生物化学与分子生物学名词解释

合集下载

简述生物化学与分子生物学的关系

简述生物化学与分子生物学的关系

生物化学与分子生物学是生命科学中两个重要的学科,它们密切相关,但又各自有着不同的研究对象和范畴。

下面将通过对生物化学和分子生物学的定义、研究内容、发展历程以及两者之间的关系进行简述,帮助读者更好地理解这两门学科的内涵和通联。

一、生物化学的定义和研究内容1. 生物化学是研究生物体内化学成分和化学反应的科学,是化学和生物学的交叉学科。

2. 生物化学研究的主要内容包括生物大分子(蛋白质、核酸、多糖和脂类)的结构、性质和功能,生物代谢过程的机理和调控,以及生物体内的营养物质转化和能量代谢等。

二、分子生物学的定义和研究内容1. 分子生物学是研究生物体内生物分子结构和功能的学科,主要关注生命现象的分子机理和调控机制。

2. 分子生物学的研究内容包括基因结构与表达调控、蛋白质合成与功能、细胞信号转导、基因工程技术等。

三、生物化学与分子生物学的关系1. 两者的通联a. 生物化学和分子生物学都是以化学分子为研究对象,关注生物体内的分子结构和功能。

b. 两者在研究方法和手段上有很多相似之处,如核酸和蛋白质的纯化、酶反应的动力学研究等。

c. 生物化学与分子生物学的发展成就也为两者的交叉融合提供了丰富的研究素材和方法。

2. 两者的区别a. 生物化学主要关注生物大分子的结构、性质和代谢途径,侧重于化学反应和能量转化的研究。

b. 分子生物学主要关注生物分子的功能和调控机理,重点在于基因组学、蛋白质组学等高通量数据的挖掘和分析。

四、生物化学与分子生物学的发展历程1. 生物化学的发展历程a. 19世纪末,生物化学作为一个独立的学科逐渐形成,代表人物有梅耶(F. Miescher)等。

b. 20世纪初,生物化学进入蛋白质和酶的研究阶段,代表人物有费尔霍夫(E. Fischer)等。

c. 20世纪中叶以后,生物化学进入生物大分子和代谢途径的研究阶段,代表人物有林纳斯·鲍林(L. Pauling)等。

2. 分子生物学的发展历程a. 20世纪50年代,DNA的双螺旋结构的发现标志着分子生物学的诞生,代表人物有沃森(J. Watson)和克里克(F. Crick)等。

生物化学与分子生物学重点

生物化学与分子生物学重点

生物化学与分子生物学重点一、名词解释基因:基因是基因组中的一个功能性遗传单位,是贮存有功能的蛋白质多肽链或rna序列信息及表达这些信息所需的全部核苷酸序列。

基因组:基因组是一个细胞或一种生物体的整套遗传信息。

质粒:是指细菌细胞染色体意外,能独立复制并稳定遗传的共价闭合环状分子。

蛋白质组:是指一种基因所表达的全套蛋白,既包括一个细胞或一个组织或一个机体的基因所表达的全部蛋白质。

DNA重组:是指不同来源的DNA通过磷酸二酯键连接而重新组合成新的DNA分子的过程。

限制性内切酶:是指能识别和水解双链DNA分子的内特异序列的核酸水解酶。

载体:是指携带靶DNA片段进入宿主细胞进行扩曾和表达的运载工具,常用的载体有:质粒载体、噬菌体载体,病毒载体和人工染色体等。

核酸分子杂交:单链的核酸分子在适合的条件下,与具有碱基互补序列的异核酸形成双链杂交的过程。

杂交:将一种核酸单链标记成探针,再与另一核酸单链进行碱基互补配对,可以形成异源核酸分子的双链结构的过程,PCR:是一个在体外特异的复制一段已知序列的DNA片段的过程,这项技术使人们能够人们很快的从试管中获得大量拷贝的特异核酸片段。

分子生物学检验:从基因水平上解释疾病发生机制,明确疾病诊断,跟踪疾病过程,指导个体化治疗的先进技术手段。

反义核酸:是用人工合成的15-25个核苷酸片段,通过碱基互补配对选择与特定的RNA或DNA互补结合,从而能专一性的抑制基因的转录与翻译。

核酶:是一类具有酶的特异性催化功能的RNA分子,能序列特异性地剪切底物RNA或修复突变的RNA。

致病基因:能导致遗传病或遗传病发生相关的基因。

地中海贫血:也称球蛋白生成障碍性贫血。

是由于球蛋合成速率降低,引起a链和非a链缺乏称为球蛋白生成障碍性贫血。

血友病:由于基因缺陷而使其中某一凝血因子蛋白表达降低或确实造成的一种疾病。

转座因子:一类在细菌染色体,质粒或噬菌体之间自行移动并具有转位特性的独立DNA序列。

生物化学名词解释

生物化学名词解释

绪论1.生物化学(biochemistry):从分子水平来研究生物体(包括人类、动物、植物和微生物内基本物质的化学组成、结构,以及在生命活动中这些物质所进行的化学变化(即代谢反应)的规律及其与生理功能关系的一门科学,是一门生物学与化学相结合的基础学科。

2.新陈代谢(metabolism):生物体与外界环境进行有规律的物质交换,称为新陈代谢。

通过新陈代谢为生命活动提供所需的能量,更新体内基本物质的化学组成,这是生命现象的基本特征,是揭示生命现象本质的重要环节。

3.分子生物学(molecular biology):分子生物学是现代生物学的带头学科,它主要研究遗传的分子基础(分子遗传学),生物大分子的结构与功能和生物大分子的人工设计与合成,以及生物膜的结构与功能等。

4.药学生物化学:是研究与药学科学相关的生物化学理论、原理与技术,及其在药物研究、药品生产、药物质量控制与药品临床中应用的基础学科。

第一章糖的化学1.糖基化工程:通过人为的操作(包括增加、删除或调整)蛋白质上的寡糖链,使之产生合适的糖型,从而达到有目的地改变糖蛋白的生物学功能。

2.单糖(monosaccharide):凡不能被水解成更小分子的糖称为单糖。

单糖是糖类中最简单的一种,是组成糖类物质的基本结构单位。

3.多糖(polysaccharide):由许多单糖分子缩合而成的长链结构,分子量都很大,在水中不能成真溶液,有的成胶体溶液,有的不溶于水,均无甜味,也无还原性。

4.寡糖(oligosaccharide):是由单糖缩合而成的短链结构(一般含2~6个单糖分子)。

5.结合糖(glycoconjugate):也称糖复合物或复合糖,是指糖和蛋白质、脂质等非糖物质结合的复合分子。

6.同聚多糖(homopolysaccharide):也称为均一多糖,由一种单糖缩合而成,如淀粉、糖原、纤维素、戊糖胶、木糖胶、阿拉伯糖胶、几丁质等。

7.杂多糖(heteropolysaccharide):也称为不均一多糖,由不同类型的单糖缩合而成,如肝素、透明质酸和许多来源于植物中的多糖如波叶大黄多糖、当归多糖、茶叶多糖等。

生物化学与分子生物学-名词解释

生物化学与分子生物学-名词解释

第二章蛋白质1、GSH即谷胱甘肽,是由谷氨酸,半胱氨酸和甘氨酸通过肽键缩合而成的三肽。

2、蛋白质变性(protein denaturation)蛋白质在某些物理和化学因素作用下其特定的空间构象被改变,从而导致其理化性质的改变和生物活性的丧失,这种现象称为蛋白质变性。

3、α-螺旋(α-helix)蛋白质中常见的一种二级结构,肽链主链绕假想的中心轴盘绕成螺旋状,一般都是右手螺旋结构,螺旋是靠链内氢键维持的。

每个氨基酸残基(第n个)的羰基氧与多肽链C端方向的第3个残基(第n+3个)的酰胺氮形成氢键。

在典型的右手α-螺旋结构中,螺距为0.54nm,每一圈含有3.6个氨基酸残基,每个残基沿着螺旋的长轴上升0.15nm。

4、β-折叠片层(β-sheet)是蛋白质中的常见的二级结构,是由伸展的多肽链组成的。

折叠片的构象是通过一个肽键的羰基氧和位于同一个肽链或相邻肽链的另一个酰胺氢之间形成的氢键维持的。

氢键几乎都垂直伸展的肽链,这些肽链可以是平行排列(走向都是由N到C方向);或者是反平行排列(肽链反向排列)。

5、β-转角(β-turn)也是多肽链中常见的二级结构,连接蛋白质分子中的二级结构(α-螺旋和β-折叠),使肽链走向改变的一种非重复多肽区,一般含有2~16个氨基酸残基。

含有5个氨基酸残基以上的转角又常称之环(loops)。

常见的转角含有4个氨基酸残基,有两种类型。

转角I的特点是:第1个氨基酸残基羰基氧与第4个残基的酰胺氮之间形成氢键;转角II的第3个残基往往是甘氨酸。

这两种转角中的第2个残基大都是脯氨酸。

6、功能蛋白质组(functional proteome)指的是特定时间、特定环境和实验各种下,基因组活跃表达的蛋白质。

7、肽键(peptide bond )在蛋白质分子中,一分子氨基酸的α-羧基与另一分子氨基酸的α-氨基脱水缩合后而形成的酰胺键称为肽键。

8、基序/模体(motif)模体属于蛋白质的超二级结构,由2个或2个以上具有二级结构的的肽段,在空间上相互接近,形成一个特殊的空间构象,并发挥专一的功能。

生物化学与分子生物学常考名词解释大全

生物化学与分子生物学常考名词解释大全

1蛋白质的二级结构是指多肽链的主链骨架中若干肽单位,各自沿一定的轴盘旋或折叠,并以氢键为次级键而形成有规则的构象,如α螺旋β折叠β转角等。

2肽单位:肽键是构成在分子的基本化学键,肽键与相邻的原子所组成的基团,成为肽单位或肽平面。

3结构域是位于超二级结构和三级结构间的一个层次。

结构域是在蛋白质的三级结构内的独立折叠单元,其通常都是几个超二级结构单元的组合。

在较大的蛋白质分子中,由于多肽链上相邻的超二级结构紧密联系,进一步折叠形成一个或多个相对独立的致密的三维实体,即结构域。

4超二级结构又称模块或膜序是指在多肽内顺序上相邻的二级结构常常在空间折叠中靠近,彼此相互作用,形成有规则的二级结构聚集体。

5三级结构具有二级结构、超二级结构或结构域的一条多肽链,由于其序列上相隔较远的氨基酸残基侧链的相互作用,而进行范围更广泛的盘曲与折叠,形成包括主、测链在内的空间排列,这种在一条多肽链中所有原子和基团在三维空间的整体排布称为三级结构。

6一级结构蛋白质多肽链中氨基酸的排列顺序,以及二硫键的位置。

7四级结构多亚基蛋白质分子中各个具有三级结构的多肽链,以适当的方式聚合所形成的蛋白质的三维结构。

8增色效应增色效应或高色效应。

由于DNA变性引起的光吸收增加称增色效应,也就是变性后 DNA 溶液的紫外吸收作用增强的效应。

9固定化酶不溶于水的酶。

是用物理的或化学的方法使酶与水不溶性大分子载体结合或把酶包埋在水不溶性凝胶或半透膜的微囊体中制成的。

10脂肪酸的β氧化饱和脂肪酸在一系列酶的作用下,羧基端的β位C原子发生氧化,C链在α位C原子与β位C原子间发生断裂,每次生成一个乙酰CoA和较原来少两个C单位的脂肪酸,这个不断重复进行的脂肪酸氧化过程称为脂肪酸的β氧化。

11脂肪酸的β-氧化基本过程:丁酰CoA经最后一次β氧化:生成2分子乙酰CoA 。

故每次β氧化1分子脂酰CoA生成1分子FADH2,1分子NADH+H+,1分子乙酰CoA,通过呼吸链氧化前者生成2分子ATP,后者生成3分子ATP。

生物化学名词解释

生物化学名词解释

生物化学名词解释零、绪论1.生物化学:从分子水平来研究生物体内基本物质的化学组成、结构,及在生命活动中这些物质所进行的化学变化(即代谢反应)的规律及其与生理功能的关系的一门科学,是一门生物学与化学相结合的基础学科。

2.新陈代谢:生物体与外界环境进行有规律的物质交换,称为新陈代谢。

3.分子生物学:是现代生物学的带头学科,主要研究分子遗传学,生物大分子的结构与功能和生物大分子的人工设计与合成,以及生物膜的结构与功能。

4.药学生物化学:是研究与药学科学相关的生物化学理论、原理和技术,及其在药物研究、药品生产、药物质量监控与药品临床方面应用的基础学科。

一、糖的化学1、糖基化工程:通过增加、删除或调整蛋白质上的寡糖链,使之产生合适的糖型,从而达到有目的地改变糖蛋白的生物学功能。

2、单糖:凡不能被水解成更小分子的糖称为单糖。

3、多糖:由许多单糖分子缩合而成的长链结构。

4、寡糖:是由单糖缩合而成的短链结构(一般含2~6个单糖分子)。

5、结合糖:也称糖复合物或复合糖,是指糖和蛋白、脂质等非糖物质结合的复合分子。

6、同聚多糖:也称均一多糖,由同类型的单糖缩合而成。

7、杂多糖:也称不均一多糖,由不同类型的单糖缩合而成。

8、粘多糖:也称糖胺聚糖,是一类含氮的不均一多糖,其化学组成通常为糖醛酸及氨基己糖或其衍生物,有的还含有硫酸。

9、糖蛋白:是糖与蛋白质以共价键结合的复合分子。

10、肽聚糖:又称胞壁质,是构成细菌细胞壁基本骨架的主要成分,是一种多糖与氨基酸链相连的多糖复合物。

11、蛋白质聚糖:是一类由糖和蛋白质结合形成的非常复杂的大分子糖复合物,其中蛋白质含量一般少于多糖。

12、脂多糖:一般由外层低聚糖链、核心多糖及脂质三部分组成。

13、内切糖苷酶:可水解糖链内部的糖苷键,有的可将长的多糖链切为较短的寡糖片段。

14、外切糖苷酶:只能切下多糖非还原末端的一个单糖,并对单糖组成和糖苷键有专一性要求。

二、脂的化学1、必需脂肪酸:人体不能合成必须从食物获取的脂肪酸。

生物化学与分子生物学名词解释 人卫版

生物化学与分子生物学名词解释 人卫版

生化名词解释1、肽键(peptide bond)是由一个氨基酸的α-羧基与另一个氨基酸的α-氨基脱水缩合而形成的化学键。

2、模体(motif):模体是蛋白质分子中具有特定空间构象和特定功能的结构成分。

3、结构域(domain):三级结构中、分割成折叠较为紧密且稳定的区域,各行使其功能。

结构域也可看作是球状蛋白质的独立折叠单位,有较为独立的三维空间结构。

4、蛋白质的等电点(isoelectric point,pI):当蛋白质溶液处于某一pH时,蛋白质解离成正、负离子的趋势相等,即成为兼性离子,净电荷为零,此时溶液的pH称为蛋白质的等电点。

5、蛋白质的变性(denaturation):在某些物理和化学因素作用下,其特定的空间构象被破坏,也即有序的空间结构变成无序的空间结构,从而导致其理化性质改变和生物活性的丧失。

6、亚基(subunit):四级结构中每条具有完整三级结构的多肽链。

7、谷胱甘肽(glutathione,GSH):是由谷氨酸、半胱氨酸和甘氨酸组成的三肽。

分子中半胱氨酸的巯基是该化合物的主要功能基团。

8、协同效应(cooperativity):一个亚基与其配体结合后,能影响此寡聚体中另一个亚基与配体的结合能力,称为协同效应。

若是促进作用则称为正协同效应(positive cooperativit);若是抑制作用则称为负协同效应(negative cooperativity).9、分子病(molecular disease):由蛋白质分子发生变异所导致的疾病,称为分子病。

10、DNA变性(DNA denaturation):某些理化因素(温度、pH、离子强度等)会导致DNA双链互补碱基之间的氢键发生断裂,使DNA双链解离为单链。

这种现象称为DNA变性。

11、磷酸二酯键(phosphodiester bond):一个脱氧核苷酸3'的羟基与另一个核苷酸5'的α-磷酸基团缩合形成磷酸二酯键。

同等学力申硕生物化学与分子生物学2023

同等学力申硕生物化学与分子生物学2023

同等学力申硕生物化学与分子生物学2023生物化学与分子生物学是现代生命科学中的重要学科,它研究生物体内生物分子的组成、结构、功能及其在生命活动中的作用机制。

通过分析生物分子的相互作用和调控,可以深入了解生命的本质,并为疾病的诊断与治疗提供理论支持。

在这篇文章中,我们将探讨生物化学与分子生物学的基本概念、研究方法和应用前景。

一、生物化学与分子生物学的基本概念生物化学主要研究生物体内的生物分子,包括蛋白质、核酸、碳水化合物和脂质等,以及它们之间的相互作用和代谢途径。

分子生物学则进一步研究生物分子的结构和功能,以及遗传信息的传递和表达机制。

生物化学和分子生物学密切相关,相互补充,共同构成了现代生命科学的重要组成部分。

生物化学与分子生物学的研究对象包括DNA、RNA、蛋白质、酶等生物分子,以及细胞器、信号转导途径、代谢途径等生物学过程。

通过分子水平的研究,可以揭示细胞内生物分子之间的信号传导网络和调控机制,从而深入理解生命活动的本质和规律。

二、生物化学与分子生物学的研究方法生物化学与分子生物学的研究方法主要包括生物分子的纯化与鉴定、DNA重组与修饰、蛋白质合成与结构分析、基因表达与调控等。

其中,分子生物学技术如PCR、基因克隆、蛋白质纯化、质谱分析等为研究生物分子提供了有力工具。

生物化学与分子生物学的研究方法还包括结构生物学、代谢组学、蛋白质组学、生物信息学等新兴技术。

这些方法的发展使得研究人员能够更深入地理解生命体系的结构和功能,为生命科学的发展提供了新的思路和途径。

三、生物化学与分子生物学的应用前景生物化学与分子生物学的研究在医学、农业、食品安全、环境保护等领域具有广泛的应用价值。

在医学领域,生物化学与分子生物学的研究为疾病的诊断和治疗提供了理论依据,例如基因测序技术在癌症诊断中的应用、蛋白质药物的开发等。

在农业领域,生物化学与分子生物学的研究为作物改良和疾病防控提供了技术支持,例如基因编辑技术在农作物育种中的应用、转基因作物的发展等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

生物化学与分子生物学名词解释生化名解1、肽单元(peptide unit):参与肽键的6个原子Ca1、C、O、N、H、Ca2位于同一平面,Ca1和Ca2在平面上所处的位置为反式构型,此同一平面上的6个原子构成了肽单元,它是蛋白质分子构象的结构单元。

Ca是两个肽平面的连接点,两个肽平面可经Ca的单键进行旋转,N—Ca、Ca—C是单键,可自由旋转。

2、结构域(domain):分子量大的蛋白质三级结构常可分割成1个和数个球状或纤维状的区域,折叠得较为紧密,具有独立的生物学功能,大多数结构域含有序列上连续的100—200个氨基酸残基,若用限制性蛋白酶水解,含多个结构域的蛋白质常分成数个结构域,但各结构域的构象基本不变。

3、模体(motif):在许多蛋白质分子中,二个或三个具有二级结构的肽段,在空间上相互接近,形成一个特殊的空间构象。

一个模序总有其特征性的氨基酸序列,并发挥特殊功能,如锌指结构。

4、蛋白质变性(denaturation):在某些物理和化学因素作用下,其特定的空间构象被破坏,也即有序的空间结构变成无序的空间结构,从而导致其理化性质的改变和生物活性的丧失。

主要发生二硫键与非共价键的破坏,不涉及一级结构中氨基酸序列的改变,变性的蛋白质易沉淀,沉淀的蛋白质不一定变性。

5、蛋白质的等电点( isoelectric point, pI):当蛋白质溶液处于某一pH时,而改变酶的活性,此过程称为共价修饰。

主要包括:磷酸化—去磷酸化;乙酰化—脱乙酰化;甲基化—去甲基化;腺苷化—脱腺苷化;—SH与—S—S—互变等;磷酸化与脱磷酸是最常见的方式。

10、酶原和酶原激活(zymogen and zymogen activation):有些酶在细胞内合成或初分泌时只是酶的无活性前体,必须在一定的条件下水解开一个或几个特定的肽键,使构象发生改变,表现出酶的活性,此前体物质称为酶原。

由无活性的酶原向有活性酶转化的过程称为酶原激活。

酶原的激活,实际是酶的活性中心形成或暴露的过程。

11、同工酶(isoenzyme isozyme):催化同一化学反应而酶蛋白的分子结构,理化性质,以及免疫学性质都不同的一组酶。

它们彼此在氨基酸序列,底物的亲和性等方面都存在着差异。

由同一基因或不同基因编码,同工酶存在于同一种属或同一个体的不同组织或同一细胞的不同亚细胞结构中,它使不同的组织、器官和不同的亚细胞结构具有不同的代谢特征。

12、糖酵解(glycolysis):在机体缺氧条件下,葡萄糖经一系列酶促反应生成丙酮酸进而还原生成乳酸的过程称为糖酵解(糖的无氧氧化)。

糖酵解的反应部位在胞浆。

主要包括由葡萄糖分解成丙酮酸的糖酵解途径和由丙酮酸转变成乳酸两个阶段,1分子葡萄糖经历4次底物水平磷酸化,净生成2分子ATP。

关键酶主要有己糖激酶,6-磷酸果糖激酶-1和丙酮酸激酶。

它的意义是机体在缺氧情况下获取能量的有效方式;某些细胞在氧供应正常情况下的重要供能途径。

13、糖异生(gluconeogenesis):是指从非糖化合物(乳酸、甘油、生糖氨基酸等)转变为葡萄糖或糖原的过程,主要在肝、肾细胞的胞浆及线粒体。

关键酶主要有丙酮酸羧化酶,磷酸烯醇式丙酮酸羧激酶,果糖双磷酸酶-1和葡萄糖-6-磷酸酶。

糖异生主要生理作用是维持血糖水平的恒定,糖异生也是补充或恢复肝糖原储备的重要途径。

14、底物水平磷酸化(substrate level phosphorylation):物质在脱氢或脱水的过程中,偶联生成高能键,底物分子内部能量重新分布,使ADP(GDP)磷酸化生成ATP(GTP)的过程。

15、乳酸循环(lactate cycle or cori cycle):肌收缩(尤其是供氧不足时)通过糖酵解生成乳酸。

肌内糖异生活性低,所以乳酸通过细胞膜弥散进入血液后,再入肝,在肝内异生为葡萄糖。

葡萄糖释入血液后又可被肌摄取,这就构成了一个循环,此循环称为乳酸循环,也称Cori循环,生理意义:乳酸再利用,避免了乳酸的损失,防止乳酸的堆积引起酸中毒,间接调节血糖。

16、脂肪动员(fat mobilization)是指储存在脂肪细胞中的脂肪,被脂肪酶逐步水解为FFA及甘油,并释放入血以供其他组织氧化利用的过程。

在脂肪动员中,激素敏感性三酰甘油脂肪酶(HSL)是限速酶。

17、脂肪酸的β-氧化(β-oxidation of fatty acid):脂酰CoA进入线粒体基质后,在脂肪酸的β-氧化多酶复合体的催化下从脂酰基的β-碳原子开始,进行脱氢、加水、再脱氢、硫解四步连续反应,脂酰基断裂生成一分子乙酰CoA 及一分子比原来少两个碳原子的脂酰CoA,此过程即脂肪酸的β-氧化。

在胞液、线粒体中反应,除脑组织外,大多数组织均可进行,其中肝、肌肉最活跃。

肉碱脂酰转移酶Ⅰ是脂肪酸β-氧化的限速酶。

18、酮体(ketone bodies):在肝细胞线粒体中以β-氧化生成的乙酰CoA为原料转化成乙酰乙酸、β-羟丁酸和丙酮,三者统称为酮体。

是脂肪酸在肝中分解的正常中间代谢产物,供肝外组织利用,是肝脏输出能源的一种形式。

过量则导致酮症酸中毒等疾病。

19、呼吸链(respiratory chain):在生物氧化过程中,代谢物脱下的成对氢原子(2H)通过线粒体上多种酶和辅酶所催化的连锁反应的逐步传递,最终与氧结合生成水,并偶联ATP的生成,这一系列酶和辅酶称为呼吸链,又称电子传递链(electron transfer chain)。

20、氧化磷酸化(oxidative phosphorylation):是指代谢物脱下的成对氢原子(2H)在呼吸链电子传递过程中偶联ADP磷酸化并生成ATP,最终与氧结合生成水,又称为偶联磷酸化。

氧化磷酸化是体内生成ATP的主要方式。

21、氮平衡(nitrogen balance):摄入食物的含氮量与排泄物(尿与粪)中含氮量之间的关系,包括氮总平衡、氮正平衡、氮负平衡三种平衡,可以反映体内蛋白质代谢的概况。

(不考)22、氨基酸代谢库(metabolic pool):食物蛋白经消化吸收的氨基酸(外源性氨基酸)与体内组织蛋白降解产生的氨基酸(内源性氨基酸)混在一起,分布于体内各处参与代谢,称为氨基酸代谢库。

23、α-磷酸甘油穿梭(α-glycerophosphate shuttle):在哺乳动物的脑、骨骼肌中,当胞液的NADH较多时,在胞液中磷酸甘油脱氢酶的作用下,使磷酸二羟丙酮还原成磷酸甘油,后者通过线粒体外膜,再经位于线粒体内膜胞液侧的磷酸甘油脱氢酶的催化下,氧化生成磷酸二羟丙酮和FADH2。

磷酸二羟丙酮可传出线粒体外膜至胞液继续进行穿梭,而FADH2则进入琥珀酸氧化呼吸链同时生成1.5molATP。

(1、存在于脑和骨骼肌;2、过程可用图示;3、NADH被转运入线粒体进行氧化磷酸化;4、最终生成1.5molATP)24、苹果酸-天冬氨酸穿梭(malate-asparate shuttle):该穿梭机制存在于心肌和肝中,胞液中的NADH在苹果酸脱氢酶的作用下,使草酰乙酸还原生成苹果酸,后者通过线粒体内膜上的α-酮戊二酸载体进入线粒体,又在线粒体内苹果酸脱氢酶的作用下重新生成草酰乙酸和NADH。

NADH进入NADH氧化呼吸链,生成2.5molATP。

线粒体内的草酰乙酸经谷草转氨酶的作用生成天冬氨酸,后者经酸性氨基酸载体转运出线粒体,再转变成草酰乙酸,继续进行穿梭。

(1、存在于肝和心肌;2、过程可用图示;3、NADH被转运入线粒体进行氧化磷酸化;4、最终生成2.5molATP)25、一碳单位(one carbon unit):某些氨基酸代谢过程中产生的只含有一个碳原子的基团称为一碳单位,其代谢的辅基是四氢叶酸。

一碳单位参与嘌呤、胸腺嘧啶的合成,主要的一碳单位有甲基、甲烯基、甲炔基、甲酰基和亚氨甲基,一碳单位主要来自丝氨酸,甘氨酸,组氨酸及色氨酸的分解代谢。

26、甲硫氨酸循环(methionine cycle):甲硫氨酸和ATP作用转变成S-腺苷甲硫氨酸(SAM),SAM是甲基的直接供体,参与许多甲基化反应,与此同时产生S-腺苷同型半胱氨酸进一步转变成同型半胱氨酸,后者可接受N5—CH3—FH4的甲基重新生成甲硫氨酸,形成一个循环过程称作甲硫氨酸循环。

其生理意义是:①SAM提供甲基以进行体内广泛存在的甲基化反应;②N5—CH3—FH4提供甲基合成甲硫氨酸,同时使N5—CH3—FH4的FH4释放,再参与一碳单位的代谢。

27、联合脱氨基作用(transdeamination):两种脱氨基方式的联合作用,使氨基酸脱下α-氨基生成α-酮酸的过程,包括转氨基偶联氧化脱氨基作用和转氨基偶联嘌呤核苷酸循环,既是氨基酸脱氨基的主要方式,也是体内合成非必需氨基酸的重要方式。

28、嘌呤核苷酸循环(purine nucleotide cycle):骨骼肌和心肌主要通过嘌呤核苷酸循环进行脱氨基作用。

氨基酸首先通过连续的转氨基作用将氨基酸的氨基转移给草酰乙酸,生成天冬氨酸;天冬氨酸与次黄嘌呤核苷酸生成腺苷酸代琥珀酸,经裂解生成AMP,AMP在腺苷酸脱氢酶催化下脱去氨基。

由此可见,嘌呤核苷酸循环实际上也可以看成是另一种形式的联合脱氨基作用。

29、变构调节(allosteric regulation):小分子化合物与酶分子活性中心以外的某一部位特异结合,引起酶蛋白分子构象变化,从而改变酶的活性,这种调节称为酶的变构调节或别构调节。

被调节的酶称为变构酶或别构酶,使酶发生变构效应的物质,称为变构效应剂,包括变构激活剂和变构抑制剂。

30、化学修饰调节:(chemicalmodification)酶蛋白肽链上某些残基在酶的催化下发生可逆的共价修饰,从而引起酶活性改变,这种调节称为酶的化学修饰。

主要包括:磷酸化—去磷酸化;乙酰化—脱乙酰化;甲基化—去甲基化;腺苷化—脱腺苷化;—SH与—S—S—互变等;磷酸化与脱磷酸是最常见的方式。

31、变构酶(allosteric enzyme):指代谢途径中参与变构调节的关键酶称为变构酶,变构酶常为多个亚基构成的寡聚体,有催化亚基含结合底物催化反应的活化中心及调节亚基含与变构效应剂结合引起调节作用的调节部位,对酶催化活性调节的方式称为变构效应,具有协同效应。

32、变构效应剂(allosteric effector):与酶分子活性中心以外的某一部位特异结合,引起酶蛋白分子构象变化,从而改变酶的活性的底物、终产物与其他小分子代谢物质,称为变构效应剂,引起酶活性增加的变构效应剂称变构激活剂,引起酶活性降低的变构效应剂称变构抑制剂。

33、生物转化作用(Biotransformation):机体将来自体外的非营养物质在肝脏进行氧化、还原、水解和结合反应,使这些物质生物活性或毒性降低甚至消除,这一过程称为生物转化作用。

相关文档
最新文档