴,垂足为H ,交抛物线于点F .(1)求抛物线的表达式;(2)联结DF ,求cot ∠EDF 的值;(3)点P 在直线l 上,且∠EDP =45°,求点P 的坐标.【答案】(1)2312355y x x =-++;(2)cot 2EDF ∠=;(3)(4,6)或3(4,)2-.【分析】(1)利用待定系数法即可解决问题;(2)证明()OAD HDE AAS ∆∆≌,再根据全等三角形的性质得1EH OD ==,3DH OA ==,可得(4,1)E ,(4,3)F ,求出3FH DH ==,则45DFH ∠=︒,32DF =,过点E 作EK DF ⊥于K ,根据等腰直角三角形的性质可得2KF KE ==,则22DK DF KF =-=,在Rt DKE ∆中,根据余切的定义即可求解;(3)分两种情形①点P 在点E 的上方时;②点P 在点E 的下方时,根据相似三角形的判定和性质即可解决问题.【详解】(1)解:把点(0,3)A ,点(5,0)B 代入235y x bx c =-++,得:15503b c c -++=⎧⎨=⎩,解得:1253b c ⎧=⎪⎨⎪=⎩,∴抛物线的解析式为2312355y x x =-++;(2)解:如图:90AOD ADE DHE ∠=∠=∠=︒ ,90ADO OAD ∴∠+∠=︒,90ADO EDH ∠+∠=︒,OAD EDH ∴∠=∠,AD DE = ,()OAD HDE AAS ∴∆∆≌,1EH OD ∴==,3DH OA ==,(4,1)E ∴,过点E 作直线l x ⊥轴,垂足为H ,交抛物线2312355y x x =-++于点F .(4,3)F ∴,3FH ∴=,3FH DH ∴==,90DHE ∠=︒ ,45DFH ∴∠=︒,32DF =,过点E 作EK DF ⊥于K ,312EF =-= ,2KF KE ∴==,22DK DF KF ∴=-=,在Rt DKE ∆中,22cot 22DK EDF KE ∠===;(3)解:①当点P 在点E 的上方时,45EDP DFH ∠=∠=︒ ,DEP ∠是公共角,EDF EPD ∴∆∆∽,∴EF ED ED EP=,2ED EF EP ∴=⋅,设(4,)P y ,则1EP y =-,又2EF = ,223110ED =+=,102(1)y ∴=-,解得6y =,∴点P 的坐标为(4,6);②当点P 在点E 的下方时,45EDP DFP ∠=∠=︒ ,DPF ∠是公共角,PED PDF ∴∆∆∽,∴PE DP PD FP=,2DP PE PF ∴=⋅,设(4,)P y ,则1EP y =-,3FP y =-,223DP y =+,29(1)(3)y y y ∴+=--,解得32y =-,∴点P 的坐标为3(4,)2-;综上所述,当45EDP ∠=︒时,点P 的坐标为(4,6)或3(4,)2-.【点睛】本题是二次函数综合题,考查二次函数的应用、旋转变换、全等三角形的判定和性质、相似三角形的判定和性质等知识,解题的关键是熟练掌握二次函数的图象及性质,三角形相似的判定及性质.25.(14分)如图,半径为1的⊙O 与过点O 的⊙P 相交,点A 是⊙O 与⊙P 的一个公共点,点B 是直线AP 与⊙O 的不同于点A 的另一交点,联结OA ,OB ,OP .(1)当点B 在线段AP 上时,①求证:∠AOB =∠APO ;②如果点B 是线段AP 的中点,求△AOP 的面积;(2)设点C 是⊙P 与⊙O 的不同于点A 的另一公共点,联结PC ,BC .如果∠PCB =α,∠APO =β,请用含α的代数式表示β.【答案】(1)①见解析;②74(2)β=60°﹣23β【分析】(1)①利用圆的半径相等可得∠OAB =∠OBA =∠AOP ,则∠AOB =∠APO ;②首先利用△AOB ∽△APO ,得OA AB AP OA=,可得AP 的长,作AH ⊥PO 于点H ,设OH =x ,则PH =2﹣x ,利用勾股定理列方程求出OH的长,从而得出AH,即可求得面积;(2)联结OC,AC,利用圆心角与圆周角的关系得∠ACB=12∠AOB=12β,∠ACO=12∠APO=12β,再利用SSS说明△OAP≌△OCP,得∠OAP=∠OCP,从而解决问题.【详解】(1)①证明:∵OA=OB,∴∠OAB=∠OBA,∵PA=PO,∴∠BAO=∠POA,∴∠OAB=∠OBA=∠AOP,∴∠AOB=∠APO;②解:∵∠AOB=∠APO,∠OAB=∠PAO,∴△AOB∽△APO,∴OA AB AP OA=,∴OA2=AB•AP=1,∵点B是线段AP的中点,∴AP=2,作AH⊥PO于点H,设OH=x,则PH=2﹣x,由勾股定理得,12﹣x2=(2)2﹣(2x-)2,解得x=2 4,∴OH=2 4,21由勾股定理得,AH =2221()4-=144,∴△AOP 的面积为11142224OP AH ⨯⨯=⨯⨯=74;(2)解:如图,联结OC ,AC ,∵∠AOB =∠APO ,∴∠AOB =β,∴∠ACB =12∠AOB =12β,∠ACO =12∠APO =12β,∴∠OCP =β+α,∵OA =OC ,AP =PC ,OP =OP ,∴△OAP ≌△OCP (SSS ),∴∠OAP =∠OCP =β+α,在△OAP 中,2(α+β)+β=180°,∴β=60°﹣23β.【点睛】本题是圆的综合题,主要考查了圆的性质,圆心角与圆周角的关系,相似三角形的判定与性质,全等三角形的判定与性质等知识,求出大圆半径是解题的关键.。
2023年江苏省南京市鼓楼区中考数学二模试卷【答案版】

2023年江苏省南京市鼓楼区中考数学二模试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号填涂在答题卡相应位置上)1.下列四个数中,最大的是()A.﹣1B.0C.1.4D.√22.计算a2•a4的结果是()A.a8B.a4C.a6D.a23.计算√12−√3的结果是()A.√9B.2C.2√3D.√34.已知A(2,0),B(0,2),下列四个点中与A、B在同一条直线上的是()A.(1,2)B.(﹣1,3)C.(﹣2,﹣3)D.(3,﹣2)5.如图,在⊙O中,C是AB̂上一点,OA⊥OB,过点C作弦CD交OB于E,若OA=DE,则∠C与∠AOC 满足的数量关系是()A.∠C=13∠AOC B.∠C=12∠AOC C.∠C=23∠AOC D.∠C=34∠AOC6.小明、小红在微信里互相给对方发红包.小明先给小红发1元,小红给小明发回2元,小明再给小红发3元,小红又给小明发回4元……按照这个规律,两人一直互相发红包,直到小明给小红发了199元后,小红突然不发回了.若在整个过程中,两人都及时领取了对方的红包,则最终小红的收支情况是()A.赚了99元B.赚了100元C.亏了99元D.亏了100元二、填空题(本大题共10小题,每小题2分,共20分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.式子√x−2有意义,则x的取值范围是.8.若两个相似多边形面积比为4:9,则它们的周长比是.9.一个多边形的每个外角都是45°,则这个多边形的边数为.10.方程1x+2=1x2−4的解是.11.淋巴细胞是人体内最小的白细胞,直径为6微米,即0.000006米,用科学记数法表示0.000006是 .12.已知a 、b 是一元二次方程2x 2+3x ﹣4=0的两个根,那么ab 2+a 2b 的值是 .13.把如图①所示的正三棱锥沿其中的三条棱剪开后,形成的平面展开图为图②.若剪开的三条棱中有两条是AB 、AC ,则剪开的另一条棱是 (写出所有正确的答案).14.如图,在▱ABCD 中,E 是线段AB 的中点,DE 交AC 于点F ,则AF AC= .15.已知整式M =a 2﹣2a ,下列关于整式M 的值的结论: ①M 的值可能为4;②当a 为小于0的实数时,M 的值大于0; ③不存在这样的实数a ,使得M 的值小于﹣1. 其中所有正确结论的序号是 .16.如图,⊙O 的半径为2,AB 是⊙O 的一条弦,以AB 为边作一个等边△ABC ,则OC 长的取值范围是 .三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明 17.先化简,再求值:(2a +b )2﹣(2a +b )(2a ﹣b ),其中a =2,b =1. 18.解方程:x (x ﹣6)=﹣4(x ﹣6).19.如图,在△ABC 和△A 'B 'C '中,AB =A ′B ′,BC =B ′C ′,D 、D ′分别是BC 、B ′C ′的中点,且AD =A ′D ′.求证:△ABC ≌△A 'B 'C '.20.如图所示是某地区2018﹣2022年汽车进、出口量统计图.(1)与上一年相比,出口量增长率最高的年份是()A.2019年B.2020年C.2021年D.2022年(2)根据图提供的信息,请写出两个不同于(1)的结论.21.如图是某城市地铁线路图的一部分,已知甲从A站上车,随机从B,C,D,E中的某站下车.(1)甲从C站下车的概率是;(2)若乙与甲乘坐同一趟地铁从A站上车,随机从B、C、D、E中的某一站下车,求甲、乙两人恰好从同一站下车的概率.22.如图,某住宅小区南,北两栋楼房直立在地面上,且高度相等.为了测量两楼的高度AE、BD和两楼之间的距离AD,小莉在南楼楼底地面A处测得北楼顶部B的仰角为31°,然后她来到南楼离地面12m 高的C处,此时测得B的仰角为20°.求两楼的高度和两楼之间的距离.(参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,sin31°≈0.52,cos31°≈0.86,tan31°≈0.60.)23.甲、乙两种商品的进价分别为55元/千克、15元/千克,每千克甲商品比乙商品售价多60元,售出甲商品20千克与售出乙商品60千克所获得的利润相等.(1)求甲、乙商品的售价;(2)某超市计划同时购进甲、乙两种商品共120千克,且购进甲商品的数量不大于乙商品数量的2倍.要使两种商品销售完后获得的总利润最大,应购进甲、乙两种商品各多少千克?24.如图,四边形ABCD是⊙O的内接矩形,点E、F分别在射线AB、AD上,OE=OF,且点C、E、F 在一条直线上,EF与⊙O相切于点C.(1)求证:矩形ABCD是正方形;(2)若OF=10,则正方形ABCD的面积是.25.在平面直角坐标系中,已知抛物线y=x2+(k﹣2)x+3.(1)该抛物线经过一个定点:(写出坐标);(2)点P(m,n)是抛物线上一点,当点P在抛物线上运动时,n存在最小值N.①若N=3,求k的值;②若﹣1<k<3,结合该抛物线,直接写出N的取值范围.26.在学习矩形的判定时,王老师提出一个命题:“一组对边相等,一组对角相等且另外两个角中有一个直角的四边形是矩形”.小明和小丽都发现这个命题是假命题,并举出了反例.(1)小明:如图①,Rt△ABC中,∠C=90°,把△ABC沿AB翻折,得到△ABD,再以D为圆心,DB长为半径作弧,交射线CB于点E,连接DE,过点A、E分别作AC、BC的垂线,交于点F.则四边形AFED是该命题的一个反例.请你说明此反例的合理性.(2)小丽:作出图②,在△ABC中,∠B=90°,∠NMB=∠A.她发现四边形ABMN已满足一组对角相等,一个角是直角,但无法保证MN恰好与AB相等,请你完善小丽的作法,并在图②的基础上用尺规作图作出符合要求的M′N′,使四边形ABM′N′是该命题的一个反例(保留作图的痕迹,写出必要的文字说明).27.在平面内,将小棒AB经过适当的运动,使它调转方向(调转前后的小棒不一定在同一条直线上),那么小棒扫过区域的面积如何尽可能地小呢?已知小棒长度为4,宽度不计.方案1:将小棒绕AB中点O旋转180°到B'A',设小棒扫过区域的面积为S1即图中灰色区域的面积,下同);方案2:将小棒先绕A逆时针旋转60°到AC,再绕C逆时针旋转60°到CB,最后绕B逆时针旋转60°到B′A′,设小棒扫过区域的面积为S2.(1)①S1=S2=;(结果保留π)②比较S1与S2的大小.(参考数据:π≈3.14,√3≈1.73.)(2)方案2可优化为方案3:首次旋转后,将小棒先沿着小棒所在的直线平移再分别进行第2、3次旋转,三次旋转扫过的面积会重叠更多,最终小棒扫过的区域是一个等边三角形.①补全方案3的示意图;②设方案3中小棒扫过区域的面积为S3,求S3.(3)设计方案4,使小棒扫过区域的面积S4小于S3,画出示意图并说明理由.2023年江苏省南京市鼓楼区中考数学二模试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号填涂在答题卡相应位置上) 1.下列四个数中,最大的是( ) A .﹣1B .0C .1.4D .√2解:A 、﹣1为负数,小于选项C 、D 中的正数,故A 选项不符合题意; B 、0小于选项C 、D 中的正数,故B 选项不符合题意;C 、比较1.4和√2的大小,计算1.42=1.96<2,所以1.4<√2,故C 选项不符合题意; C 、比较1.4和√2的大小,计算1.42=1.96<2,所以1.4<√2,故D 选项符合题意; 故选:D .2.计算a 2•a 4的结果是( ) A .a 8B .a 4C .a 6D .a 2解:a 2•a 4=a 2+4=a 6. 故选:C .3.计算√12−√3的结果是( ) A .√9B .2C .2√3D .√3解:√12−√3=2√3−√3=√3. 故选:D .4.已知A (2,0),B (0,2),下列四个点中与A 、B 在同一条直线上的是( ) A .(1,2)B .(﹣1,3)C .(﹣2,﹣3)D .(3,﹣2)解:设AB :y =kx +b ,把A (2,0),B (0,2)代入关系式得, {0=2k +b 2=b , ∴{k =−1b =2, ∴y =﹣x +2,把x =1代入关系式得,y =1,故A 不满足题意; 把x =﹣1代入关系式得,y =3,故B 满足题意; 把x =﹣2代入关系式得,y =4,故C 不满足题意; 把x =3代入关系式得,y =﹣1,故D 不满足题意;故选:B .5.如图,在⊙O 中,C 是AB ̂上一点,OA ⊥OB ,过点C 作弦CD 交OB 于E ,若OA =DE ,则∠C 与∠AOC 满足的数量关系是( )A .∠C =13∠AOC B .∠C =12∠AOCC .∠C =23∠AOCD .∠C =34∠AOC解:连接OD ,∵OA ⊥OB , ∴∠BOA =90°,∴∠BOC =∠AOB ﹣∠AOC =90°﹣∠AOC , ∵OD =OC , ∴∠D =∠C ,∵OD =OA ,OA =DE , ∴OD =DE , ∴∠DEO =∠DOE =180°−∠D 2=180°−∠C2, ∵∠DEO 是△EOC 的一个外角, ∴∠DEO =∠C +∠BOC , ∴180°−∠C2=∠C +90°﹣∠AOC ,∴3∠C =2∠AOC , ∴∠C =23∠AOC , 故选:C .6.小明、小红在微信里互相给对方发红包.小明先给小红发1元,小红给小明发回2元,小明再给小红发3元,小红又给小明发回4元……按照这个规律,两人一直互相发红包,直到小明给小红发了199元后,小红突然不发回了.若在整个过程中,两人都及时领取了对方的红包,则最终小红的收支情况是()A.赚了99元B.赚了100元C.亏了99元D.亏了100元解:1﹣2+3﹣4+5﹣6+...+197﹣198+199=(﹣1)×1982+199=(﹣1)×99+199=(﹣99)+199=100(元),则小红赚了100元,故选:B.二、填空题(本大题共10小题,每小题2分,共20分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.式子√x−2有意义,则x的取值范围是x≥2.解:由题意得,x﹣2≥0,解得x≥2.故答案为:x≥2.8.若两个相似多边形面积比为4:9,则它们的周长比是2:3.解:∵两个相似多边形面积比为4:9,∴两个相似多边形相似比为2:3,∴两个相似多边形周长比为2:3,故答案为:2:3.9.一个多边形的每个外角都是45°,则这个多边形的边数为8.解:多边形的外角的个数是360÷45=8,所以多边形的边数是8.故答案为:8.10.方程1x+2=1x2−4的解是x=3.解:1x+2=1x2−4,方程两边都乘(x+2)(x﹣2),得x﹣2=1,解得:x=3,检验:当x=3时,(x+2)(x﹣2)≠0,所以分式方程的解是x=3.故答案为:x=3.11.淋巴细胞是人体内最小的白细胞,直径为6微米,即0.000006米,用科学记数法表示0.000006是6×10﹣6.解:将数0.000006用科学记数法表示正确的是6×10﹣6.故答案为:6×10﹣6.12.已知a 、b 是一元二次方程2x 2+3x ﹣4=0的两个根,那么ab 2+a 2b 的值是 3 . 解:∵a 、b 是一元二次方程2x 2+3x ﹣4=0的两个根, ∴a +b =−32,ab =﹣2,∴ab 2+a 2b =ab (a +b )=﹣2×(−32)=3, 故答案为:3.13.把如图①所示的正三棱锥沿其中的三条棱剪开后,形成的平面展开图为图②.若剪开的三条棱中有两条是AB 、AC ,则剪开的另一条棱是 BD 或CD (写出所有正确的答案).解:把如图①所示的正三棱锥沿其中的三条棱剪开后,形成的平面展开图为图②.若剪开的三条棱中有两条是AB 、AC ,则剪开的另一条棱是BD 或CD . 故答案为:BD 或CD .14.如图,在▱ABCD 中,E 是线段AB 的中点,DE 交AC 于点F ,则AF AC=13.解:∵四边形ABCD 是平行四边形, ∴AB =CD ,AB ∥CD ,∴∠CDE =∠AED ,∠DCA =∠CAB , ∴△AEF ∽△CDF , ∴AF CF=AE CD,∵E 是AB 的中点, ∴AE =12AB , ∴AE =12CD ,∴AE CD =AF CF =12, ∴AF AC =13.故答案为:13.15.已知整式M =a 2﹣2a ,下列关于整式M 的值的结论:①M 的值可能为4;②当a 为小于0的实数时,M 的值大于0;③不存在这样的实数a ,使得M 的值小于﹣1.其中所有正确结论的序号是 ①②③ .解:①当M =4时,a 2﹣2a =4,整理得:a 2﹣2a ﹣4=0,∵Δ=(﹣2)2﹣4×1×(﹣4)=4+16=20>0,∴此方程有两个不相等的实数根,∴M 的值可能为4,故①正确;②M =a 2﹣2a =a (a ﹣2),∵a <0,∴a ﹣2<0,∴a (a ﹣2)>0,∴M >0,∴当a 为小于0的实数时,M 的值大于0,故②正确; ③M =a 2﹣2a =a 2﹣2a +1﹣1=(a ﹣1)2﹣1,∵(a ﹣1)2≥0,∴(a ﹣1)2﹣1≥﹣1,∴M ≥﹣1,∴不存在这样的实数a ,使得M 的值小于﹣1, 故③正确;所以,上列关于整式M 的值的结论,其中所有正确结论的序号是①②③,故答案为:①②③.16.如图,⊙O 的半径为2,AB 是⊙O 的一条弦,以AB 为边作一个等边△ABC ,则OC 长的取值范围是 0≤OC ≤4 .解:AB 为弦、△ABC 是等边角形,当△ABC 是等边角形,且C 恰好在圆的内部,C 与O 重合,此时OC 最小为0,当C 在圆的外部,如下图:连接:AO 、OC 、OB ,在OC下方作等边三角形OCD,则OC=OD=CD,∠OCD=60°,∵△ABC是等边三角形,∴CA=CB,∠ACB=60°,∴∠ACB=∠OCD,∴∠ACO=∠BCD,∴△CAO≌△CBD(SAS),∴BD=OA=2,∵OD最大是4,OD=OC,∴0≤OC≤4,故答案为:0≤OC≤4,三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明17.先化简,再求值:(2a+b)2﹣(2a+b)(2a﹣b),其中a=2,b=1.解:(2a+b)2﹣(2a+b)(2a﹣b)=4a2+4ab+b2﹣4a2+b2=4ab+2b2,当a=2,b=1时,原式=4×2×1+2×12=10.18.解方程:x(x﹣6)=﹣4(x﹣6).解:x(x﹣6)=﹣4(x﹣6),x(x﹣6)+4(x﹣6)=0,(x﹣6)(x+4)=0,∴x﹣6=0或x+4=0∴x1=6,x2=﹣4.19.如图,在△ABC和△A'B'C'中,AB=A′B′,BC=B′C′,D、D′分别是BC、B′C′的中点,且AD=A′D′.求证:△ABC≌△A'B'C'.证明:∵AD ,A 'D '分别是△ABC 和△A 'B 'C '的中线,BC =B 'C ',∴BD =B 'D ',在△ABD 和△A 'B 'D '中,{AB =A ′B ′BD =B′D′AD =A′D′,∴△ABD ≌△A 'B 'D '(SSS ),∴∠B =∠B ',在△ABC 和△A 'B 'C '中,{AB =A ′B ′∠B =∠B′BC =B′C′,∴△ABC ≌△A 'B 'C '(SAS ).20.如图所示是某地区2018﹣2022年汽车进、出口量统计图.(1)与上一年相比,出口量增长率最高的年份是( A )A .2019年B .2020年C .2021年(2)根据图提供的信息,请写出两个不同于(1)的结论.解:(1)由统计图可知,与上一年相比,出口量增长率最高的年份是2019年,其增长为60%, 故答案为:A ;(2)由统计图可知,①2018年和2019年出口量比进口量低;②每年的出口量呈现上升趋势.21.如图是某城市地铁线路图的一部分,已知甲从A 站上车,随机从B ,C ,D ,E 中的某站下车.(1)甲从C 站下车的概率是 14 ;(2)若乙与甲乘坐同一趟地铁从A 站上车,随机从B 、C 、D 、E 中的某一站下车,求甲、乙两人 恰好从同一站下车的概率.解:(1)甲从C 出口出站的概率为14; 故答案为:14. (2)画树状图如下:共有16种等可能的结果,甲、乙两人从同一个出口出站的结果有4种,∴甲、乙两人恰好从同一站下车的概率为416=14. 22.如图,某住宅小区南,北两栋楼房直立在地面上,且高度相等.为了测量两楼的高度AE 、BD 和两楼之间的距离AD ,小莉在南楼楼底地面A 处测得北楼顶部B 的仰角为31°,然后她来到南楼离地面12m 高的C 处,此时测得B 的仰角为20°.求两楼的高度和两楼之间的距离.(参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,sin31°≈0.52,cos31°≈0.86,tan31°≈0.60.)解:过点C 作CF ⊥BD ,垂足为F ,由题意得:AC =DF =12m ,CF =AD ,设AD =CF =x m ,在Rt △ABD 中,∠BAD =31°,∴BD =AD •tan31°≈0.6x (m ),在Rt △CFB 中,∠BCF =20°,∴BF =CF •tan20°≈0.36x (m ),∴BD =BF +DF =(0.36x +12)m ,∴0.6x =0.36x +12,解得:x =50,∴AD =50m ,BD =30m ,∴两楼的高度约为30m ,两楼之间的距离约为50m .23.甲、乙两种商品的进价分别为55元/千克、15元/千克,每千克甲商品比乙商品售价多60元,售出甲商品20千克与售出乙商品60千克所获得的利润相等.(1)求甲、乙商品的售价;(2)某超市计划同时购进甲、乙两种商品共120千克,且购进甲商品的数量不大于乙商品数量的2倍.要使两种商品销售完后获得的总利润最大,应购进甲、乙两种商品各多少千克?解:(1)设甲商品的售价是x 元/千克,乙商品的售价是y 元/千克,根据题意得:{x −y =6020(x −55)=60(y −15), 解得:{x =85y =25. 答:甲商品的售价是85元/千克,乙商品的售价是25元/千克;(2)设购进甲商品m 千克,则购进乙商品(120﹣m )千克,根据题意得:m ≤2(120﹣m ),解得:m ≤80.设购进的两种商品销售完后获得的总利润为w 元,则w =(85﹣55)m +(25﹣15)(120﹣m ),即w=20m+1200,∵20>0,∴w随m的增大而增大,∴当m=80时,w取得最大值,此时120﹣m=120﹣80=40.答:要使两种商品销售完后获得的总利润最大,应购进甲商品80千克,乙商品40千克.24.如图,四边形ABCD是⊙O的内接矩形,点E、F分别在射线AB、AD上,OE=OF,且点C、E、F 在一条直线上,EF与⊙O相切于点C.(1)求证:矩形ABCD是正方形;(2)若OF=10,则正方形ABCD的面积是40.(1)证明:如图,连接AC,∵四边形ABCD是⊙O的内接矩形,∴AC是⊙O的直径,∵EF与⊙O相切于点C,∴AC⊥EF,∵OE=OF,∴CF=CE,∠FOC=∠EOC,∴∠AOF=∠AOE,∵OA=OA,∴△AOF≌△AOE(SAS),∴AF=AE,∵四边形ABCD是矩形,∴∠F AE=90°,∴AC=12EF=CF=CE,∴∠CAE=45°,∵∠ABC=90°,∴∠ACB=45°,∴AB=CB,∴矩形ABCD是正方形;(2)解:∵OC=12AC,AC=CF,∴CF=2OC,∵OF=10,OF2=OC2+CF2,∴102=OC2+4OC2,∴OC=2√5,∴AB=√2OC=2√10,∴AB2=40,∴正方形ABCD的面积是40.故答案为:40.25.在平面直角坐标系中,已知抛物线y=x2+(k﹣2)x+3.(1)该抛物线经过一个定点:(0,3)(写出坐标);(2)点P(m,n)是抛物线上一点,当点P在抛物线上运动时,n存在最小值N.①若N=3,求k的值;②若﹣1<k<3,结合该抛物线,直接写出N的取值范围.(1)解:∵y=x2+(k﹣2)x+3,∴y=x(x+k﹣2)+3,∴当x=0时,y=3,∴无论k取何值,抛物线经过(0,3).故答案为:(0,3).(2)①∵y=x2+(k﹣2)x+3,a=1>0,∴二次函数的图象是开口向上的,点P为顶点时的n最小,∵N=3,∴4×3−(k−2)24=3,解得k =2,答:k 的值为2.②∵﹣1<k <3,∴0≤(k ﹣2)2<9,∴﹣9<﹣(k ﹣2)2≤0,∵N =4×3−(k−2)24≤3, ∴34<N ≤3. 答:N 的取值范围为34<N ≤3. 26.在学习矩形的判定时,王老师提出一个命题:“一组对边相等,一组对角相等且另外两个角中有一个直角的四边形是矩形”.小明和小丽都发现这个命题是假命题,并举出了反例.(1)小明:如图①,Rt △ABC 中,∠C =90°,把△ABC 沿AB 翻折,得到△ABD ,再以D 为圆心,DB 长为半径作弧,交射线CB 于点E ,连接DE ,过点A 、E 分别作AC 、BC 的垂线,交于点F .则四边形AFED 是该命题的一个反例.请你说明此反例的合理性.(2)小丽:作出图②,在△ABC 中,∠B =90°,∠NMB =∠A .她发现四边形ABMN 已满足一组对角相等,一个角是直角,但无法保证MN 恰好与AB 相等,请你完善小丽的作法,并在图②的基础上用尺规作图作出符合要求的M ′N ′,使四边形ABM ′N ′是该命题的一个反例(保留作图的痕迹,写出必要的文字说明).解:(1)∵△ABD 由Rt △ABC 翻折得到,∴AC =AD ,∠C =∠ADB =90°,∵EF ⊥CE ,AC ⊥AF ,∴四边形ACEF是矩形,∴AC=EF,∴AD=EF,在四边形ACBD中,∠DAC=180°﹣∠DBC,∠DBE=180°﹣∠DBC,∴∠DAE=∠DBE,∵BD=DE,∴∠DBE=∠DEB,∴∠DAC=∠DEB,∵∠F AD=90°﹣∠DAC,∠FED=90°﹣∠DEB,∴∠F AD=∠FED<90°,∴四边形ADEF满足一组对边相等,一组对角相等且另外两个角中有一个直角的四边形,但是它不是矩形;(2)如图所示,①在射线MN上截取MD=AB;②作DN′∥BC,交AC于点N′;③在BC上截取MM=DN′,连接MN′,四边形ABM′N′即为所求.27.在平面内,将小棒AB经过适当的运动,使它调转方向(调转前后的小棒不一定在同一条直线上),那么小棒扫过区域的面积如何尽可能地小呢?已知小棒长度为4,宽度不计.方案1:将小棒绕AB中点O旋转180°到B'A',设小棒扫过区域的面积为S1即图中灰色区域的面积,下同);方案2:将小棒先绕A逆时针旋转60°到AC,再绕C逆时针旋转60°到CB,最后绕B逆时针旋转60°到B′A′,设小棒扫过区域的面积为S2.(1)①S1=4πS2=8π﹣8√3;(结果保留π)②比较S1与S2的大小.(参考数据:π≈3.14,√3≈1.73.)(2)方案2可优化为方案3:首次旋转后,将小棒先沿着小棒所在的直线平移再分别进行第2、3次旋转,三次旋转扫过的面积会重叠更多,最终小棒扫过的区域是一个等边三角形.①补全方案3的示意图;②设方案3中小棒扫过区域的面积为S3,求S3.(3)设计方案4,使小棒扫过区域的面积S4小于S3,画出示意图并说明理由.解:(1)①方案1:∵将小棒绕AB中点O旋转180°到B'A',∴小棒扫过区域是以AB为直径的圆,∴S1=π×22=4π,方案2:∵扇形ABC的面积=60×π×16360=83π,∴S2=3×83π−√34×16×2=8π﹣8√3,故答案为:4π;8π﹣8√3;②∵S1=4π=4×3.14=12.56,S2=8×3.14﹣8×1.73=11.28,且12.56>11.28,∴S1>S2;(2)①依题意补全方案3的示意图如下:②连接EM,M为切点,则M为AA'的中点,EM=4,第21页(共21页)设AM =x ,则AE =2x ,由勾股定理得:AM 2+EM 2=AE 2,即:x 2+42=4x 2,解得:x =4√33, ∴AA '=AE =2x =8√33,∴S 3=12AA '•EM =12×8√33×4=16√33. (3)设计方案4:如图,△ABC 是等边三角形,首先让点B 在BC 上运动,点A 在CB 的延长线上运动,使得AB 的长度保持不变,当点B 运动到点C 时,由此AB 边调转到AC ( A 'B ')边,接着两次同样的方式旋转到BC ( A 'B ')边和AB ( B 'A ')边,最终小棒扫过的区域是如图所示.对于第一次旋转,当旋转AB 旋转到DH 时,此时DH ⊥BC ,又作DE ∥AB ,则S △CDE =S 3=S △ABC +S 梯形ABED ,依题意得:扫过的区域比等边三角形ABC 多三块全等的图形,记每块面积为a ,则有a <S △ADF ,F 为AB 的中点,∵S △ADF <S △GDF ,∴S △ADF <12S 四边形GDAF =14S 梯形ABED ,∴a <S △ADF <14S 梯形ABED ,∴S 4=S △ABC +3a <S △ABC +34S 梯形ABED <S △ABC +S 梯形ABED =S 3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年中考数学二模试题含答案一、填空题(本大题共有12小题,每小题2分,共计24分)1. 的倒数是______. 2.计算:=______.3.分解因式:2x 2﹣12x +18=______.4.函数中,自变量x 的取值范围是 .5.若一个多边形的内角和等于,则这个多边形的边数是 . 6.关于的方程有两个实数根,则的取值范围是 .7.△ABC 中,D 、E 分别在AB 、AC 上,DE ∥BC ,AD =1,BD=3,则△ADE 与△ABC 的面积之比为 .8.如图,四边形ABCD 是⊙O 的内接四边形,∠B =148°24′,则∠AOC 的角度为 .(第7题) (第8题)9.如图,PA 、PB 切⊙O 于点A 、B ,已知⊙O 半径为2,且∠APB = 60o ,则AB = .10.圆锥底面圆的半径为3,高长为4,它的表面积等于______(结果保留π). 11.如图,已知点C (1,0),直线y = -x +7与两坐标轴分别交于A 、B 两点,D 、E 分别是AB ,OA 上的动点,当△CDE 周长最小时,点D 坐标为 .ED第11题12.抛物线过A (4,4),B (2,m )两点,点B 到抛物线对称轴的距离记为d ,满足,则实数m 的取值范围是 .二、选择题(本大题共有5小题,每小题3分,共计15分)13.下图是一些完全相同的小正方体搭成的几何体的三视图 ,这个几何体只能是( )14.如图,数轴上的四个点、、、位置如图所示,它们分别对应四个实数a 、b 、c 、d ,若a +c =0,AB <BC ,则下列各式正确的是( )A .B .C .D .15.如图,在平面直角坐标系中,菱形ABOC 的顶点O 在坐标原点,边BO 在x 轴的负半轴上,顶点C 的坐标为(-3,3),反比例函数的图像与菱形对角线AO 交于D 点,连接BD ,当BD ⊥x 轴时,k 的值是( ) A .4 3B .-4 3C .2 3D .-2 316.已知二次函数 ,函数与自变量的部分对应值如下表:… —4 —3 —2 —1 0 ……3—2—5—6—5…(第14题)(第15题)第13题则下列判断中正确的是( )A .抛物线开口向下B .抛物线与轴交于正半轴C .方程的正根在1与2之间D . 当时的函数值比时的函数值大17.如图,正六边形A 1B 1C 1D 1E 1F 1的边长为2,正六边形A 2B 2C 2D 2E 2F 2的外接圆与正六边形A 1B 1C 1D 1E 1F 1的各边相切,正六边形A 3B 3C 3D 3E 3F 3的外接圆与正六边形A 2B 2C 2D 2E 2F 2的各边相切,…按这样的规律进行下去,A 10B 10C 10D 10E 10F 10的边长为( )A .B .C .D .三、解答题(本大题共有11小题,共计81分) 18(本题满分8分)(1)计算: (2)化简:19(本题满分10分)(1)解方程:22)145(sin 230tan 3121-︒+︒--(2)解不等式组 ,并把它们的解集在数轴上表示出来.20.(本题6分) 王华、张伟两位同学分别将自己10次数学自我检测的成绩绘制成如下统计图:⎪⎩⎪⎨⎧<+-+--≤+137621)3(410)8(2x x x x(1)根据上图中提供的数据列出如下统计表:则a = ,b = ,c = ,d = ,(2)将90分以上(含90分)的成绩视为优秀,则优秀率高的是 .(3)现在要从这两个同学选一位去参加数学竞赛,你可以根据以上的数据给老师哪些建议?21.(本题6分)如图,在和△BC D 中,、交于点M. (1)求证:≌△DCB ;(2)作交于点N ,求证:四边形BNCM 是菱形.22. (本题6分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉当前题的一个错误选项,然后选手在剩下选项中作答).(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是__________. (2)如果小明将“求助”留在第二题使用,请用树状图或者列表分析小明顺利通关..的概率.(3)从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)23.(本小题满分6分)NBC如图,已知的三个顶点的坐标分别为、、,P (a ,b )是△ABC 的边AC 上一点:(1)将绕原点逆时针旋转90°得到,请在网格中画出,旋转过程中点A 所走的路径长为 .(2)将△ABC 沿一定的方向平移后,点P 的对应点为P 2(a +6,b +2),请在网格画出上述平移后的△A 2B 2C 2,并写出点A 2、的坐标:A 2( ).(3)若以点O 为位似中心,作△A 3B 3C 3与△ABC 成2:1的位似,则与点P 对应的点P 3位似坐标为 (直接写出结果).24.(本小题满分7分)如图,一次函数与反比例函数的图象交于点 和,与y 轴交于点C .(1)m = ,= ;(2)当x 的取值是 时,>;(3)过点A 作AD ⊥x 轴于点D ,点P 是反比例函数在第一象限的图象上一点.设直线OP与线段AD 交于点E ,当:=3:1时,求点P 的坐标.25. (本小题满分6分)如图,某数学兴趣小组在活动课上测量学校旗杆高度.已知小明的OxyAC B眼睛与地面的距离AB =1.7m ,看旗杆顶部的仰角为;小红的眼睛与地面的距离CD =1.5m ,看旗杆顶部的仰角为.两人相距28米且位于旗杆两侧(点B 、N 、D 在同一条直线上). 请求出旗杆的高度.(参考数据:,,结果保留整数)26.(本小题满分7分)如图,AB 是⊙O 直径,OD ⊥弦BC 与点F ,且交⊙O 于点E , 且∠AEC =∠ODB .(1)判断直线BD 和⊙O 的位置关系,并给出证明;(2)当tan ∠AEC= ,BC =8时,求OD 的长.27.(本小题满分9分)已知直线m ∥n ,点C 是直线m 上一点,点D 是直线n 上一点,CD 与直线m 、n 不垂直,点P 为线段CD 的中点.MN BOADOC30° 45°DBOAC E F (第26题)(1)操作发现:直线l⊥m,l⊥n,垂足分别为A、B,当点A与点C重合时(如图①所示),连接PB,请直接写出线段PA与PB的数量关系:.(2)猜想证明:在图①的情况下,把直线l向上平移到如图②的位置,试问(1)中的PA 与PB的关系式是否仍然成立?若成立,请证明;若不成立,请说明理由.(3)延伸探究:在图②的情况下,把直线l绕点A旋转,使得∠APB=90°(如图③所示),若两平行线m、n之间的距离为2k.求证:PA•PB=k•A B.28.(本小题满分10分)已知抛物线的顶点为P,与y轴交于点A,与直线OP交于点B. (1)如图1,若点P的横坐标为1,点,,试确定抛物线的解析式;(2)在(1)的条件下,若点M是直线AB下方抛物线上的一点,且S△ABM=3,求点M的坐标;(3)如图2,若P在第一象限,且,过点P作轴于点D,将抛物线平移,平移后的抛物线经过点A、D,该抛物线与轴的另一个交点为C,请探索四边形OABC的形状,并说明理由.AyxPOBAyxPO图1 图2数学试卷参考答案 一、填空题二、选择题三、解答题(共5道小题,共25分) 18. 解(1) 原式 ……3分=2……4分(2) 原式 = ……2分= ……4分 19.解(1) ……1分 化简得 ……3分……4分经检验 是原方程的根……5分 (2) (1)(2) 221⎛+ ⎝⎭⎝⎭⎪⎩⎪⎨⎧<+-+--≤+137621)3(410)8(2x x x x不等式(1)的解集为 ……1分 不等式(2)的解集为 ……3分∴原不等式组的解集为 ……4分 数轴表示正确……5分20.(1)a= 80 ,b= 80 ,c= 90 ,d= 60 ,……4分 (2)____张伟____。
……5分(3)答:根据以上数据提供的建议合理即可(略)……6分21.(1)在△ABC 和△DCB 中,AB=DC,AC=DB,BC 为公共边. △ABC ≌△DCB (SSS )………3分 (2)△ABC ≌△DCB ∠DBC=∠ACB 即 MB=MC …………4分 BN ‖AC ,CN ‖BD四边形BNCM 为平行四边形.………… 5分又 MB=MC 平行四边形BNCM 为菱形.………… 6分 22. 解:(1)-------------2分 (2)树状图或列表正确----------3分将第一题中的三个选项记作A 1、B1、C1,第二题中去掉一个错误选项后的三个选项分别记作A2、B2、C2,其中A1、A2分别是两题的正确选项.列表如下:共有9种等可能的结果,其中,同时答对2题通关有1种结果, ∴P(同时答对两题)= 19······4分(3)第一题·············6分23.(1)图略……1分,π……2分(2)图略……3分,(4,4)……4分(3)P3 (2a,2b)或P3 (-2a,-2b)……6分24.(1)4,;……2分(2)-8<x<0或x>4;……4分(3)由(1)知,∴m=4,点C的坐标是(0,2)点A的坐标是(4,4).∴CO=2,AD=OD=4.∴24412.22ODACCO ADS OD++=⨯=⨯=梯形∵[∴1112433ODE ODACS S=⨯=⨯=梯形——5分即OD·DE=4,∴DE=2.∴点E的坐标为(4,2).又点E在直线OP上,∴直线OP的解析式是.——6分∴直线OP与的图象在第一象限内的交点P的坐标为()——7分25.26.解:(1)直线BD和⊙O相切——(1分)证明:∵∠AEC=∠ODB,∠AEC=∠ABC∴∠ABC=∠ODB(2分)∵OD⊥BC ∴∠DBC+∠ODB=90°(3分)∴∠DBC+∠ABC=90°∴∠DBO=90°∴直线BD和⊙O相切.(4分)(2)∵OD⊥BC∴FB=FC=4(5分)∵tan∠AEC=tan∠ODB=3:4∴DF:BF=3:4,∴DF=16:3利用勾股定理可求得BD=20:3 ——6分通过证明△DBF∽△ODB,利用相似比可得OD:DB=BD:FD所以求出OD=25:3 ——7分注:方法不唯一,其他方法酌情给分27. 解:(1)∵l⊥n,∴BC⊥BD,∴三角形CBD是直角三角形,又∵点P为线段CD的中点,∴PA=P B.……………………2分(2)把直线l向上平移到如图②的位置,PA=PB仍然成立,理由如下:如图②,过C作CE⊥n于点E,连接PE,∵三角形CED是直角三角形,点P为线段CD的中点,∴PD=PE,又∵点P为线段CD的中点,∴PC=PD,∴PC=PE;∵PD=PE,∴∠CDE=∠PEB,∵直线m∥n,∴∠CDE=∠PCA,∴∠PCA=∠PEB,又∵直线l⊥m,l⊥n,CE⊥m,CE⊥n,∴l∥CE,∴AC=BE,在△PAC和△PBE中,∴△PAC≌△PBE,∴PA=P B.……………………5分(3)如图③,延长AP交直线n于点F,作AE⊥BD于点E,∵直线m∥n,∴,∴AP=PF,∵∠APB=90°,∴BP⊥AF,又∵AP=PF,∴BF=AB;在△AEF和△BPF中,∴△AEF∽△BPF,∴,∴AF•BP=AE•BF,∵AF=2PA,AE=2k,BF=AB,∴2PA•PB=2k.AB,∴PA•PB=k•A B.……………………9分28.解:(1)依题意, , 解得b=-2.将b=-2及点B(3, 6)的坐标代入抛物线解析式得 . 解c =3. 所以抛物线的解析式为. ……2分(2)∵抛物线 与y 轴交于点A ,∴ A (0, 3). ∵ B (3, 6), 可得直线AB 的解析式为. …3分 设直线AB 下方抛物线上的点M 坐标为(x ,),过M 点作y 轴的平行线交直线AB 于点N , 则N (x , x +3). (如图1)∴ 132ABM AMN BMN B A S S S MN x x ∆∆∆=+=⋅-=. ∴()21323332x x x ⎡⎤+--+⨯=⎣⎦. 解得 .∴点M 的坐标为(1, 2) 或 (2, 3). ……………………5分 (3)如图2,由 PA =PO , OA =c , 可得. ∵抛物线的顶点坐标为 , 图1 ∴ . ∴. ∴ 抛物线,A (0,),P (,), D (,0).可得直线OP 的解析式为. ∵ 点B 是抛物线与直线的图象的交点, 令 .解得. 图2 可得点B 的坐标为(-b ,). ………………8分 由平移后的抛物线经过点A , 可设平移后的抛物线解析式为. 将点D (,0)的坐标代入,得. ∴ 平移后的抛物线解析式为. 令y =0, 即. 解得.依题意, 点C 的坐标为(-b ,0). ……………9分 ∴ BC =. ∴ BC = OA .又BC ∥OA , ∴ 四边形OABC 是平行四边形.∵ ∠AOC =90, ∴ 四边形OABC 是矩形. ……………10分21180 52BC 劼2H8OHH35383 8A37 訷n38062 94AE 钮35106 8922 褢 24028 5DDC 巜36807 8FC7 过40464 9E10 鸐N MBAP yxOCBD AO xyP。